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ON UNIQUENESS OF WEAK SOLUTION TO

MIXED PROBLEM FOR INTEGRO-DIFFERENTIAL

AGGREGATION EQUATION

V.F. VIL’DANOVA

Abstract. In a well-known paper by A. Bertozzi, D. Slepcev (2010), there was established
the existence and uniqueness of solution to a mixed problem for the aggregation equation

𝑢𝑡 −Δ𝐴(𝑥, 𝑢) + div (𝑢∇𝐾 * 𝑢) = 0

describing the evolution of a colony of bacteria in a bounded convex domain Ω. In this
paper we prove the existence and uniqueness of the solution to a mixed problem for a more
general equation

𝛽(𝑥, 𝑢)𝑡 = div (∇𝐴(𝑥, 𝑢)− 𝛽(𝑥, 𝑢)𝐺(𝑢)) + 𝑓(𝑥, 𝑢).

The term 𝑓(𝑥, 𝑢) in the equation models the processes of “birth-destruction” of bacte-
ria. The class of integral operators 𝐺(𝑣) is wide enough and contains, in particular, the
convolution operators ∇𝐾 * 𝑢. The vector kernel 𝑔(𝑥, 𝑦) of the operator 𝐺(𝑢) can have
singularities.

Proof of the uniqueness of the solution in the work by A. Bertozzi, D. Slepcev was based
on the conservation of the mass

∫︀
Ω 𝑢(𝑥, 𝑡)𝑑𝑥 = 𝑐𝑜𝑛𝑠𝑡 of bacteria and employed the convexity

of Ω and the properties of the convolution operator. The presence of the “inhomogeneity”
𝑓(𝑥, 𝑢) violates the mass conservation. The proof of uniqueness proposed in the paper is
suitable for a nonuniform equation and does not use the convexity of Ω.

Keywords: aggregation equation, integro-differential equation, global solution, uniqueness
of solution.
Mathematics Subject Classification: 35K20, 35K55, 35K65

1. Introduction

In the last decade there appeared many works devoted to studying the aggregation equation

𝑢𝑡 = div(∇𝐴(𝑥, 𝑢) − 𝑢∇𝐾 * 𝑢), 𝐾 * 𝑢 =

∫︁
R𝑛

𝐾(𝑥− 𝑦)𝑢(𝑦, 𝑡)𝑑𝑦, (1)

where the kernel 𝐾 can have singularity of Newtonian potential kind, see [1] and the references
therein. A detailed survey of the results of such studies would have been too lengthy and this
is why we mention only pioneering works devoted to equation (1).

In work [2], a model of bacteria chemotaxis was suggested as the system of equations

𝑢𝑡 = div (∇𝑢− 𝑢∇𝑣), 𝑥 ∈ R𝑛, 𝑡 > 0,

− ∆𝑣 = 𝑢, 𝑥 ∈ R𝑛, 𝑡 > 0.
(2)

V.F. Vil’danova, On uniqueness of weak solution to mixed problem for integro-differential
aggregation equation.

c○ Vil’danova V.F. 2018.
Submitted April 19, 2018.
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It is obvious that for a bounded function 𝑣, system (2) is reduced to a single equation of
form (1).

In work [3], system (2) was called Smolukhovsky-Poisson system and was used for studying
gravitational collapse of a cloud of self-gravitating particles. In work [4], the same system was
called Chavanis-Sommeria-Robert model with a reference to work [5].

Let Ω be a bounded domain in the space R𝑛, 𝑛 > 2, with the boundary in the class 𝐶1. In
the cylindrical domain 𝐷𝑇 = Ω × (0, 𝑇 ) we consider the equation

𝛽(𝑥, 𝑢)𝑡 = div(∇𝐴(𝑥, 𝑢) − 𝛽(𝑥, 𝑢)𝐺(𝑢)) + 𝑓(𝑥, 𝑢) (3)

with initial and boundary conditions

𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑐𝑚𝑢0(𝑥) > 0, 𝑥 ∈ Ω, (4)

(∇𝐴(𝑥, 𝑢) − 𝛽(𝑥, 𝑢)𝐺(𝑢)) · 𝜈 = 0 on 𝜕Ω × (0, 𝑇 ), (5)

where 𝜈 is the outward unit normal. The integral operator

𝐺(𝑣) = (𝐺1(𝑣), 𝐺2(𝑣), . . . , 𝐺𝑛(𝑣))

is defined by the formulae

𝐺𝑖(𝑣) =

∫︁
Ω

𝑔𝑖(𝑥, 𝑦)𝑏(𝑣(𝑦))𝑑𝑦.

The aim of the work is to prove the existence and uniqueness of the weak solution to problem
(3)–(5) in the cylinder 𝐷𝑇 with the height determined by data of the problem.

In work [6], the existence and uniqueness of the weak solution to problem (1),(4) with the
boundary condition

(∇𝐴(𝑥, 𝑢) − 𝑢∇𝐾 * 𝑢) · 𝜈 = 0 on 𝜕Ω × (0, 𝑇 )

was proved in the case, when the kernel 𝐾 belonged to 𝐶2(R𝑛). In earlier work [7] there
were established the existence and uniqueness of the solution to the same problem in the case
𝐴 = 𝐴(𝑢) ∈ 𝐶1[0,∞] as the domain Ω was convex. But the proof of the existence in this work
contained a gap. In work [7], there were also considered Cauchy problem and a problem with
a periodic boundary condition.

In the papers the authors knows, the function 𝐴(𝑥, 𝑢) increases in 𝑢 and among the power
functions 𝐴(𝑥, 𝑢) = 𝑢𝑚 only the case 𝑚 > 1 was treated. We observe that the change 𝑣 = 𝑢𝑚

in equation (1) with 𝐴(𝑥, 𝑢) = 𝑢𝑚 leads us to equation (3) and this allows us to prove the
existence of solution in the case 𝑚 ∈ (0, 1), see Theorem 3 in Section 2 implied by the results
in [8].

In work [8] there was prove the existence of a weak solution to the mixed problem in 𝐷𝑇 for
the equation

𝛽(𝑥, 𝑢)𝑡 = div(𝑎(𝑥, 𝑢,∇𝑢) − 𝛽(𝑥, 𝑢)𝐺(𝑢)) + 𝑓(𝑥, 𝑢) (6)

with the initial condition (4) and the boundary condition

(𝑎(𝑥, 𝑢,∇𝑢) − 𝛽(𝑥, 𝑢)𝐺(𝑢)) · 𝜈 = 0 on 𝜕Ω × (0, 𝑇 ). (7)

The height 𝑇 of the cylinder 𝐷𝑇 is determined by the functions involved in the formulation
of the problem. This result is discussed in details in Section 2.

The presence of a non-locality in equation (3) does not give a chance to employ the Kruzhkov’s
method of doubling variables applied in work [9] for proving the uniqueness of a renormalized
solution to the mixed problem for the parabolic equation with a double nonlinearity.

A wider survey of works on aggregation equation can be found in work [6].
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2. Main results

Suppose that 𝛽(𝑥, 𝑟), 𝑓(𝑥, 𝑟), 𝐴(𝑥, 𝑟) are Caratheodory functions. The function 𝐴(𝑥, 𝑢) ∈
𝐶1(Ω × [0,∞)), 𝐴(𝑥, 𝑢) > 0, has a positive derivative 𝐴𝑢,

𝐴𝑢(𝑥, 𝑢) > 𝑎0 > 0, 𝑥 ∈ Ω, 𝑢 > 0, (8)

(𝐴(𝑥, 𝑢) − 𝐴(𝑥, 𝑣))(𝛽(𝑥, 𝑢) − 𝛽(𝑥, 𝑣)) > 𝑎0(𝑢− 𝑣)2 for all 𝑢, 𝑣 ∈ R+. (9)

We describe the conditions for the functions involved in the integral operator 𝐺(𝑣):

𝑔𝑖(𝑥, 𝑦) ∈ 𝐶1(𝑃 ), 𝑃 = {(𝑥, 𝑦) : 𝑥, 𝑦 ∈ Ω, 𝑥 ̸= 𝑦}.

We assume that for some 𝜆 < 𝑛 the inequalities hold:

𝑛∑︁
𝑖=1

|(𝑔𝑖(𝑥, 𝑦))𝑥𝑖
| + |𝑔𝑖(𝑥, 𝑦)| 6 𝐶(1 + |𝑥− 𝑦|−𝜆), (𝑥, 𝑦) ∈ 𝑃, (10)

𝑛∑︁
𝑖=1

𝜈𝑖𝑔𝑖(𝑥, 𝑦) 6 0, 𝑥 ∈ 𝜕Ω, 𝑦 ∈ Ω. (11)

The functions 𝑓(𝑥, 𝑠), 𝑏(𝑠), 𝑓(𝑥, 0) = 0, 𝑏(0) = 0, satisfy the Lipschitz condition:

|𝑓(𝑥, 𝑠1) − 𝑓(𝑥, 𝑠2)| 6 𝐿𝑟|𝑠1 − 𝑠2|, 𝑠1, 𝑠2 ∈ [0, 𝑟] for all 𝑟 > 0, (12)

|𝑏(𝑠1) − 𝑏(𝑠2)| 6 𝐿𝑘|𝑠1 − 𝑠2|, 𝑠1, 𝑠2 ∈ [0, 𝑘] for all 𝑘 > 0. (13)

It follows from the condition 𝜆 < 𝑛 that there exists a number 𝑞 > 1 such that 𝜆 < 𝑛
𝑞
. We

fix complex conjugate numbers 𝑞, 𝑞 such that 1
𝑞

+ 1
𝑞

= 1.

The weak solution is defined as follows.

Definition 1. The function 𝑢 : 𝐷𝑇 → [0,∞), 𝑢 > 0, is called a weak solution to problem
(3)–(5) if

𝑢 ∈ 𝐿∞(𝐷𝑇 ), 𝛽(𝑥, 𝑢) ∈ 𝐿∞(0, 𝑇 ;𝐿𝑞(Ω)), 𝐴(𝑥, 𝑢) ∈ 𝐿2(0, 𝑇 ;𝐻1(Ω))

and for all Lipschitz functions 𝜉 ∈ 𝐿𝑖𝑝(𝐷𝑇 ) obeying 𝜉(𝑇 ) = 0 the identity holds:∫︁
𝐷𝑇

(−𝛽(𝑥, 𝑢)𝜉𝑡 + (∇𝐴(𝑥, 𝑢) − 𝛽(𝑥, 𝑢)𝐺(𝑢)) · ∇𝜉 − 𝑓(𝑥, 𝑢)𝜉)𝑑𝑥𝑑𝑡 =

∫︁
Ω

𝑢0(𝑥)𝜉(𝑥, 0)𝑑𝑥. (14)

Theorem 1. Assume that conditions (8)–(13) hold and let there exists a non-negative solu-
tion to problem (3)– (5). Then this solution is unique.

We shall use the following statements on the estimates of the potential type integrals (see,
for instance, [10, Ch. I, Sect. 6]).

Lemma 1. If

𝜆 <
𝑛

𝑞
,

1

𝑞
+

1

𝑞
= 1, 1 < 𝑞 < ∞, 𝑓(𝑥) ∈ 𝐿𝑞(Ω),

then the function

𝑣(𝑥) =

∫︁
Ω

𝑓(𝑦)𝑑𝑦

|𝑥− 𝑦|𝜆

is continuous in R𝑛 and satisfies the inequality

|𝑣(𝑥)| 6 𝐶‖𝑓‖𝑞,Ω.
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Lemma 2. Assume that the domain Ω is bounded and 𝜆 < 𝑛, 𝑓(𝑥) ∈ 𝐿2(Ω). Then the
function

𝑣(𝑥) =

∫︁
Ω

𝑓(𝑦)𝑑𝑦

|𝑥− 𝑦|𝜆

is square summable and the inequality holds:

‖𝑣(𝑥)‖2,Ω 6 𝐶‖𝑓‖2,Ω.

Let 𝑀0 = ‖𝑢0‖𝐿∞(Ω) and 𝑀𝑇 > 𝑀0 be an arbitrary number. We are going to obtain some
estimate for the integral operator 𝐺(𝑣). We consider a measurable function 𝑣(𝑥); this function
obeys |𝑣(𝑥)| 6 𝑀𝑇 . It follows from Lemma 1 and conditions (10), (13) that

𝐺(𝑣) ∈ 𝐶1(R𝑛), |𝐺(𝑣)(𝑥)| 6 𝐶𝐺, |∇𝐺(𝑣)(𝑥)| 6 𝑑𝐺, 𝑥 ∈ Ω. (15)

Let us provide a statement (see [8]) on existence of solution to problem (6), (4), (7).
In what follows, the nonlinearity exponents 𝑝𝑖(𝑥) satisfy the condition:

|𝑝𝑖(𝑥) − 𝑝𝑖(𝑦)| 6 𝐶

− ln |𝑥− 𝑦|
, 𝑖 = 1, 𝑛, (16)

as |𝑥− 𝑦| 6 1
2
, 𝑥, 𝑦 ∈ Ω. In work [8], the conditions for the functions involved in equation (6)

were as follows. The function 𝛽(𝑥, 𝑟) is odd in 𝑟 ∈ R and for some 𝑀0, 𝑀𝑇 it satisfies the
conditions

𝑠𝛽(𝑥, 𝑟) 6 𝑟𝛽(𝑥, 𝑠) as 0 < 𝑀0 6 𝑟 < 𝑠 6 𝑀𝑇 , 𝑥 ∈ Ω; (17)

𝛽(𝑥,𝑀𝑇 ) ∈ 𝐿𝑞(Ω), where 𝑞 > max
𝑗

(𝑝𝑗(𝑥)), 𝑥 ∈ Ω. (18)

|∇𝛽(𝑥, 𝑟)| 6 𝑁𝑔|𝛽(𝑥, 𝑟)|, 𝑟 ∈ [0,𝑀𝑇 ] 𝑥 ∈ Ω. (19)

The function 𝑞1(𝑥, 𝑟) is defined by the identity 𝑓 = 𝛽(𝑥, 𝑟)𝑞1(𝑥, 𝑟) and is bounded

|𝑞1(𝑥, 𝑟)| 6 𝑞0 as |𝑟| 6 𝑀𝑇 . (20)

The functions 𝑎𝑖(𝑥, 𝑟, 𝑦) are continuous in 𝑟 ∈ R, 𝑦 ∈ R𝑛 and measurable in 𝑥 ∈ Ω. There exist
a function 𝐹 (𝑥) ∈ 𝐿1(Ω) and a continuous function 𝐶(𝑚), 𝑚 > 0, such that

|𝑎𝑗(𝑥, 𝑟, 𝑦)|𝑝𝑗(𝑥) 6 𝐶(𝑚)(𝐹 (𝑥) +
𝑛∑︁

𝑖=1

|𝑦𝑖|𝑝𝑖(𝑥)), (21)

for all 𝑟 ∈ [−𝑚,𝑚], 𝑦 ∈ R𝑛, 𝑥 ∈ Ω.
The monotonicity and coercivity conditions are introduced as

(𝑎(𝑥, 𝑟, 𝑦) − 𝑎(𝑥, 𝑟, 𝑧)) · (𝑦 − 𝑧) > 0, 𝑦 ̸= 𝑧; (22)

𝑎(𝑥, 𝑟, 𝑦) · 𝑦 > 𝛿0

𝑛∑︁
𝑖=1

|𝑦𝑖|𝑝𝑖(𝑥) − 𝐹 (𝑥), for all 𝑟 ∈ R, 𝑦 ∈ R𝑛, 𝑥 ∈ Ω. (23)

The function 𝐵(𝑥, 𝑟) is defined by the identity

𝐵(𝑥, 𝑟) =

𝑟∫︁
0

𝑠𝑑𝑠𝛽(𝑥, 𝑠),

grows in 𝑟 and obeys the inequality

0 6 𝐵(𝑥, 𝑟) 6 𝑟𝛽(𝑥, 𝑟), 𝑟 > 0.

This is why 𝐵(𝑥,𝑀𝑇 ) ∈ 𝐿𝑞(Ω).
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Theorem 2. (see [8]). Assume that conditions (10), (11), (13), (16)–(23) hold and 0 6
𝑢0(𝑥) 6 𝑀0. Then there exists 𝑇 = 𝑇 (𝑀0,𝑀𝑇 , 𝑞0, 𝑑𝐺, 𝑁𝑔) and a weak solution to problem (6),
(4), (7) such that 0 6 𝑢(𝑥, 𝑡) 6 𝑀𝑇 .

We do not provide here the definition of the weak solution to problem (6), (4), (7) since it is
standard and for the considered in the work problem (3)–(5) it coincides with Definition 1.

The next statement follows Theorem 2.

Theorem 3. Assume that conditions (8), (10), (11), (13), (17)–(20) hold and 0 6 𝑢0(𝑥) 6
𝑀0. Then there exists a weak solution to problem (3)–(5) in the cylinder 𝐷𝑇 , where 𝑇 =
𝑇 (𝑀0,𝑀𝑇 , 𝑞0, 𝑑𝐺, 𝑁𝑔).

It is obvious that problem (3)–(5) is a particular case of problem (6), (4), (7). This is
why it is sufficient to confirm that the assumptions of Theorem 3 ensures the assumptions
of Theorem 3. For equation (3), the functions 𝑎𝑗 are of the form 𝑎𝑗 = 𝐴𝑢𝑢𝑥𝑗

+ 𝐴𝑥𝑗
, and

this is why condition (21) holds as 𝑝𝑗 = 2 thanks to the smoothness of the function 𝐴(𝑥, 𝑢).
Conditions (22) and (23) are also satisfied by (8) and the boundedness of 𝑢.

As an important example, in 𝐷𝑇 we consider the equation

𝑢𝑡 = div(∇𝑢𝑚 − 𝑢∇𝐾 * 𝑢), 𝑚 ∈ (0, 1),

where the kernel 𝐾 satisfies the condition

∇2
𝑥𝐾(𝑥, 𝑦) 6 𝐶(1 + |𝑥− 𝑦|−𝜆), (𝑥, 𝑦) ∈ 𝑃, 𝜆 < 𝑛.

The change 𝑣 = 𝑢𝑚 leads us to the equation

(𝑣
1
𝑚 )𝑡 = div(∇𝑣 − 𝑢∇𝐾 * 𝑣

1
𝑚 )

of form (3). By Theorem 3 we establish that the corresponding problem possesses a weak
solution as 𝑚 ∈ (0, 1), but we do not state the uniqueness.

3. Proof of Theorem 1 on uniqueness of solution

Let us establish an auxiliary statement.

Lemma 3. Let functions 𝑢(𝑥, 𝑡), 𝑣(𝑥, 𝑡) be weak solution to problem (3)–(5),

𝑁(𝑡) =

∫︁
Ω

|𝑢(𝑥, 𝑡) − 𝑣(𝑥, 𝑡)|𝑑𝑥, 𝑠(𝑡) =

∫︁
Ω

(𝛽(𝑥, 𝑢(𝑥, 𝑡)) − 𝛽(𝑥, 𝑣(𝑥, 𝑡)))𝑑𝑥.

Then for all 𝜏 ∈ [0, 𝑇 ] we have:

𝜏∫︁
0

𝑠2(𝑡)𝑑𝑡 6 𝐿2
𝑟𝜏

2

𝜏∫︁
0

𝑁2(𝑡)𝑑𝑡

and
𝜏∫︁

0

𝑠2(𝑡)𝑑𝑡 6 𝐶(Ω)𝜏 2
𝜏∫︁

0

∫︁
Ω

|𝑢(𝑥, 𝑡) − 𝑣(𝑥, 𝑡)|2𝑑𝑥𝑑𝑡,

where 𝑟 = ‖𝑢 + 𝑣‖𝐿∞(𝐷𝑇 ), 𝐿𝑟 is a constant in (12).
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Proof. We write relation (14) for the function 𝑣, we deduct it from (14) and we obtain

𝑇∫︁
0

∫︁
Ω

(︀
(𝛽(𝑥, 𝑣) − 𝛽(𝑥, 𝑢))𝜉𝑡 + (∇𝐴(𝑥, 𝑢) −∇𝐴(𝑥, 𝑣) + 𝛽(𝑥, 𝑣)𝐺(𝑣)

− 𝛽(𝑥, 𝑢)𝐺(𝑢)) · ∇𝜉
)︀
𝑑𝑥𝑑𝑡 =

𝑇∫︁
0

∫︁
Ω

(𝑓(𝑥, 𝑢) − 𝑓(𝑥, 𝑣))𝜉𝑑𝑥𝑑𝑡.

(24)

Substituting here 𝜉 = 𝜉(𝑡) ∈ 𝐶∞
0 (0, 𝑇 ), we obtain:

𝑇∫︁
0

𝜉′(𝑡)

∫︁
Ω

(𝛽(𝑥, 𝑢) − 𝛽(𝑥, 𝑣))𝑑𝑥𝑑𝑡 =

𝑇∫︁
0

𝜉(𝑡)

∫︁
Ω

(𝑓(𝑥, 𝑣) − 𝑓(𝑥, 𝑢))𝑑𝑥𝑑𝑡.

This means that the function 𝑠(𝑡) is absolutely continuous in 𝑡. This is why, to complete the
proof of the lemma, it is sufficient to substitute the function

𝜉(𝑡) =

𝜏∫︁
𝑡

𝑠(𝑟)𝑑𝑟, 𝑡 ∈ [0, 𝜏 ], 𝜉(𝑡) = 0, 𝑡 > 𝜏,

into (24). By (12) and Steklov-Friedrichs inequality we have:

𝜏∫︁
0

𝑠2(𝑡)𝑑𝑡 6

𝜏∫︁
0

𝐿𝑟𝑁(𝑡)|𝜉(𝑡)|𝑑𝑡 6 𝐿𝑟𝜏

⎛⎝ 𝜏∫︁
0

𝑁2(𝑡)𝑑𝑡

𝜏∫︁
0

𝑠2(𝑡)𝑑𝑡

⎞⎠ 1
2

.

This implies easily the stated inequalities.

Proof of Theorem 1. Let 𝑢 and 𝑣 be solutions to problem (3)–(5). Given 𝑡 ∈ (0, 𝑇 ), we define
the function 𝜑(𝑥, 𝑡) as the solution to the Neumann problem

∆𝜑(𝑥, 𝑡) = 𝛽(𝑥, 𝑢(𝑥, 𝑡)) − 𝛽(𝑥, 𝑣(𝑥, 𝑡)) − 𝑠(𝑡), 𝑥 ∈ Ω,
𝜕𝜑

𝜕𝜈
= 0, 𝑥 ∈ 𝜕Ω, (25)

where 𝑠(𝑡) = 𝑠(𝑡)
measΩ

. The solvability condition of this problem is the orthogonality in 𝐿2(Ω) of
the right hand in this equation to the solutions of the homogeneous equation (see, for instance,
[11, Ch. II, Thm. 5.2]). The solutions of the problem for the homogeneous equation are constant
functions only. According Lemma 3, we have the identity∫︁

Ω

(𝛽(𝑥, 𝑢(𝑥, 𝑡)) − 𝛽(𝑥, 𝑣(𝑥, 𝑡)) − 𝑠(𝑡))𝑑𝑥 = 0,

that is, the solvability condition of the Neumann problem holds. We can also assume that∫︁
Ω

𝜑(𝑥, 𝑡)𝑑𝑥 = 0.

We observe that 𝜑(𝑥, 0) = 0. Since

(𝛽(𝑥, 𝑢(𝑥, 𝑡)) − 𝛽(𝑥, 𝑣(𝑥, 𝑡))) ∈ 𝐿∞(0, 𝑇 ;𝐿𝑞(Ω)) ∩𝐻1(0, 𝑇 ;𝐻−1(Ω)),

then
𝜑 ∈ 𝐿∞(0, 𝑇 ;𝐻2(Ω)) ∩𝐻1(0, 𝑇 ;𝐻1(Ω)),

see, for instance, [11, Ch. II, Eq. (5.4)]. Then ∇𝜑 ∈ 𝐶(0, 𝑇 ;𝐿2(Ω)) and the identity holds:

−
∫︁
Ω

∇𝜑 · ∇𝑤𝑑𝑥 =

∫︁
Ω

(𝛽(𝑥, 𝑢(𝑥, 𝑡)) − 𝛽(𝑥, 𝑣(𝑥, 𝑡)) − 𝑠(𝑡))𝑤(𝑥)𝑑𝑥, (26)
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for each 𝑤 ∈ 𝑊 1
2 (Ω).

Let us transform equation (24). We denote

𝑃 (𝑥, 𝑡) = ∇𝐴(𝑥, 𝑢) −∇𝐴(𝑥, 𝑣) + 𝛽(𝑥, 𝑣)𝐺(𝑣) − 𝛽(𝑥, 𝑢)𝐺(𝑢).

It follows from Definition 1 that 𝑃 ∈ 𝐿2(𝐷
𝑇 ). We let 𝐹 (𝑥, 𝑡) = 𝑓(𝑥, 𝑢)− 𝑓(𝑥, 𝑣) ∈ 𝐿2(𝐷

𝑇 ). We
substitute

𝜉 = 𝜙−ℎ =
1

ℎ

𝑡∫︁
𝑡−ℎ

𝜙(𝑥, 𝑟)𝑑𝑟,

into (24), where 𝜙 ∈ 𝐶∞(𝐷𝑇 ), 𝜙 = 0 as 𝑡 > 𝑇 − 𝛿. Taking into consideration (26), we obtain:∫︁
𝐷𝑇

(∇𝜑 · ∇(𝜙−ℎ)𝑡 − 𝑠(𝑡)(𝜙−ℎ)𝑡 + 𝑃 · ∇𝜙−ℎ − 𝐹𝜙−ℎ)𝑑𝑥𝑑𝑡 = 0.

Employing the properties of Steklov averaging, we rewrite this as∫︁
𝐷𝑇

(−(∇𝜑ℎ)𝑡 · ∇𝜙− (𝑠ℎ)𝑡𝜙 + 𝑃ℎ · ∇𝜙− 𝐹ℎ𝜙)𝑑𝑥𝑑𝑡 = 0.

Let 𝜒(0,𝜏) be the characteristic function of the interval (0, 𝜏). We substitute 𝜙 = 𝜒(0 < 𝑡 < 𝜏)𝜑ℎ

into the latter equation and we pass to the limit as ℎ → 0. We obtain:

−1

2

∫︁
Ω

|∇𝜑(𝜏)|2 +

𝜏∫︁
0

∫︁
Ω

(−𝑠𝑡𝜑 + 𝑃 · ∇𝜑− 𝐹𝜑)𝑑𝑥𝑑𝑡 = 0.

Taking into consideration that ∫︁
Ω

𝜑(𝑥, 𝑡)𝑑𝑥 = 0,

we get:

1

2

∫︁
Ω

|∇𝜑(𝜏)|2𝑑𝑥 =

𝜏∫︁
0

∫︁
Ω

∇(𝐴(𝑥, 𝑢) − 𝐴(𝑥, 𝑣)) · ∇𝜑𝑑𝑥𝑑𝑡

−
𝜏∫︁

0

∫︁
Ω

(𝐺(𝑢)𝛽(𝑥, 𝑢) −𝐺(𝑣)𝛽(𝑥, 𝑣)) · ∇𝜑𝑑𝑥𝑑𝑡

−
𝜏∫︁

0

∫︁
Ω

(𝑓(𝑥, 𝑢) − 𝑓(𝑥, 𝑣))𝜑𝑑𝑥𝑑𝑡 = 𝐼1 + 𝐼2 + 𝐼3.

(27)

Since 𝐴(𝑥, 𝑢) − 𝐴(𝑥, 𝑣) ∈ 𝐿2(0, 𝑇,𝐻
1(Ω)) and the function 𝐴 increases in the second variable,

employing (26) and Lemma 3 and taking into consideration (9), we can write the relations:

𝐼1 = −
𝜏∫︁

0

∫︁
Ω

(𝐴(𝑥, 𝑢) − 𝐴(𝑥, 𝑣))(𝛽(𝑥, 𝑢) − 𝛽(𝑥, 𝑣) − 𝑠(𝑡))𝑑𝑥𝑑𝑡

6−
𝜏∫︁

0

∫︁
Ω

(𝑎0(𝑢− 𝑣)2 − 𝐴𝑀 |(𝑢− 𝑣)𝑠(𝑡)|𝑑𝑥𝑑𝑡 6
𝜏∫︁

0

∫︁
Ω

(𝐶𝜏 − 𝑎0)(𝑢− 𝑣)2𝑑𝑥𝑑𝑡.

(28)
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We rewrite integral 𝐼2 as

𝐼2 = −
𝜏∫︁

0

∫︁
Ω

(𝐺(𝑢)𝛽(𝑥, 𝑢) −𝐺(𝑣)𝛽(𝑥, 𝑣)) · ∇𝜑𝑑𝑥𝑑𝑡 = −
𝜏∫︁

0

∫︁
Ω

(𝛽(𝑥, 𝑢) − 𝛽(𝑥, 𝑣))𝐺(𝑢) · ∇𝜑𝑑𝑥𝑑𝑡

+

𝜏∫︁
0

∫︁
Ω

𝛽(𝑥, 𝑣)(𝐺(𝑢) −𝐺(𝑣)) · ∇𝜑𝑑𝑥𝑑𝑡 = 𝐼4 + 𝐼5.

Employing (26) for the first term, we obtain

𝐼4 =

𝜏∫︁
0

∫︁
Ω

∇𝜑 · ∇(𝐺(𝑢) · ∇𝜑)𝑑𝑥𝑑𝑡−
𝜏∫︁

0

∫︁
Ω

𝑠(𝑡)𝐺(𝑢) · ∇𝜑𝑑𝑥𝑑𝑡 = 𝐼41 + 𝐼42.

By Lemma 3 we have the estimate

𝐼42 6 𝐶𝜏‖𝑢− 𝑣‖𝐿2(𝐷𝜏
0 )
‖∇𝜑‖𝐿2(𝐷𝜏

0 )
,

where 𝐷𝜏
0 = Ω × (0, 𝜏). Then,

𝐼41 =

𝜏∫︁
0

∫︁
Ω

𝜕𝑖𝜑(𝑥)𝜕𝑗𝜑(𝑥)

∫︁
Ω

𝜕𝑖𝑔𝑗(𝑥, 𝑦)𝑏(𝑢(𝑦, 𝑡))𝑑𝑦𝑑𝑥𝑑𝑡

+

𝜏∫︁
0

∫︁
Ω

𝜕𝑖𝜑(𝑥)𝜕𝑖𝜕𝑗𝜑(𝑥)

∫︁
Ω

𝑔𝑗(𝑥, 𝑦)𝑏(𝑢(𝑦, 𝑡))𝑑𝑦𝑑𝑥𝑑𝑡 = 𝐼6 + 𝐼7.

We apply Gauss-Ostrogradsky formula to the integral 𝐼7:

𝐼7 = −
𝜏∫︁

0

∫︁
Ω

𝜕𝑗𝜕𝑖𝜑(𝑥)𝜕𝑖𝜑(𝑥)

∫︁
Ω

𝑔𝑗(𝑥, 𝑦)𝑏(𝑢(𝑦, 𝑡))𝑑𝑦𝑑𝑥𝑑𝑡

−
𝜏∫︁

0

∫︁
Ω

𝜕𝑖𝜑(𝑥)𝜕𝑖𝜑(𝑥)

∫︁
Ω

𝜕𝑗𝑔𝑗(𝑥, 𝑦)𝑏(𝑢(𝑦, 𝑡))𝑑𝑦𝑑𝑥𝑑𝑡

+

𝜏∫︁
0

∫︁
𝜕Ω

𝜕𝑖𝜑(𝑥)𝜕𝑖𝜑(𝑥)𝜈𝑗

∫︁
Ω

𝑔𝑗(𝑥, 𝑦)𝑏(𝑢(𝑦, 𝑡))𝑑𝑦𝑑𝑆𝑑𝑡.

Then in view of (11) we obtain

𝐼7 6 −1

2

𝜏∫︁
0

∫︁
Ω

|∇𝜑|2
∫︁
Ω

𝜕𝑗𝑔𝑗(𝑥, 𝑦)𝑏(𝑢(𝑦, 𝑡))𝑑𝑦𝑑𝑥𝑑𝑡.

Employing conditions (10), (13), we estimate the integral:∫︁
Ω

|𝜕𝑖𝑔𝑗(𝑥, 𝑦)𝑏(𝑢(𝑦, 𝑡))|𝑑𝑦 6
∫︁
Ω

𝐶(1 + |𝑥− 𝑦|−𝜆)|𝑏(𝑢(𝑦, 𝑡))|𝑑𝑦

6𝐶‖𝑢0‖𝐿1(Ω) + 𝐶

∫︁
Ω

|𝑏(𝑢(𝑦, 𝑡))|
|𝑥− 𝑦|𝜆

𝑑𝑦 6 𝐶(𝑀𝑇 ).
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We have

𝐼6 6 𝐶(𝑀𝑇 )

𝜏∫︁
0

∫︁
Ω

|∇𝜑|2𝑑𝑥𝑑𝑡.

We substitute the obtained estimates for 𝐼6 and 𝐼7 into 𝐼4:

𝐼4 6

𝜏∫︁
0

∫︁
Ω

(𝐶|∇𝜑|2 + 𝜏 2(𝑢− 𝑣)2)𝑑𝑥𝑑𝑡. (29)

Employing conditions (10), (13) and Lemma 2, we establish the inequalities:

‖𝐺𝑗(𝑢(𝑡)) −𝐺𝑗(𝑣(𝑡))‖𝐿2(Ω) < 𝐶(Ω)‖𝑢(𝑡) − 𝑣(𝑡)‖𝐿2(Ω), 𝑗 = 1, 𝑛.

Hence,

𝐼5 6 𝐶

𝜏∫︁
0

‖𝑢(𝑡) − 𝑣(𝑡)‖𝐿2(Ω)‖∇𝜑(𝑡)‖𝐿2(Ω)𝑑𝑡.

Then

𝐼5 6 𝐶(𝜏)

𝜏∫︁
0

‖∇𝜑(𝑡)‖2𝐿2(Ω)𝑑𝑡 + 𝜏

𝜏∫︁
0

∫︁
Ω

(𝑢− 𝑣)2𝑑𝑥𝑑𝑡.

Letting 𝜂(𝑡) = (
∫︀
Ω

|∇𝜑(𝑡)|2𝑑𝑥)
1
2 , by (27) and previous estimates we obtain

1

2
𝜂2(𝜏) + (𝑎0 − 𝐶(𝜏 + 𝜏 2))

𝜏∫︁
0

∫︁
Ω

(𝑢− 𝑣)2𝑑𝑥𝑑𝑡

6 𝐶

𝜏∫︁
0

𝜂2(𝑡)𝑑𝑡 +

𝜏∫︁
0

∫︁
Ω

|(𝑓(𝑥, 𝑢) − 𝑓(𝑥, 𝑣))𝜑|𝑑𝑥𝑑𝑡.

(30)

Employing condition (12) for the function 𝑓(𝑥, 𝑢) and Poincaré inequality, we establish that

𝜏∫︁
0

∫︁
Ω

|𝑓(𝑥, 𝑢) − 𝑓(𝑥, 𝑣)||𝜑|𝑑𝑥𝑑𝑡 6𝑎0
2

𝜏∫︁
0

∫︁
Ω

(𝑢− 𝑣)2𝑑𝑥𝑑𝑡 +
𝐿2
𝑟

𝑎0

𝜏∫︁
0

∫︁
Ω

|𝜑|2𝑑𝑥𝑑𝑡

6
𝑎0
2

𝜏∫︁
0

∫︁
Ω

(𝑢− 𝑣)2𝑑𝑥𝑑𝑡 +
𝐶1𝐿

2
𝑟

𝑎0

𝜏∫︁
0

∫︁
Ω

|∇𝜑|2𝑑𝑥𝑑𝑡.

(31)

Hence, for sufficiently small 𝜏 it follows from (30), (31) that

𝜂2(𝜏) 6 𝐶2

𝜏∫︁
0

𝜂2(𝑡)𝑑𝑡.

By means of Grönwall’s lemma we hence conlcude that 𝜂(𝑡) = 0 for all 0 6 𝑡 6 𝜏. Therefore,
𝑢 ≡ 𝑣 in the cylinder Ω× (0, 𝜏). In the same way we establish the identity 𝑢 ≡ 𝑣 in the cylinder
Ω × (𝜏, 2𝜏) and so forth. The proof is complete.
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