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NEW CHARACTERIZATIONS OF BLOCH SPACES,

BERS-TYPE AND ZYGMUND-TYPE SPACES

AND RELATED QUESTIONS

M. GARAYEV, H. GUEDIRI, H. SADRAOUI

Abstract. In terms of Berezin symbols, we give new characterizations of the Bloch spaces

ℬ and ℬ0, Bers-type and the Zygmund-type spaces of analytic functions on the unit disc D
in the complex plane C. We discuss some properties of Toeplitz operators on the Bergman

space 𝐿2
𝑎(D). We provide a new characterization of certain function space with variable

exponents. Namely, given a function 𝑓(𝑧) =

∞∑︁
𝑛=0

̂︀𝑓(𝑛)𝑧𝑛 ∈ Hol(D) with a bounded sequence{︁ ̂︀𝑓(𝑛)}︁
𝑛>0

of Taylor coefficients ̂︀𝑓(𝑛) = 𝑓 (𝑛)(0)
𝑛! , (𝑛 = 0, 1, 2, . . .), we have 𝑓 ∈ 𝐻𝑝(·),𝑞(·),𝛾(·)

if and only if

1∫︁
0

⎛⎝ 1

2𝜋

2𝜋∫︁
0

⃒⃒⃒ ̃︀𝐷
( ̂︀𝑓(𝑛)𝑒𝑖𝑛𝑡)

(
√
𝑟)
⃒⃒⃒𝑝(𝑡)

𝑑𝑡

⎞⎠
𝑞(𝑡)
𝑝(𝑡)

(1− 𝑟)
𝛾(𝑡)𝑝(𝑡)−𝑞(𝑡)

𝑝(𝑡) 𝑑𝑟 < +∞.

Here 𝐷(𝑎𝑛) denotes the associate diagonal operator on the Hardy-Hilbert space 𝐻2 defined

by the formula 𝐷(𝑎𝑛)𝑧
𝑛 = 𝑎𝑛𝑧

𝑛 (𝑛 = 0, 1, 2, . . .).
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1. Introduction

Let D be the unit disc in complex plane C, D = {𝑧 ∈ C : |𝑧| < 1} and let Hol(D) be the class
of functions analytic in D. We denote by 𝐻∞ = 𝐻∞(D) the space of bounded analytic functions
on D. Recall that a function 𝑓 ∈ Hol(D) belongs to the Bloch space ℬ = ℬ(D) if

‖𝑓‖𝑏 := sup
𝑧∈D

(︀
1 − |𝑧|2

)︀ ⃒⃒⃒
𝑓

′
(𝑧)

⃒⃒⃒
< +∞.

Being equipped with the norm ‖𝑓‖ℬ = |𝑓(0)| + ‖𝑓‖𝑏, ℬ is a Banach space. Let ℬ0 = ℬ0(D) be
the space consisting of all 𝑓 ∈ ℬ satisfying

lim
|𝑧|→1

(1 − |𝑧|2) |𝑓 ′(𝑧)| = 0.

This space is called a little Bloch space.
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Let 𝛼 > 0. The Bers-type space, denoted by 𝐻∞
𝛼 = 𝐻∞

𝛼 (D), is a Banach space consisting of
all 𝑓 ∈ Hol(D) such that

‖𝑓‖∞,𝛼 = sup
𝑧∈D

(︀
1 − |𝑧|2

)︀𝛼 |𝑓(𝑧)| < +∞.

Clearly, 𝐻∞
0 = 𝐻∞.

Let 0 < 𝑝, 𝑞 < +∞, 𝛾 > −1. If a function 𝑓 ∈ Hol(D) is such that

‖𝑓‖𝑞𝐻𝑝,𝑞,𝛾 :=

1∫︁
0

⎛⎝ 1

2𝜋

2𝜋∫︁
0

⃒⃒
𝑓(𝑟𝑒𝑖𝜃)

⃒⃒𝑝
𝑑𝜃

⎞⎠
𝑞
𝑝

(1 − 𝑟)𝛾𝑑𝑟 < +∞,

we say that 𝑓 belongs to a mixed norm space denoted by 𝐻𝑝,𝑞,𝛾 = 𝐻𝑝,𝑞,𝛾(D).
Let 𝛽 > 0. The Zygmund-type space denoted by 𝒵𝛽 consist of all 𝑓 ∈ Hol(D) obeying

‖𝑓‖𝒵𝛽 := |𝑓(0)| + |𝑓 ′(0)| + sup
𝑧∈D

(︀
1 − |𝑧|2

)︀𝛽 ⃒⃒⃒
𝑓

′′
(𝑧)

⃒⃒⃒
< +∞.

The space 𝒵𝛽 becomes a Banach space with the above norm ‖·‖𝒵𝛽 . Let 𝛽 = 1. Then 𝒵1 = 𝒵 is
the classical Zygmund space. For more information on the Bers-type, Zygmund-type and Bloch
spaces on the unit disc D, see, e.g., K. Zhu [14, 15], X. Zhu [16], S. Stević [11], [12], Y. Ren [9],
P. Duren [2], J. Shi [10].

Recall that the following old problem for most of functional spaces 𝑋 of analytic functions
in D, including the Hardy space 𝐻𝑝(D), is open (see Privalov [8] and Duren [2]):

How a function in 𝑋 can be recovered by the behavior of its Taylor coefficients?

Ideally, one would like to find a condition on the ̂︀𝑓(𝑛) := 𝑓𝑛(0)
𝑛!

(Taylor coefficient), which
is both necessary and sufficient for 𝑓 to be in 𝑋 Of course, for 𝑋 = 𝐻𝑝, 𝑝 = 2, the problem

is completely solved: 𝑓 ∈ 𝐻2 if and only if
∞∑︁
𝑛=0

⃒⃒⃒ ̂︀𝑓(𝑛)
⃒⃒⃒2

< +∞. For 𝑝 = ∞, the problem of

coefficients was solved by I. Schur in 1919 (see, Privalov [8, Ch. 2]). Some classical results
on the Taylor coefficients of functions in Hardy and Bergman spaces are also known (see, for
instance, [2, 8, 14]). Some recent results about Taylor coefficients of 𝐻1 functions and entire
functions in the Fock spaces 𝐹 𝑝

𝛼 have been obtained, respectively, by Pavlović [6] and Tung
[13]. But the general situation is much more complicated, and no complete answer is available
(more informations about this are contained in [1] and references therein.)

Note that in his book [6], Pavlović proved the following characterization of functions belonging
to the Hardy space 𝐻1 :

𝐻1 =

⎧⎨⎩𝑓 ∈ Hol(D) : sup
0<𝑟<1

1

2𝜋

2𝜋∫︁
0

⃒⃒
𝑓(𝑟𝑒𝑖𝑡)

⃒⃒
𝑑𝑡 < +∞

⎫⎬⎭ .

Theorem 1.1. For a function 𝑓 analytic in D, the following statements are equivalent:
(𝑎) 𝑓 ∈ 𝐻1;

(𝑏) sup𝑛>0
1
𝑎𝑛

𝑛∑︁
𝑗=0

1
𝑗+1

‖𝑆𝑗(𝑓)‖𝐻1 < +∞ ;

(𝑐) sup𝑛>0 ‖𝑃𝑛𝑓‖𝐻1 < +∞.

Here 𝑃𝑛𝑓 := 1
𝑎𝑛

𝑛∑︁
𝑗=0

1
𝑗+1

𝑆𝑗(𝑓), where 𝑎𝑛 =
𝑛∑︁

𝑗=0

1
𝑗+1

, 𝑛 = 0, 1, 2, . . ., and 𝑆𝑗(𝑓) are the partial

sums of the Taylor series for 𝑓 .
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Popa [7] gave some interesting generalization of this result of Pavlović by proving a similar
characterization of upper triangular trace class matrices. Recently, Karaev [3] gave some char-
acterizations of Hardy and Besov classes of analytic functions on D with the variable exponents.

In this paper, we use the so-called Berezin symbols technique to characterize the Bers-type,
Zygmund-type spaces, and the Bloch spaces ℬ and ℬ0. We also consider some spaces defined
by the variable exponent. We discuss Toeplitz operators on the Bergman space 𝐿2

𝑎 (D)

2. Berezin symbols and characterizations of the Bers-type, Zygmund-type
and Bloch spaces

In this section, we characterize the spaces 𝐻∞
𝛼 , 𝒵𝛽, ℬ and ℬ0 in terms of Berezin symbols

of diagonal operators (associated with the Taylor coefficients of the functions from the spaces
𝐻∞

𝛼 , 𝒵𝛽, ℬ and ℬ0) acting on the Hardy space 𝐻2 = 𝐻2(D).
Recall that Hardy-Hilbert space 𝐻2 = 𝐻2(D) is the collection of analytic functions in D

which satisfy the inequality

‖𝑓‖𝐻2 :=

⎛⎝ sup
0<𝑟<1

1

2𝜋

2𝜋∫︁
0

⃒⃒
𝑓(𝑟𝑒𝑖𝑡)

⃒⃒2
𝑑𝜃

⎞⎠
1
2

< +∞.

It is well-known that 𝐻2 is a reproducing kernel Hilbert space with the orthonormal basis
𝑒𝑛(𝑧) = 𝑧𝑛 (𝑛 = 0, 1, 2, . . .), and consequently with the reproducing kernel

𝑘𝜆(𝑧) =
∞∑︁
𝑛=0

𝑒𝑛(𝜆)𝑒𝑛(𝑧) =
∞∑︁
𝑛=0

𝜆
𝑛
𝑧𝑛 =

1

1 − 𝜆𝑧
, 𝜆 ∈ D.

The reproducing property means that ⟨𝑓, 𝑘𝜆⟩𝐻2 = 𝑓(𝜆) for all 𝑓 ∈ 𝐻2 and 𝜆 ∈ D. For any
bounded sequence (𝑎𝑛)𝑛>0 of complex numbers 𝑎𝑛, we denote by 𝐷(𝑎𝑛) the associate diagonal

operator on the Hardy-Hilbert space 𝐻2 which is defined by the formula

𝐷(𝑎𝑛)𝑧
𝑛 = 𝑎𝑛𝑧

𝑛, 𝑛 = 0, 1, 2, . . . (1)

For any bounded linear operator 𝑇 on 𝐻2, its Berezin symbol ̃︀𝑇 is the following bounded
complex-valued function in D : ̃︀𝑇 (𝜆) := ⟨𝑇𝒦𝜆,𝒦𝜆⟩ (𝜆 ∈ D),

where

𝒦𝜆(𝑧) :=
𝑘𝜆(𝑧)

‖𝑘𝜆(𝑧)‖𝐻2

= (1 − |𝜆|2)
1
2 (1 − 𝜆𝑧)−1

is the normalized reproducing kernel of 𝐻2, and 𝑏𝑒𝑟(𝑇 ) := sup𝜆∈D

⃒⃒⃒ ̃︀𝑇 (𝜆)
⃒⃒⃒

is the Berezin number

of 𝑇.
The following lemma is well-known.

Lemma 2.1. The Berezin symbol of the diagonal operator 𝐷(𝑎𝑛) on the Hardy space 𝐻2 is
the following radial function:

̃︀𝐷(𝑎𝑛)(|𝜆|) = (1 − |𝜆|2)
∞∑︁
𝑘=0

𝑎𝑘 |𝜆|2𝑘 (𝜆 ∈ D) (2)

Proof. Indeed, by using that

𝑘𝜆(𝑧) =
1

1 − 𝜆𝑧
=

∞∑︁
𝑘=0

𝜆
𝑘
𝑧𝑘
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is the reproducing kernel of 𝐻2, we have:

̃︀𝐷(𝑎𝑛)(𝜆) =
⟨︀
𝐷(𝑎𝑛)𝒦𝜆(𝑧),𝒦𝜆(𝑧)

⟩︀
=

⟨
𝐷(𝑎𝑛)

𝑘𝜆(𝑧)

‖𝑘𝜆(𝑧)‖2
,

𝑘𝜆(𝑧)

‖𝑘𝜆(𝑧)‖2

⟩
=

(︀
1 − |𝜆|2

)︀⟨
𝐷(𝑎𝑛)

∞∑︁
𝑘=0

𝜆
𝑘
𝑧𝑘,

∞∑︁
𝑘=0

𝜆
𝑘
𝑧𝑘

⟩
=

(︀
1 − |𝜆|2

)︀⟨ ∞∑︁
𝑘=0

𝜆
𝑘
𝑎𝑘𝑧

𝑘,
∞∑︁
𝑘=0

𝜆
𝑘
𝑧𝑘

⟩

=
(︀
1 − |𝜆|2

)︀ ∞∑︁
𝑘=0

𝑎𝑘 |𝜆|2𝑘 .

Hence, ̃︀𝐷(𝑎𝑛)(𝜆) =
(︀
1 − |𝜆|2

)︀ ∞∑︁
𝑘=0

𝑎𝑘 |𝜆|2𝑘 , 𝜆 ∈ D,

which proves formula (2).

Our next result characterizes the spaces 𝐻∞
𝛼 , 𝒵𝛽, ℬ and ℬ0 in terms of behavior of the

Berezin symbols of the corresponding diagonal operators mentioned above.

Theorem 2.1. Let a function 𝑓(𝑧) =
∞∑︁
𝑛=0

̂︀𝑓(𝑛)𝑧𝑛 ∈ Hol(D) have a bounded sequence{︁̂︀𝑓(𝑛)
}︁

𝑛>0
of Taylor coefficients ̂︀𝑓(𝑛) = 𝑓 (𝑛)(0)

𝑛!
, (𝑛 = 0, 1, 2, . . .). Then 𝑓 ∈ 𝐻∞

𝛼 (𝛼 > 0) if

and only if

sup
06𝑟<1
06𝜃<2𝜋

(1 − 𝑟)𝛼−1
⃒⃒⃒ ̃︀𝐷( ̂︀𝑓(𝑛)𝑒𝑖𝑛𝜃)(

√
𝑟)
⃒⃒⃒
< +∞.

Proof. Indeed, let a function 𝑓 be as in the statement of the theorem. Then, rewriting 𝑓 and
using Lemma 2.1, we obtain:

𝑓(𝑧) = 𝑓(|𝑧| 𝑒𝑖 arg(𝑧)) = 𝑓(𝑟𝑒𝑖𝜃) =
∞∑︁
𝑛=0

̂︀𝑓(𝑛)(𝑟𝑒𝑖𝜃)𝑛

=
∞∑︁
𝑛=0

̂︀𝑓(𝑛)𝑒𝑖𝑛𝜃𝑟𝑛 =

(1 − 𝑟)
∞∑︁
𝑛=0

̂︀𝑓(𝑛)𝑒𝑖𝑛𝜃𝑟𝑛

1 − 𝑟
=

̃︀𝐷( ̂︀𝑓(𝑛)𝑒𝑖𝑛𝜃)(
√
𝑟)

1 − 𝑟
.

Hence, for any 𝑧 = 𝑟𝑒𝑖𝜃, with 𝑟 = |𝑧| and 𝜃 = arg(𝑧), 0 6 𝑟 < 1, 0 6 𝜃 < 2𝜋, we have

𝑓(𝑧) =
̃︀𝐷( ̂︀𝑓(𝑛)𝑒𝑖𝑛𝜃)(

√
𝑟)

1 − 𝑟
. (3)

Using (3), we get(︀
1 − |𝑧|2

)︀𝛼 |𝑓(𝑧)| = (1 − 𝑟2)𝛼
̃︀𝐷( ̂︀𝑓(𝑛)𝑒𝑖𝑛𝜃)(

√
𝑟)

1 − 𝑟
= (1 − 𝑟)𝛼−1(1 + 𝑟)𝛼

⃒⃒⃒ ̃︀𝐷( ̂︀𝑓(𝑛)𝑒𝑖𝑛𝜃)(
√
𝑟)
⃒⃒⃒

(4)

for all 𝑟, 0 6 𝑟 < 1 and all 𝜃 ∈ [0, 2𝜋). Hence, we obtain

(1 − 𝑟)𝛼−1
⃒⃒⃒ ̃︀𝐷( ̂︀𝑓(𝑛)𝑒𝑖𝑛𝜃)(

√
𝑟)
⃒⃒⃒
6

(︀
1 − |𝑧|2

)︀𝛼 |𝑓(𝑧)| 6 2𝛼(1 − 𝑟)𝛼−1
⃒⃒⃒ ̃︀𝐷( ̂︀𝑓(𝑛)𝑒𝑖𝑛𝜃)(

√
𝑟)
⃒⃒⃒

for all 𝑧 = 𝑟𝑒𝑖𝜃 ∈ D. In particular, by (5) we conclude that that 𝑓 ∈ 𝐻∞
𝛼 if and only if

sup
06𝑟<1
𝜃∈[0,2𝜋)

(1 − 𝑟)𝛼−1
⃒⃒⃒ ̃︀𝐷( ̂︀𝑓(𝑛)𝑒𝑖𝑛𝜃)(

√
𝑟)
⃒⃒⃒
< +∞.
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This completes the proof.

An immediate corollary of inequalities (5) is as follows.

Corollary 1. If 𝑓 ∈ 𝐻𝑝
𝛼 and 𝛼 > 0, then

sup
06𝑟<1
06𝜃<2𝜋

(1 − 𝑟)𝛼−1
⃒⃒⃒ ̃︀𝐷( ̂︀𝑓(𝑛)𝑒𝑖𝑛𝜃)(

√
𝑟)
⃒⃒⃒
6 ‖𝑓‖𝑝,𝛼 6 2𝛼 sup

06𝑟<1
06𝜃<2𝜋

(1 − 𝑟)𝛼−1
⃒⃒⃒ ̃︀𝐷( ̂︀𝑓(𝑛)𝑒𝑖𝑛𝜃)(

√
𝑟)
⃒⃒⃒
.

Theorem 2.2. Let a function 𝑓(𝑧) =
∞∑︁
𝑛=0

̂︀𝑓(𝑛)𝑧𝑛 ∈ Hol(D) have the sequence
{︁̂︀𝑓(𝑛)

}︁
𝑛>0

of

Taylor coefficients such that ̂︀𝑓(𝑛) = 𝑂
(︀
1
𝑛

)︀
as 𝑛 → ∞. Then

(𝑎) 𝑓 belongs to Bloch space ℬ if and only if

sup
06𝑟<1
06𝜃<2𝜋

⃒⃒⃒ ̃︀𝐷((𝑛+1) ̂︀𝑓(𝑛+1)𝑒𝑖𝑛𝜃)(
√
𝑟)
⃒⃒⃒
< +∞;

(𝑏) 𝑓 ∈ ℬ0 if and only if

lim
𝑟→1

⃒⃒⃒ ̃︀𝐷((𝑛+1) ̂︀𝑓(𝑛+1)𝑒𝑖𝑛𝜃)(
√
𝑟)
⃒⃒⃒

= 0

for all 𝜃 ∈ [0, 2𝜋).

Proof. It follows from the condition ̂︀𝑓(𝑛) = 𝑂
(︀
1
𝑛

)︀
(𝑛 → ∞) that (𝑛 ̂︀𝑓(𝑛))𝑛 is bounded, and

hence, the diagonal operator 𝐷(𝑛 ̂︀𝑓(𝑛)) is bounded on the Hardy-Hilbert space 𝐻2. This implies

immediately that 𝐷((𝑛+1) ̂︀𝑓(𝑛+1)𝑒𝑖𝑛𝜃) is also bounded in 𝐻2 for every fixed 𝜃 ∈ [0, 2𝜋). Therefore,

by formula (2) in Lemma 2.1, we have(︀
1 − |𝑧|2

)︀
𝑓 ′(𝑧) = (1 − 𝑟2)

∞∑︁
𝑛=0

̂︀𝑓(𝑛)𝑧𝑛 = (1 − 𝑟2)
∞∑︁
𝑛=1

𝑛 ̂︀𝑓(𝑛)𝑧𝑛−1

= (1 − 𝑟2)
∞∑︁
𝑛=0

(𝑛 + 1) ̂︀𝑓(𝑛 + 1)𝑧𝑛

= (1 − 𝑟)(1 + 𝑟)
∞∑︁
𝑛=0

(𝑛 + 1) ̂︀𝑓(𝑛 + 1)𝑒𝑖𝑛𝜃𝑟𝑛

= (1 + 𝑟)

[︃
(1 − 𝑟)

∞∑︁
𝑛=0

(︁
(𝑛 + 1) ̂︀𝑓(𝑛 + 1)𝑒𝑖𝑛𝜃

)︁
𝑟𝑛

]︃
= (1 + 𝑟) ̃︀𝐷((𝑛+1) ̂︀𝑓(𝑛+1)𝑒𝑖𝑛𝜃)(

√
𝑟).

Hence, (︀
1 − |𝑧|2

)︀
𝑓 ′(𝑧) = (1 + 𝑟) ̃︀𝐷((𝑛+1) ̂︀𝑓(𝑛+1)𝑒𝑖𝑛𝜃)(

√
𝑟) (6)

for all 𝑧 = 𝑟𝑒𝑖𝜃 ∈ D, where 𝑟 ∈ [0, 1) and 𝜃 ∈ [0, 2𝜋). Now formula (6) shows that 𝑓 ∈ ℬ if and
only if

sup
06𝑟<1
06𝜃<2𝜋

⃒⃒⃒ ̃︀𝐷((𝑛+1) ̂︀𝑓(𝑛+1)𝑒𝑖𝑛𝜃)(
√
𝑟)
⃒⃒⃒
< +∞

and this proves (a).
On the other hand, it follows also immediately from (6) that 𝑓 ∈ ℬ0 if and only if

lim
𝑟→1

⃒⃒⃒ ̃︀𝐷((𝑛+1) ̂︀𝑓(𝑛+1)𝑒𝑖𝑛𝜃)(
√
𝑟)
⃒⃒⃒

= 0

for all 𝜃, 0 6 𝜃 < 2𝜋. This proves (b).
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Formula (6) implies also the following results.

Corollary 2. Assume that 𝑓(𝑧) =
∞∑︁
𝑛=0

̂︀𝑓(𝑛)𝑧𝑛 satisfies the condition of Theorem 2.2. If

𝑓 ∈ ℬ, then

inf
06𝑟<1
06𝜃<2𝜋

⃒⃒⃒ ̃︀𝐷((𝑛+1) ̂︀𝑓(𝑛+1)𝑒𝑖𝑛𝜃)(
√
𝑟)
⃒⃒⃒

+ |𝑓(0)| 6 ‖𝑓‖ℬ 6 |𝑓(0)| + 2 sup
06𝑟<1
06𝜃<2𝜋

⃒⃒⃒ ̃︀𝐷((𝑛+1) ̂︀𝑓(𝑛+1)𝑒𝑖𝑛𝜃)(
√
𝑟)
⃒⃒⃒
.

Corollary 3. If 𝑓 is the same as in Corollary 2, then we have:
(𝑎) ‖𝑓‖ℬ 6 |𝑓(0)| + 2 sup

06𝜃<2𝜋
𝑏𝑒𝑟(𝐷((𝑛+1) ̂︀𝑓(𝑛+1)𝑒𝑖𝑛𝜃)).

(𝑏) ‖𝑓‖ℬ 6 |𝑓(0)| + 2 sup𝑛>0(𝑛 + 1)
⃒⃒⃒ ̂︀𝑓(𝑛 + 1)

⃒⃒⃒
.

Clearly, Statement (a) implies Statement (b) since for each arbitrary fixed 𝜃 ∈ [0, 2𝜋)

𝑏𝑒𝑟(𝐷((𝑛+1) ̂︀𝑓(𝑛+1)𝑒𝑖𝑛𝜃)) 6
⃦⃦⃦
𝐷((𝑛+1) ̂︀𝑓(𝑛+1)𝑒𝑖𝑛𝜃)

⃦⃦⃦
= sup

𝑛>0
(𝑛 + 1)

⃒⃒⃒ ̂︀𝑓(𝑛 + 1)
⃒⃒⃒
.

Corollary 4. Each function 𝑓(𝑧) =
∞∑︁
𝑛=0

̂︀𝑓(𝑛)𝑧𝑛 ∈ Hol(D) obeying ̂︀𝑓(𝑛) = 𝑜( 1
𝑛
) as 𝑛 → ∞

belongs to the little Bloch space ℬ0.

Proof. Indeed, since by assumption lim𝑛→∞ 𝑛
⃒⃒⃒ ̂︀𝑓(𝑛)

⃒⃒⃒
= 0, we see that 𝐷((𝑛+1) ̂︀𝑓(𝑛+1)𝑒𝑖𝑛𝜃) is

a compact diagonal operator, and since 𝐻2 is the standard reproducing kernel Hilbert

space (which means that the normalized reproducing kernel 𝒦𝜆(𝑧) = (1−|𝜆|2)
1
2

1−𝜆𝑧
weakly

tends to zero as 𝜆 approaches any boundary point of the unit disc D), we obtain that

lim𝑟→1

⃒⃒⃒ ̃︀𝐷((𝑛+1) ̂︀𝑓(𝑛+1)𝑒𝑖𝑛𝜃)(
√
𝑟)
⃒⃒⃒

= 0 for all 𝜃 ∈ [0, 2𝜋), which implies that 𝑓 ∈ ℬ0. The proof is

complete.

Theorem 2.3. Let 𝛽 > 0 and 𝑓(𝑧) =
∞∑︁
𝑛=0

̂︀𝑓(𝑛)𝑧𝑛 ∈ Hol(D) be a function such

that ̂︀𝑓(𝑛) = 𝑂
(︁

1
(𝑛−1)𝑛

)︁
as 𝑛 → ∞. Then 𝑓 ∈ 𝒵𝛽 if and only if

sup
06𝑟<1
06𝜃<2𝜋

(1 − 𝑟)𝛽−1
⃒⃒⃒ ̃︀𝐷((𝑛+1)(𝑛+2) ̂︀𝑓(𝑛+2)𝑒𝑖𝑛𝜃)(

√
𝑟)
⃒⃒⃒
< +∞.

Proof. Since by assumption ((𝑛 − 1)𝑛 ̂︀𝑓(𝑛))𝑛>2 is a bounded sequence, the diagonal operator
𝐷((𝑛−1)𝑛 ̂︀𝑓(𝑛)𝑒𝑖𝑛𝜃) is a bounded operator on the Hardy space 𝐻2 for all 𝜃 ∈ [0, 2𝜋). Then, by

Lemma 2.1 we have:

(1 − |𝑧|2)𝛽 |𝑓 ′′(𝑧)| = (1 − 𝑟2)

⃒⃒⃒⃒
⃒

∞∑︁
𝑛=2

(𝑛− 1)𝑛 ̂︀𝑓(𝑛)𝑧𝑛−2

⃒⃒⃒⃒
⃒

= (1 − 𝑟2)𝛽

⃒⃒⃒⃒
⃒

∞∑︁
𝑛=0

(𝑛 + 1)(𝑛 + 2) ̂︀𝑓(𝑛 + 2)𝑧𝑛

⃒⃒⃒⃒
⃒

= (1 − 𝑟2)𝛽

⃒⃒⃒⃒
⃒

∞∑︁
𝑛=0

(𝑛 + 1)(𝑛 + 2) ̂︀𝑓(𝑛 + 2)𝑒𝑖𝑛𝜃𝑟𝑛

⃒⃒⃒⃒
⃒

= (1 + 𝑟)𝛽(1 − 𝑟)𝛽−1

⃒⃒⃒⃒
⃒(1 − 𝑟)

∞∑︁
𝑛=0

[︁
(𝑛 + 1)(𝑛 + 2) ̂︀𝑓(𝑛 + 2)𝑒𝑖𝑛𝜃

]︁
𝑟𝑛

⃒⃒⃒⃒
⃒
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= (1 + 𝑟)𝛽(1 − 𝑟)𝛽−1
⃒⃒⃒ ̃︀𝐷((𝑛+1)(𝑛+2) ̂︀𝑓(𝑛+2)𝑒𝑖𝑛𝜃)

√
𝑟
⃒⃒⃒

and hence,

(1 − |𝑧|2)𝛽 |𝑓 ′′(𝑧)| = (1 + 𝑟)𝛽(1 − 𝑟)𝛽−1
⃒⃒⃒ ̃︀𝐷((𝑛+1)(𝑛+2) ̂︀𝑓(𝑛+2)𝑒𝑖𝑛𝜃)

(︀√
𝑟
)︀⃒⃒⃒

(7)

for all 𝑧 = 𝑟𝑒𝑖𝜃 ∈ D. This equality shows that 𝑓 ∈ 𝒵𝛽 if and only if

sup
06𝑟<1
06𝜃<2𝜋

(1 − 𝑟)𝛽−1
⃒⃒⃒ ̃︀𝐷((𝑛+1) ̂︀𝑓(𝑛+1)𝑒𝑖𝑛𝜃)(

√
𝑟)
⃒⃒⃒
< +∞,

which proves the theorem.

3. Generalized subharmonicity and Toeplitz operators on Bergman space

In this section we apply representations (4), (6) and (7) for studying the boundedness, com-
pactness and belonging to Schatten-Neumann class for Toeplitz operators acting in the Bergman
space 𝐿2

𝑎 = 𝐿2
𝑎(D).

Let 𝑑𝐴(𝑧) be the area measure on D normalized so that the area of D is 1. In terms of
Cartesian and polar coordinates is reads as

𝑑𝐴(𝑧) =
1

𝜋
𝑑𝑥𝑑𝑦 =

1

𝜋
𝑟𝑑𝑟𝑑𝜃

For1 6 𝑝 < +∞, the usual Lebesgue space 𝐿𝑝(D,𝑑𝐴) denote the Banach space of Lebesgue
measurable functions 𝑓 on D with the norm

‖𝑓‖𝑝 =

⎡⎣∫︁
D

|𝑓(𝑧)|𝑝 𝑑𝐴(𝑧)

⎤⎦ 1
𝑝

< +∞.

The Bergman space 𝐿𝑝
𝑎 = 𝐿𝑝

𝑎(D) is defined to be the subspace of 𝐿𝑝(D, 𝑑𝐴) consisting of analytic
functions. For 𝑝 = 2, 𝐿2

𝑎 is a reproducing kernel Hilbert space with the reproducing kernel

𝑘(𝑧, 𝑤) =
1

(1 − 𝑧𝑤)2

Recall that 𝑃 : 𝐿2(D, 𝑑𝐴) → 𝐿2
𝑎 is the Bergman projection and this is an integral operator

given by the formula

𝑃𝑓(𝑧) =

∫︁
D

𝑘(𝑧, 𝑤)𝑓(𝑤)𝑑𝐴(𝑤) =

∫︁
D

𝑓(𝑤)

(1 − 𝑧𝑤)2
𝑑𝐴(𝑤).

Given a function 𝜙 ∈ 𝐿∞(D), we define the Toeplitz operator 𝑇𝜙 on 𝐿2
𝑎 by 𝑇𝜙𝑓 = 𝑃 (𝜙𝑓),

𝑓 ∈ 𝐿2
𝑎. Since the Bergman projection has the unit norm, we clearly get ‖𝑇𝜙‖ 6 ‖𝜙‖∞ . More

information about Bergman space Toeplitz operators can be found, for example, in the book
by K.Zhu [14].

Definition 3.1 ([14]). Suppose 𝑓 is a nonnegative function on D. We say that 𝑓 has a
generalized subharmonic property if there exists a constant 𝐶 > 0 such that

𝑓(𝑧) 6
𝐶

|𝐷(𝑧, 𝑟)|

∫︁
𝐷(𝑧,𝑟)

𝑓(𝑤)𝑑𝐴(𝑤)

for all 𝑧 ∈ D. Here for each 𝑟 > 0 and 𝑎 ∈ D

𝐷(𝑎, 𝑟) := {𝑧 ∈ D : 𝛽(𝑧, 𝑎) < 𝑟}
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is the Bergman disc with the Bergman metric

𝛽(𝑧, 𝑤) =
1

2
log

1 + 𝜌(𝑧, 𝑤)

1 − 𝜌(𝑧, 𝑤)
,

where 𝜌(𝑧, 𝑤) =
⃒⃒
𝑧−𝑤
1−𝑧𝑤

⃒⃒
(𝑧, 𝑤 ∈ D) is the pseudo-hyperbolic distance on D) and |𝐷(𝑎, 𝑟)| is the

normalized area of 𝐷(𝑎, 𝑟).

Before proving a next theorem, we mention the following known result [14].

Lemma 3.1. If 𝜙 > 0 possesses the generalized subharmonic property, then
(1) 𝑇𝜙 is bounded on 𝐿2

𝑎 if and only if 𝜙 is bounded as |𝑧| → 1−;
(2) 𝑇𝜙 is compact on 𝐿2

𝑎 if and only if 𝜙(𝑧) → 0 as |𝑧| → 1−;

(3) 𝑇𝜙 is in 𝑆𝑝(𝐿
2
𝑎) if and only if 𝜙 ∈ 𝐿𝑝(D, 𝑑𝜆), where 𝑑𝜆(𝑧) = 𝑑𝐴(𝑧)

(1−|𝑧|2)2 is the Möbius

invariant measure on D.

Theorem 3.1. Let a function 𝑓(𝑧) =
∞∑︁
𝑛=0

̂︀𝑓(𝑛)𝑧𝑛 ∈ Hol(D) have a bounded sequence{︁̂︀𝑓(𝑛)
}︁

𝑛>0
of Taylor coefficients. Let 𝛼 > 0. Then

(𝑎) 𝑇
(1+|𝑧|)𝛼(1−|𝑧|)𝛼−1

⃒⃒⃒⃒
⃒ ̃︀𝐷( ̂︀𝑓(𝑛)𝑒𝑖𝑛 arg(𝑧))

(
√

|𝑧|)

⃒⃒⃒⃒
⃒
is bounded on 𝐿2

𝑎 if and only if

(1 − |𝑧|)𝛼−1
⃒⃒⃒ ̃︀𝐷( ̂︀𝑓(𝑛)𝑒𝑖𝑛 arg(𝑧))(

√︀
|𝑧|)

⃒⃒⃒
is bounded as |𝑧| → 1−;

(𝑏) 𝑇
(1+|𝑧|)𝛼(1−|𝑧|)𝛼−1

⃒⃒⃒⃒
⃒ ̃︀𝐷( ̂︀𝑓(𝑛)𝑒𝑖𝑛 arg(𝑧))

(
√

|𝑧|)

⃒⃒⃒⃒
⃒
is compact on 𝐿2

𝑎 if and only if

(1 − |𝑧|)𝛼−1
⃒⃒⃒ ̃︀𝐷( ̂︀𝑓(𝑛)𝑒𝑖𝑛 arg(𝑧))(

√︀
|𝑧|)

⃒⃒⃒
→ 0

as |𝑧| → 1−;
(𝑐) 𝑇 belongs to the Schatten-Neumann class 𝑆𝑝 := 𝑆𝑝 (𝐿2

𝑎) if and only if∫︁
D

(1 + |𝑧|)𝛼𝑝(1 − |𝑧|)𝑝(𝛼−1)
⃒⃒⃒ ̃︀𝐷( ̂︀𝑓(𝑛)𝑒𝑖𝑛 arg(𝑧))(

√︀
|𝑧|)

⃒⃒⃒𝑝
𝑑𝜆(𝑧) < +∞,

where 𝑑𝜆(𝑧) = 𝑑𝐴(𝑧)
(1−|𝑧|)2 is the Möbius invariant measure on D.

Proof. Indeed, one can prove that if 𝑓 is analytic, 𝑝 > 0, and 𝛼 is real, then the function
(1−|𝑧|)𝛼 |𝑓(𝑧)|𝑝 possesses the generalized subharmonic property (see K.Zhu [14]). In particular,
the function (1 − |𝑧|2)𝛼 |𝑓(𝑧)| possesses the same property. On the other hand, by formula (4),

(1 − |𝑧|2)𝛼 |𝑓(𝑧)| = (1 + |𝑧|)𝛼(1 − |𝑧|)𝛼−1
⃒⃒⃒ ̃︀𝐷( ̂︀𝑓(𝑛)𝑒𝑖𝑛 arg(𝑧))(

√︀
|𝑧|)

⃒⃒⃒
for all 𝑧 ∈ D. Now the statement of theorem is immediately implied by Lemma 3.1.

By using formulae (6) and (7), the nextg two results can be proved by the same method as
in the above proof, and therefore the proof is omitted.

Theorem 3.2. Let a function 𝑓(𝑧) =
∞∑︁
𝑛=0

̂︀𝑓(𝑛)𝑧𝑛 ∈ Hol(D) have the sequence
{︁̂︀𝑓(𝑛)

}︁
𝑛>0

of

Taylor coefficients such that ̂︀𝑓(𝑛) = 𝑂
(︀
1
𝑛

)︀
as 𝑛 → ∞. Then

(𝑎) 𝑇(1−|𝑧|2)|𝑓 ′(𝑧)| is bounded on 𝐿2
𝑎 if and only if

⃒⃒⃒ ̃︀𝐷((𝑛+1) ̂︀𝑓(𝑛+1)𝑒𝑖𝑛 arg(𝑧))(
√︀

|𝑧|)
⃒⃒⃒
is bounded as

|𝑧| → 1−;
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(𝑏) 𝑇(1−|𝑧|2)|𝑓 ′(𝑧)| is compact on 𝐿2
𝑎 if and only if⃒⃒⃒ ̃︀𝐷((𝑛+1) ̂︀𝑓(𝑛+1)𝑒𝑖𝑛 arg(𝑧))(

√︀
|𝑧|)

⃒⃒⃒
→ 0

as |𝑧| → 1−;
(𝑐) 𝑇(1−|𝑧|2)|𝑓 ′(𝑧)| is in 𝑆𝑝(𝐿

2
𝑎) if and only if∫︁

D

(1 + |𝑧|)𝑝
⃒⃒⃒ ̃︀𝐷((𝑛+1) ̂︀𝑓(𝑛+1)𝑒𝑖𝑛 arg(𝑧))(

√︀
|𝑧|)

⃒⃒⃒𝑝
𝑑𝜆(𝑧) < +∞.

Theorem 3.3. Let 𝛽 > 0 and 𝑓(𝑧) =
∞∑︁
𝑛=0

̂︀𝑓(𝑛)𝑧𝑛 ∈ Hol(D) be a function such

that ̂︀𝑓(𝑛) = 𝑂(((𝑛− 1)𝑛)−1) as 𝑛 → ∞. Then

(𝑎) 𝑇
(1−|𝑧|2)

𝛽|𝑓 ′′ (𝑧)| is bounded on 𝐿2
𝑎 if and only if (1−|𝑧|)𝛽−1

⃒⃒⃒ ̃︀𝐷((𝑛+1)(𝑛+2) ̂︀𝑓(𝑛+2)𝑒𝑖𝑛 arg(𝑧))(
√︀
|𝑧|)

⃒⃒⃒
is bounded as |𝑧| → 1−;

(𝑏) 𝑇
(1−|𝑧|2)

𝛽|𝑓 ′′ (𝑧)| is compact on 𝐿2
𝑎 if and only if

(1 − |𝑧|)𝛽−1
⃒⃒⃒ ̃︀𝐷((𝑛+1)(𝑛+2) ̂︀𝑓(𝑛+2)𝑒𝑖𝑛 arg(𝑧))(

√︀
|𝑧|)

⃒⃒⃒
→ 0

as |𝑧| → 1−;
(𝑐) 𝑇

(1−|𝑧|2)
𝛽|𝑓 ′′ (𝑧)| is in 𝑆𝑝(𝐿

2
𝑎) if and only if

(1 + |𝑧|)𝛽(1 − |𝑧|)𝛽−1
⃒⃒⃒ ̃︀𝐷((𝑛+1)(𝑛+2) ̂︀𝑓(𝑛+2)𝑒𝑖𝑛 arg(𝑧))(

√︀
|𝑧|)

⃒⃒⃒
∈ 𝐿𝑝(D, 𝑑𝜆).

4. Characterization of mixed norm space 𝐻𝑝(𝑡),𝑞(𝑡),𝛾(𝑡) with variable exponents

Let T = 𝜕D and let 𝑝 = 𝑝(𝑡) and 𝑞(𝑡), 𝑡 ∈ T, be bounded positive measurable functions
defined on T, and let 𝛾(𝑡) > −1 on T. Following by Kokilashvili and Paatashvili [4, 5] (see also
Karaev [2]), we say that the analytic function 𝑓 in D belongs to the Hardy class 𝐻𝑝(𝑡) if

sup
0<𝑟<1

1

2𝜋

2𝜋∫︁
0

⃒⃒
𝑓(𝑟𝑒𝑖𝑡)

⃒⃒𝑝(𝑡)
𝑑𝑡 < +∞,

where 𝑝(𝑡) = 𝑝(𝑒𝑖𝑡), 𝑡 ∈ [0, 2𝜋).
Similarly, we say that a function 𝑓 ∈ Hol(D) belongs to the mixed norm space 𝐻𝑝(𝑡),𝑞(𝑡),𝛾(𝑡)

with the variable exponents if

‖𝑓‖𝑞(𝑡)𝐻𝑝(𝑡),𝑞(𝑡),𝛾(𝑡)
:=

1∫︁
0

⎛⎝ 1

2𝜋

2𝜋∫︁
0

⃒⃒
𝑓(𝑟𝑒𝑖𝑡)

⃒⃒𝑝(𝑡)
𝑑𝑡

⎞⎠
𝑞(𝑡)
𝑝(𝑡)

(1 − 𝑟)𝛾(𝑡)𝑑𝑟 < +∞,

where 𝑝(𝑡) = 𝑝(𝑒𝑖𝑡), 𝑞(𝑡) = 𝑞(𝑒𝑖𝑡) and 𝛾(𝑡) = 𝛾(𝑒𝑖𝑡), 𝑡 ∈ [0, 2𝜋).
For 𝑝(𝑡) = 𝑝 = 𝑐𝑜𝑛𝑠𝑡 > 0, 𝑞(𝑡) = 𝑞 = 𝑐𝑜𝑛𝑠𝑡 > 0 and 𝛾(𝑡) = 𝛾 = 𝑐𝑜𝑛𝑠𝑡 > −1, the class

𝐻𝑝(·),𝑞(·),𝛾(·) coincides with the class 𝐻𝑝,𝑞,𝛾.
The following theorem characterize the spaces 𝐻𝑝(·),𝑞(·),𝛾(·) in terms of Berezin symbols and

Taylor coefficients.
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Theorem 4.1. Let 𝑓(𝑧) =
∞∑︁
𝑛=0

̂︀𝑓(𝑛)𝑧𝑛 ∈ Hol(D) be a function with the bounded sequence{︁̂︀𝑓(𝑛)
}︁

𝑛>0
of Taylor coefficients ̂︀𝑓(𝑛) = 𝑓 (𝑛)(0)

𝑛!
, (𝑛 = 0, 1, 2, . . .). Then 𝑓 ∈ 𝐻𝑝(·),𝑞(·),𝛾(·) if and

only if

1∫︁
0

⎛⎝ 1

2𝜋

2𝜋∫︁
0

⃒⃒⃒ ̃︀𝐷( ̂︀𝑓(𝑛)𝑒𝑖𝑛𝑡)(
√
𝑟)
⃒⃒⃒𝑝(𝑡)

𝑑𝑡

⎞⎠
𝑞(𝑡)
𝑝(𝑡)

(1 − 𝑟)
𝛾(𝑡)𝑝(𝑡)−𝑞(𝑡)

𝑝(𝑡) 𝑑𝑟 < +∞.

Proof. Using formula (2) in Lemma 2.1, we rewrite the function 𝑓(𝑧) =
∞∑︁
𝑛=0

̂︀𝑓(𝑛)𝑧𝑛 as follows:

𝑓(𝑧) = 𝑓(𝑟𝑒𝑖𝑡) =
̃︀𝐷( ̂︀𝑓(𝑛)𝑒𝑖𝑛𝑡)(

√
𝑟)

1 − 𝑟
(8)

for each 𝑧 = 𝑟𝑒𝑖𝑡 ∈ D. Now the statement of the theorem follows the definition of the space
𝐻𝑝(·),𝑞(·),𝛾(·). Namely, in view of (8), we obtain

1∫︁
0

⎛⎝ 1

2𝜋

2𝜋∫︁
0

⃒⃒
𝑓(𝑟𝑒𝑖𝑡)

⃒⃒𝑝(𝑡)
𝑑𝑡

⎞⎠
𝑞(𝑡)
𝑝(𝑡)

(1 − 𝑟)𝛾(𝑡)𝑑𝑟 =

1∫︁
0

⎛⎝ 1

2𝜋

2𝜋∫︁
0

⃒⃒⃒⃒
⃒ ̃︀𝐷( ̂︀𝑓(𝑛)𝑒𝑖𝑛𝑡)(

√
𝑟)

1 − 𝑟

⃒⃒⃒⃒
⃒
𝑝(𝑡)

𝑑𝑡

⎞⎠
𝑞(𝑡)
𝑝(𝑡)

(1 − 𝑟)𝛾(𝑡)𝑑𝑟

=

1∫︁
0

⎛⎝ 1

2𝜋

2𝜋∫︁
0

⃒⃒⃒ ̃︀𝐷( ̂︀𝑓(𝑛)𝑒𝑖𝑛𝑡)(
√
𝑟)
⃒⃒⃒𝑝(𝑡)

𝑑𝑡

⎞⎠
𝑞(𝑡)
𝑝(𝑡)

(1 − 𝑟)𝛾(𝑡)−
𝑞(𝑡)
𝑝(𝑡)𝑑𝑟.

This yields that 𝑓 ∈ 𝐻𝑝(·),𝑞(·),𝛾(·) if and only if

1∫︁
0

⎛⎝ 1

2𝜋

2𝜋∫︁
0

⃒⃒⃒ ̃︀𝐷( ̂︀𝑓(𝑛)𝑒𝑖𝑛𝑡)(
√
𝑟)
⃒⃒⃒𝑝(𝑡)

𝑑𝑡

⎞⎠
𝑞(𝑡)
𝑝(𝑡)

(1 − 𝑟)𝛾(𝑡)−
𝑞(𝑡)
𝑝(𝑡)𝑑𝑟 < +∞.

The proof is complete.
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