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PERTURBATION OF SECOND ORDER NONLINEAR

EQUATION BY DELTA-LIKE POTENTIAL

T.R. GADYL’SHIN, F.Kh. MUKMINOV

Abstract. We consider boundary value problems for one-dimensional second order quasi-
linear equation on bounded and unbounded intervals 𝐼 of the real axis. The equation per-
turbed by the delta-shaped potential 𝜀−1𝑄

(︀
𝜀−1𝑥

)︀
, where 𝑄(𝜉) is a compactly supported

function, 0 < 𝜀 ≪ 1. The mean value of ⟨𝑄⟩ can be negative, but it is assumed to be
bounded from below ⟨𝑄⟩ > −𝑚0. The number 𝑚0 is defined in terms of coefficients of the
equation. We study the convergence rate of the solution of the perturbed problem 𝑢𝜀 to the
solution of the limit problem 𝑢0 as the parameter 𝜀 tends to zero. In the case of a bounded
interval 𝐼, the estimate of the form |𝑢𝜀(𝑥) − 𝑢0(𝑥)| < 𝐶𝜀 is established. As the interval

𝐼 is unbounded, we prove a weaker estimate |𝑢𝜀(𝑥) − 𝑢0(𝑥)/ < 𝐶𝜀1/2. The estimates are
proved by using original cut-off functions as trial functions. For simplicity, the proof of
the existence of solutions to perturbed and limiting problems are made by the method of
contracting mappings. The disadvantage of this approach, as it is known, is the smallness
of the nonlinearities in the equation. We consider the cases of the Dirichlet, Neumann and
Robin condition.
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1. Introduction

Let 𝐼 be either a bounded interval (𝑎, 𝑏) or a semi-axis (𝑎,∞) or (−∞, 𝑏) or the entire axis
(−∞,∞), {0} ∈ 𝐼, 𝑎 < −1, 𝑏 > 1, Ω := 𝐼 × (−∞,∞), 0 < 𝜀 ≪ 1. We denote by ℒ and ℒ𝜀 the
mappings from the space 𝑊 1

2 (𝐼) into the space of generalized functions 𝐷′(𝐼) of the form:

ℒ𝑢 = − d

d𝑥

(︂
𝑘 (𝑥, 𝑢)

d𝑢

d𝑥

)︂
+

d

d𝑥
𝑝(𝑥, 𝑢) + 𝑞1 (𝑥, 𝑢) + 𝑞2(𝑥)𝑢,

ℒ𝜀 = ℒ + 𝜀−1𝑄
(︁𝑥
𝜀

)︁
.

For the functions involved in ℒ, the following conditions are imposed:

𝑘, 𝑝, 𝑞1 ∈ 𝐶1(Ω), 𝑞2, 𝑄 ∈ 𝐶(𝐼),

0 < 𝑞0 6 𝑞2(𝑥) 6 𝑞2, |𝑄(𝑥)| 6 𝑄, 𝑥 ∈ 𝐼,

0 < 𝑘0 6 𝑘(𝑥, 𝑠), (𝑥, 𝑠) ∈ Ω,

|𝑘(𝑥, 𝑠)| 6 𝑘(𝑀), 𝑥 ∈ 𝐼, |𝑠| 6 𝑀, (1)

for each 𝑀 > 0.
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Without loss of generality we assume that 𝑝(𝑥, 0) = 0, 𝑞1(𝑥, 0) = 0. Indeed,

d

d𝑥
𝑝(𝑥, 𝑢) + 𝑞1(𝑥, 𝑢) =

d

d𝑥
(𝑝(𝑥, 𝑢) − 𝑝(𝑥, 0)) + 𝑝(𝑥, 0)′ + (𝑞1(𝑥, 𝑢) − 𝑞1(𝑥, 0)) + 𝑞1(𝑥, 0),

and the terms 𝑝(𝑥, 0)′ + 𝑞1(𝑥, 0) are moved to the right hand side of the equation ℒ𝑢 = 𝑓.
We suppose that supp𝑄 ⊂ [−1, 1] and we impose the following restriction for the mean of

the function 𝑄:

⟨𝑄⟩ :=

1∫︁
−1

𝑄(𝜏)d𝜏 > −min{𝑘0; 𝑞0}
4

. (2)

That is, the mean ⟨𝑄⟩ can be negative.
The nonlinearities involved in the operator ℒ are assumed to be small in the following sense.

We denote

𝑚𝑘𝑞 = min{𝑘0; 𝑞0}, 𝛾 =
3

4
𝑚𝑘𝑞, 𝐾𝑔(𝑀) = sup

𝑥∈𝐼,|𝑠|6𝑀

|𝑔𝑠(𝑥, 𝑢)| ,

where 𝑔(𝑥, 𝑠) is an arbitrary smooth function. For some 𝑀 we let

𝐴(𝑀) = 𝑘−1
0

(︀
2(𝑘(𝑀) + 𝑞2 + 𝑚𝑘𝑞) + 3𝑄

)︀
𝑀. (3)

We assume that there exist constants 𝑀 and 𝛾1 ∈ (0, 𝛾) such that the inequalities hold:

6𝐾𝑝(2𝑀) + 2𝐾𝑘(2𝑀)𝐴 + 2𝐾𝑞1(2𝑀) < 𝛾1, (4)

(𝑝𝑎(𝑀) − ℎ𝑎)𝐻𝑎 6 0, 𝑝𝑎(𝑀) = sup
|𝑠|6𝑀

|𝑝𝑠(𝑎, 𝑠)| , (5)

(𝑝𝑏(𝑀) + ℎ𝑏)𝐻𝑏 > 0, 𝑝𝑏(𝑀) = inf
|𝑠|6𝑀

|𝑝𝑠(𝑏, 𝑠)| . (6)

The class of nonlinearities satisfying the above conditions is rather wide. For instance, let
the nonlinearities be proportional to a small parameter 𝜇:

𝑘(𝑥, 𝑠) = 𝜇𝑘1(𝑥, 𝑠) + 𝑘(𝑥, 0), 𝑘1(𝑥, 𝑠) > 0, 𝑝(𝑥, 𝑠) = 𝜇𝑝(𝑥, 𝑠), 𝑞1(𝑥, 𝑠) = 𝜇𝑞1(𝑥, 𝑠).

Then the Lipschitz constants satisfy the formulae 𝐾𝑝(𝑀) = 𝜇𝐾𝑝(𝑀) and the smallness condi-
tions are satisfied for sufficiently large 𝑀 provided 𝜇 is small enough. In particular, in the case
of a linear operator ℒ we have 𝜇 = 0 and the number 𝑀 can be arbitrary.

In the case when 𝐼 is a bounded interval (𝑎, 𝑏), we consider the boundary value problem

ℒ𝜀𝑢
𝜀 = 𝑓, 𝑥 ∈ 𝐼, 𝑙𝑎𝑢

𝜀 = 0, 𝑙𝑏𝑢
𝜀 = 0; (7)

𝑙𝑎𝑢
𝜀 := ℎ𝑎𝑢

𝜀(𝑎) −𝐻𝑎𝑘(𝑎, 𝑢𝜀(𝑎))
d𝑢𝜀

d𝑥
(𝑎), 𝑙𝑏𝑢

𝜀 := ℎ𝑏𝑢
𝜀(𝑏) + 𝐻𝑏𝑘(𝑏, 𝑢𝜀(𝑏))

d𝑢𝜀

d𝑥
(𝑏),

where ℎ𝑎, ℎ𝑏 > 0, 𝐻𝑎, 𝐻𝑏 are either 0 or 1, ℎ𝑎 + 𝐻𝑎 > 0, ℎ𝑏 + 𝐻𝑏 > 0. If 𝐼 is either a semi-axis
(𝑎,∞) or (−∞, 𝑏) or the entire axis (−∞,∞), the boundary conditions at the infinities are
formally imposed as

lim
𝑥→±∞

𝑢(𝑥) = 0,

but in fact, they are ensured by a choice of the spaces in which the solution to the problem is
sought. In what follows we consider all four types of the interval 𝐼 and for the sake of brevity,
in all case we shall employ writing (7).

In the same way we treat the boundary value problem

ℒ𝑢0 = 𝑓, 𝑥 ∈ 𝐼∖{0}, (8)

𝑙𝑎𝑢0 = 0, 𝑙𝑏𝑢0 = 0, 𝑘(0, 𝑢0(0)){𝑢′
0}(0) = ⟨𝑄⟩𝑢0(0), (9)

where the notation has been employed:

{ℎ} (0) := ℎ(+0) − ℎ(−0).
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The main aim of the work is to prove the following statement.

Theorem 1. Let 𝐼 = (𝑎, 𝑏) be a bounded interval and conditions (1), (2), (4)–(6) are satis-
fied. Then for each 𝑓 ∈ 𝐿2(𝐼) such that ‖𝑓‖𝐿2(𝐼) 6 𝛾1𝑀/2, the solution 𝑢𝜀 to boundary value
problem (7) satisfies the inequality

‖𝑢𝜀 − 𝑢0‖𝐶(𝐼) 6 𝐶𝜀,

where 𝑢0 is the solution to boundary value problem (8), (9).

In the case of an unbounded interval 𝐼 we establish a weaker statement.

Theorem 2. Assume that conditions (1), (2), (4)–(6) hold. Then for each 𝑓 ∈ 𝐿2(𝐼) such
that ‖𝑓‖𝐿2(𝐼) 6 𝛾1𝑀/2, the solution 𝑢𝜀 to boundary value problem (7) satisfies the inequality

‖𝑢𝜀 − 𝑢0‖𝐶(𝐼) 6 𝐶𝜀
1
2 ,

where 𝑢0 is the solution to boundary value problem (8), (9).

Earlier, by employing another technique, similar results were established in work [1] by the
authors for a semi-linear equation with a coefficient 𝑘 = 𝑘(𝑥) independent of 𝑢.

Problem (8), (9) in fact involves the operator ℒ𝑢 + 𝛿(𝑥)𝑢 being a singular perturbation of
a nonlinear operator ℒ𝑢. In book [2], there was considered the self-adjoint operator generated
by the differential expression

𝐻𝜀 = − d2

d𝑥2
+ 𝜀−1𝑉 (𝜀−1𝑥), 𝑉 ∈ 𝐿1(R),

on the real axis and the existence of the limit of the resolvent was proved [2, Thm 3.2.3]

𝑛− lim
𝜀→0

(𝐻𝜀 − 𝑘2)−1 = (∆𝛼 − 𝑘2)−1,

where

∆𝛼 = − d2

d𝑥2
+ 𝛼𝛿(𝑥), 𝛼 =

∫︁
R

𝑉 (𝑥)d𝑥.

In work [3], there was considered the self-adjoint operator 𝐻𝜇,𝜀 generated by the differential
expression

− d2

d𝑥2
+ 𝑊 (𝑥) + 𝜇−1𝑉 (𝜀−1𝑥), 𝑉,𝑊 ∈ 𝐿∞(R),

on the real axis, where 𝑉 is compactly supported. The complete asymptotics was constructed
for a simple eigenvalue of the operator 𝐻𝜇,𝜀 as 𝜆, 𝜇 → 0.

In work [4], there were considered boundary value problems on a segment [𝑎, 𝑏] for the
Schrödinger equation with the potential being the sum 𝑞(𝑥, 𝜇−1𝑥) + 𝜀−1𝑄(𝜀−1𝑥), where 𝑞(𝑥, 𝑦)
is a 1-periodic in 𝑦 function, 𝑄(𝑥) is a compactly supported function, 0 ∈ (𝑎, 𝑏), 𝜇, 𝜀 are small
positive parameters. By a combination of the multi-scale method and the method of matching
asymptotic expansions, the solutions to these boundary value problems were constructed up to
an error 𝑂(𝜇 + 𝜀).

There are a lot of known results on linear operators with singular coefficients. In work [5], a
well-defined Sturm-Liouville operator

𝑙𝜀𝑦 = −𝑦′′(𝑥) + 𝑢′
𝜀(𝑥)𝑦(𝑥)

is provided and there was proved the existence of the limit of its resolvent in the case 𝑢𝜀 → 𝑢 ∈
𝐿2(0, 1). In work [6] these results were extended for linear operators of higher even order.

In work [7], in the space 𝐿2([0,∞) ∖𝑋), 𝑋 = {𝑥𝑗}∞𝑗=1, the operator 𝐻𝑋,𝛼 generated by the
differential expression

𝑙𝑥,𝛼 = − d2

d𝑥2
+

∞∑︁
𝑗=1

𝛼𝑗𝛿(𝑥− 𝑥𝑗)
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was considered. The self-adjoint and lower-semibounded properties and the discreteness of the
spectrum were studied for the operator 𝐻𝑋,𝛼 in the case inf{𝑥𝑗 − 𝑥𝑗−1}∞𝑗=1 = 0.

In works [8, 9] there were considered perturbations of a non-stationary Schrödinger equation
by potentials with small supported. In particular, it was proved in [8] that if non-negative
potentials 𝑉𝑚(𝑥) ∈ 𝐿2(R

𝑛) have compact supports 𝑆𝑚 with capacities tending to zero as 𝑚 →
∞, the associated semi-groups tend to the semi-group of the non-perturbed equation. In [9]
this result was extended to a wider class of potentials.

The fact that the delta-like potential approximates delta interaction is essentially one-
dimensional. The mathematical study of the multi-dimensional operator −∆ + 𝛿(𝑥) was made
in [10]. It implied that this operator can not be uniquely well-defined. In particular, it was
proved in work [11] that the operators(−∆)𝑠 + 𝑉𝑚(𝑥) converge to the operator (−∆)𝑠 + 𝛿𝑆𝑝 in
the resolvent sense, where 𝑆𝑝 is a manifold of a dimension 1 6 𝑝 6 𝑛−1 provided 𝑠 > (𝑛−𝑝)/2
and the potentials 𝑉𝑚(𝑥) converge to 𝛿𝑆𝑝 in the distribution sense.

In work [12], there were studied the operators −∆+𝑉𝑚(𝑥) with the potentials 𝑉𝑚(𝑥) in some
space of multipliers. In particular, it was proved that the convergence of the potentials in the
space of multipliers implies the norm resolvent convergence of the operators. This result was
generalized in work [13] for some class of strongly elliptic operators of higher order.

We also mention work [14] in which the criterion of the boundedness in a Sobolev space
was found for the operator, 𝑎𝑖𝑗𝜕𝑖𝜕𝑗 + 𝑏𝑗𝜕𝑗 + 𝑐 with the coefficients 𝑎𝑖𝑗, 𝑏𝑗, 𝑐 in the space of
distributions.

The solvability of problem (7) in the case of smooth coefficients was established in work
[15]. If the right hand side 𝑓 ∈ 𝐿1(𝐼) is only summable, one needs another technique, see, for
instance, [16] and the references therein. Unfortunately, we failed to find the works on solvability
of problem (8), (9). This is why in the next section we prove the solvability of problem (8),
(9) by the contracting mappings method. This made us to restrict the consideration by small
nonlinearities. For the completeness of the presentation, we also discuss the solvability of
problem (7).

2. solvability of boundary value problems (7) and (8), (9)

For a function 𝑤 ∈ 𝐶(𝐼) we consider the following bilinear forms on 𝑊 1
2 (𝐼):

(𝑢, 𝑣)𝑤 =

∫︁
𝐼

(𝑘(𝑥,𝑤)𝑢′𝑣′ + 𝑞2(𝑥)𝑢𝑣) d𝑥,

(𝑢, 𝑣)′𝑤,𝑟 =

∫︁
𝐼

(︁
𝑘(𝑥,𝑤)𝑢′𝑣′ +

(︁
𝑞2(𝑥) + 𝑟𝜀−1𝑄(

𝑥

𝜀
)
)︁
𝑢𝑣

)︁
d𝑥 + (1 − 𝑟) ⟨𝑄⟩𝑢(0)𝑣(0),

where either 𝑟 = 1 or 𝑟 = 0.
By the conditions 𝑘(𝑥, 𝑢) > 𝑘0 > 0, 𝑞2(𝑥) > 𝑞0 > 0 and (1) we have the obvious inequalities

𝑚𝑘𝑞‖𝑢‖2𝑊 1
2 (𝑎,𝑏)

6 (𝑢, 𝑢)𝑤 6 𝐶1‖𝑢‖2𝑊 1
2 (𝑎,𝑏)

.

Therefore, the bilinear form (𝑢, 𝑣)𝑤 is a scalar product in 𝑊 1
2 (𝐼) equivalent to the classical one.

The linear normed space 𝑊 1
2 (𝑐, 𝑑) is embedded into 𝐶[𝑐, 𝑑] (see, for instance, [17, Ch. III,

Sect. 6]). In particular, ‖𝑢‖𝐶[0,1] 6 ‖𝑢‖𝑊 1
2 (0,1)

. Therefore,

‖𝑢‖𝐶[𝑐,𝑑] 6‖𝑢‖𝑊 1
2 (𝑐,𝑑)

, 𝑢 ∈ 𝑊 1
2 (𝑐, 𝑑), 𝑑− 𝑐 > 1. (10)

It is obvious that

𝑢2(0) 6 ‖𝑢‖2𝐶(𝐼) 6 ‖𝑢‖2𝑊 1
2 (𝐼)

6 (𝑚𝑘𝑞)
−1(𝑢, 𝑢)𝑤, 𝑢 ∈ 𝑊 1

2 (𝐼). (11)
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We recall that the smooth functions satisfy the Steklov inequality:
𝑑∫︁

𝑐

𝑣2d𝑥 6 (𝑑− 𝑐)2
𝑑∫︁

𝑐

(𝑣′)2d𝑥, 𝑣(𝑐) = 0.

We denote by 𝑉 the Hilbert space

𝑉 ={𝑢 ∈ 𝑊 1
2 (𝐼)|𝑢(𝑎) = 0}, if 𝐼 = (𝑎,∞) and 𝐻𝑎 = 0,

𝑉 ={𝑢 ∈ 𝑊 1
2 (𝐼)|𝑢(𝑏) = 0}, if 𝐼 = (−∞, 𝑏) and 𝐻𝑏 = 0,

𝑉 ={𝑢 ∈ 𝑊 1
2 (𝐼)|𝑢(𝑎) = 𝑢(𝑏) = 0}, if 𝐼 = (𝑎, 𝑏) and 𝐻𝑎 = 𝐻𝑏 = 0,

𝑉 ={𝑢 ∈ 𝑊 1
2 (𝐼)|𝑢(𝑎) = 0}, if 𝐼 = (𝑎, 𝑏) and 𝐻𝑎 = 0, but 𝐻𝑏 ̸= 0,

𝑉 ={𝑢 ∈ 𝑊 1
2 (𝐼)|𝑢(𝑏) = 0}, if 𝐼 = (𝑎, 𝑏) and 𝐻𝑏 = 0, but 𝐻𝑎 ̸= 0,

𝑉 = 𝑊 1
2 (𝐼) in other cases; ‖𝑢‖𝑉 := ‖𝑢‖𝑊 1

2 (𝐼)
.

Lemma 1. Assume that inequality (2) holds. Then for sufficiently small 𝜀 the bilinear form
(𝑢, 𝑣)′𝑤,𝑟 is a scalar product in 𝑉 equivalent to the scalar product (𝑢, 𝑣)𝑤. At that, the inequality

𝛾1‖𝑢‖2𝑉 6 (𝑢, 𝑢)′𝑤,𝑟 (12)

holds.

Proof. Let us prove the inequality

𝑑(𝑢) =

⃒⃒⃒⃒
⃒⃒∫︁
𝐼

𝜀−1𝑄(
𝑥

𝜀
)𝑢2d𝑥− ⟨𝑄⟩𝑢2(0)

⃒⃒⃒⃒
⃒⃒ 6 4𝜀1/2𝑄‖𝑢′‖𝐿2(𝐼𝜀)‖𝑢‖𝑉 , 𝑢 ∈ 𝑉. (13)

Let 𝑢1, 𝑢2, 𝑣 ∈ 𝑉 . We estimate the difference∫︁
𝐼

𝜀−1𝑄(
𝑥

𝜀
)𝑢1𝑣d𝑥− ⟨𝑄⟩𝑢2(0)𝑣(0)

=

∫︁
𝐼

𝜀−1𝑄(
𝑥

𝜀
)(𝑢1𝑣 − 𝑢1(0)𝑣(0))d𝑥 + ⟨𝑄⟩(𝑢1(0) − 𝑢2(0))𝑣(0).

(14)

Let 𝐼𝜀 = (−𝜀, 𝜀). The following estimates are obvious:⃒⃒⃒⃒
⃒⃒∫︁
𝐼

𝜀−1𝑄(
𝑥

𝜀
)(𝑢1𝑣 − 𝑢1(0)𝑣(0))d𝑥

⃒⃒⃒⃒
⃒⃒ 6 ∫︁

𝐼𝜀

𝜀−1𝑄|(𝑢1 − 𝑢1(0))𝑣 + 𝑢1(0)(𝑣 − 𝑣(0))|d𝑥

6 𝜀−1𝑄(‖𝑢1 − 𝑢1(0)‖𝐿2(𝐼𝜀)‖𝑣‖𝐿2(𝐼𝜀) + ‖𝑣 − 𝑣(0)‖𝐿2(𝐼𝜀)‖𝑢1(0)‖𝐿2(𝐼𝜀)) = 𝐽.

By the Steklov inequality and (10),

𝐽 6𝑄(‖𝑢′
1‖𝐿2(𝐼𝜀)‖𝑣‖𝐿2(𝐼𝜀) + ‖𝑣′‖𝐿2(𝐼𝜀)‖𝑢1(0)‖𝐿2(𝐼𝜀))

62𝜀1/2𝑄(‖𝑢′
1‖𝐿2(𝐼𝜀)‖𝑣‖𝑉 + ‖𝑣′‖𝐿2(𝐼𝜀)‖𝑢1‖𝑉 ).

Now, by (14), as 𝑢1 = 𝑢2 = 𝑣 = 𝑢, we get inequality (13), while as 𝑣 = 𝑢1 − 𝑢2, we arrive at
the inequality∫︁

𝐼

𝜀−1𝑄(
𝑥

𝜀
)𝑢1𝑣d𝑥−⟨𝑄⟩𝑢2(0)𝑣(0) > ⟨𝑄⟩𝑣2(0)−2𝜀1/2𝑄(‖𝑢′

1‖𝐿2(𝐼𝜀)‖𝑣‖𝑉 +‖𝑣′‖𝐿2(𝐼𝜀)‖𝑢1‖𝑉 ). (15)

Let us prove (12). By (2), (11), (13), we have

(𝑢, 𝑢)′𝑤,𝑟 > (𝑢, 𝑢)𝑤 +⟨𝑄⟩𝑢2(0)−𝑟𝑑(𝑢) > 𝑚𝑘𝑞‖𝑢‖2𝑉 −𝑚𝑘𝑞𝑢
2(0)

4
−4𝜀1/2𝑄‖𝑢′‖𝐿2(𝐼𝜀)‖𝑢‖𝑉 > 𝛾1‖𝑢‖2𝑉 .
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The latter inequality is true for sufficiently small 𝜀 > 0.
By (11) and (13) we obtain the estimate (𝑢, 𝑢)′𝑤,𝑟 6 𝐶(𝑢, 𝑢)𝑤, which complete the proof of

the equivalence of the scalar products (𝑢, 𝑣)′𝑤,𝑟 and (𝑢, 𝑣)𝑤.

We let ̃︀ℎ𝑎 = ℎ𝑎𝐻𝑎, ̃︀ℎ𝑏 = ℎ𝑏𝐻𝑏 and

(𝑢, 𝑣)𝑤,𝑟 :=(𝑢, 𝑣)′𝑤,𝑟, 𝐼 = (−∞,∞),

(𝑢, 𝑣)𝑤,𝑟 :=(𝑢, 𝑣)′𝑤,𝑟 + ̃︀ℎ𝑎𝑢0(𝑎)𝑣(𝑎), 𝐼 = (𝑎,∞),

(𝑢, 𝑣)𝑤,𝑟 :=(𝑢, 𝑣)′𝑤,𝑟 + ̃︀ℎ𝑏𝑢0(𝑏)𝑣(𝑏), 𝐼 = (−∞, 𝑏),

(𝑢, 𝑣)𝑤,𝑟 :=(𝑢, 𝑣)′𝑤,𝑟 + ̃︀ℎ𝑎𝑢0(𝑎)𝑣(𝑎) + ̃︀ℎ𝑏𝑢0(𝑏)𝑣(𝑏), 𝐼 = (𝑎, 𝑏).

Lemma 2. Assume that inequality (2) is true. Then for sufficiently small 𝜀 the bilinear
form (𝑢, 𝑣)𝑤,𝑟 is a scalar product in 𝑉 equivalent to the original scalar product in 𝑉 . At that,
the inequality

𝛾1‖𝑢‖2𝑉 6 (𝑢, 𝑢)𝑤,𝑟

is true.

The proof is implied immediately by Lemma 1 and inequality (11).
By Riesz theorem (see, for instance, [17, Ch. II, Sect. 3, Subsect. 2]), the formula

(𝑢, 𝑣)𝑤,𝑟 = 𝐹 (𝑣), 𝑣 ∈ 𝑉,

where 𝐹 ∈ 𝑉 ′ is a linear continuous functional, defines a linear mapping 𝑢 = 𝑆𝑤,𝑟𝐹 , 𝑆𝑤,𝑟 :
𝑉 ′ → 𝑉 . Since

𝛾1‖𝑢‖2𝑉 6 (𝑢, 𝑢)𝑤,𝑟 6 ‖𝐹‖𝑉 ′‖𝑢‖𝑉 ,
the estimate

‖𝑢‖𝑉 = ‖𝑆𝑤,𝑟𝐹‖𝑉 6 𝛾−1
1 ‖𝐹‖𝑉 ′ (16)

is true.
The generalized solutions to nonlinear boundary value problems (7) and (8), (9) are intro-

duced as functions 𝑢𝜀 ∈ 𝑉 and 𝑢0 ∈ 𝑉 satisfying the integral identities

(𝑢𝜀, 𝑣)𝑢𝜀,1 =

∫︁
𝐼

𝑓𝑣d𝑥−
∫︁
𝐼

((𝑝(𝑥, 𝑢𝜀))′ + 𝑞1(𝑥, 𝑢
𝜀))𝑣d𝑥 (17)

(𝑢0, 𝑣)𝑢0,0 =

∫︁
𝐼

𝑓𝑣d𝑥−
∫︁
𝐼

((𝑝(𝑥, 𝑢0))
′ + 𝑞1(𝑥, 𝑢0))𝑣d𝑥, (18)

for each 𝑣 ∈ 𝑉 , respectively.
We observe that by (17), (18) and (16) we get the following statement.

Lemma 3. Assume that inequality (2) is true. Then in the linear case, that is, as 𝑘(𝑥, 𝑢) ≡
𝑘(𝑥, 0), 𝑝(𝑥, 𝑢) = 𝑞1(𝑥, 𝑢) ≡ 0, boundary value problem (8), (9), as well as boundary value
problem (7) for sufficiently small 𝜀 are uniquely solvable in 𝑊 1

2 (𝐼) and their solutions satisfy
the estimate

‖𝑢‖𝑊 1
2 (𝐼)

6 𝐶‖𝑓‖𝐿2(𝐼).

The proof of solvability of nonlinear boundary value problems (7) and (8), (9) is based on
the contracting mappings method.

Lemma 4. Assume that conditions (2), (4) hold. Then for each fixed 𝑓 ∈ 𝐿2(𝐼) such that

‖𝑓‖𝐿2(𝐼) 6
𝛾1𝑀

2
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boundary value problems (7) and (8), (9) are uniquely solvable in the ball of radius 𝑀 in the
space 𝑉 . They satisfy the inequalities

‖𝑢𝜖(𝑥)‖𝐶(𝐼) 6 𝑀, ‖𝑢0(𝑥)‖𝐶(𝐼) 6 𝑀. (19)

Proof. We fix 𝑓 so that ‖𝑓‖𝐿2(𝐼) 6 𝛾1𝑀/2. In the space 𝑉 we consider the ball

𝐵𝑀 := {𝑣 : ‖𝑣‖𝑉 6 𝑀},
where 𝑀 is the constant in smallness condition (4).

We define operator 𝐷 : 𝐵𝑀 → 𝑉 ′ acting as follows:

𝐷𝑤(𝑣) =

∫︁
𝐼

(𝑓 − d

d𝑥
𝑝(𝑥,𝑤) − 𝑞1(𝑥,𝑤))𝑣d𝑥

=

∫︁
𝐼

(𝑓𝑣 + 𝑝(𝑥,𝑤)𝑣′ − 𝑞1(𝑥,𝑤)𝑣)d𝑥− 𝑝(𝑏, 𝑤(𝑏))𝑣(𝑏) + 𝑝(𝑎, 𝑤(𝑎))𝑣(𝑎).

It follows from (10) that

‖𝐷𝑤‖𝑉 ′ 6 ‖𝑓‖𝐿2(𝐼) + ‖𝑝(𝑥,𝑤)‖𝐿2(𝐼) + ‖𝑞1(𝑥,𝑤)‖𝐿2(𝐼) + |𝑝(𝑎, 𝑤(𝑎))| + |𝑝(𝑏, 𝑤(𝑏))|. (20)

Let us estimate the terms in the right hand side. Since 𝑝 ∈ 𝐶1(Ω), and 𝑤 ∈ 𝐶(𝐼) and by (10),
‖𝑤(𝑥)‖𝐶(𝐼) 6 ‖𝑤(𝑥)‖𝑉 6 𝑀 , the Lagrange formula implies (𝑝(𝑥, 0) = 0):

‖𝑝(𝑥,𝑤)‖𝐿2(𝐼) = ‖𝑝𝑢(𝑥, 𝜃(𝑥)𝑤)𝑤‖𝐿2(𝐼) 6 𝐾𝑝(𝑀)𝑀.

In the same way,

‖𝑞1(𝑥,𝑤)‖𝐿2(𝐼) 6 𝐾𝑞1(𝑀)𝑀.

Then

|𝑝(𝑎, 𝑤(𝑎))| = |𝑝𝑢(𝑎, 𝜃(𝑎)𝑤(𝑎))𝑤(𝑎)| 6 𝐾𝑝(𝑀)𝑀.

Taking into consideration the choice of 𝑓 and condition (4), by (20) we obtain

‖𝐷𝑤‖𝑉 ′ 6
𝛾1𝑀

2
+ 3𝐾𝑝(𝑀)𝑀 + 𝐾𝑞1(𝑀)𝑀 6 𝛾1𝑀. (21)

We consider the operators 𝐴𝑟 : 𝐵𝑀 → 𝑉, 𝑟 = 0, 1, defined by the formula 𝑢 = 𝐴𝑟𝑤 = 𝑆𝑤,𝑟𝐷𝑤.
Then it follows from (16) that ‖𝑢‖𝑉 6 𝛾−1

1 ‖𝐷𝑤‖𝑉 ′ 6 𝑀 , that is, 𝐴𝑟 : 𝐵𝑀 → 𝐵𝑀 . It is obvious
that

(𝑢, 𝑣)𝑤,𝑟 = 𝐷𝑤(𝑣), 𝑣 ∈ 𝑉. (22)

In terms of these notations, boundary value problems (7), (8) become 𝑢𝜀 = 𝐴1𝑢𝜀, 𝑢0 = 𝐴0𝑢0,
respectively. Therefore, to prove the theorem, it is sufficient to show that the operator 𝐴𝑟 is
contracting in 𝐵𝑀 .

Let 𝑢1 = 𝐴𝑟𝑣1, 𝑢2 = 𝐴𝑟𝑣2. We write down relation (22) for 𝑢1, 𝑢2 and deduct the latter from
the former:

(𝑢1, 𝑣)𝑣1,𝑟 − (𝑢2, 𝑣)𝑣2,𝑟 = 𝐷𝑣1(𝑣) −𝐷𝑣2(𝑣).

For the sake of definiteness, the further proof is made in the case 𝐼 = (𝑎,∞), 𝐻𝑎 = 1. We
consider the expanded writing for this identity:∫︁

𝐼

(︀
𝑣′(𝑘(𝑥, 𝑣1)𝑢

′
1 − 𝑘(𝑥, 𝑣2)𝑢

′
2) + (𝑞2(𝑥) + 𝑟𝜀−1𝑄(𝑥/𝜀))(𝑢1 − 𝑢2)𝑣

)︀
d𝑥

+ (1 − 𝑟) ⟨𝑄⟩ (𝑢1(0) − 𝑢2(0))𝑣(0) + ℎ𝑎(𝑢1(𝑎) − 𝑢2(𝑎))𝑣(𝑎)

=

∫︁
𝐼

𝑣((
d

d𝑥
𝑝(𝑥, 𝑣2) + 𝑞1(𝑥, 𝑣2)) − (

d

d𝑥
𝑝(𝑥, 𝑣1) + 𝑞1(𝑥, 𝑣1)))d𝑥.
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We substitute 𝑣 = 𝑢1 − 𝑢2 into this identity and integrate by parts:∫︁
𝐼

[𝑣′ (𝑣′𝑘(𝑥, 𝑣1) + (𝑘(𝑥, 𝑣1) − 𝑘(𝑥, 𝑣2))𝑢
′
2) + (𝑞2(𝑥) + 𝑟𝜀−1𝑄(𝑥/𝜀))𝑣2]d𝑥

+ (1 − 𝑟) ⟨𝑄⟩ 𝑣2(0) + ℎ𝑎𝑣
2(𝑎)

=

∫︁
𝐼

(𝑣(𝑞1(𝑥, 𝑣2) − 𝑞1(𝑥, 𝑣1)) + (𝑝(𝑥, 𝑣1) − 𝑝(𝑥, 𝑣2)) 𝑣
′)d𝑥

+ (𝑝(𝑎, 𝑣1(𝑎)) − 𝑝(𝑥, 𝑣2(𝑎))) 𝑣(𝑎).

Taking into consideration (12), we arrive at the inequality

𝛾1‖𝑣‖2𝑉 6𝐾𝑝(2𝑀)

∫︁
𝐼

|𝑣′| · |𝑣1 − 𝑣2|d𝑥 + 𝐾𝑝(2𝑀)|𝑣(𝑎)| · |𝑣1(𝑎) − 𝑣2(𝑎)|

+ 𝐾𝑞1(2𝑀)

∫︁
𝐼

|𝑣| · |𝑣1 − 𝑣2|d𝑥 + sup
𝑥∈[𝑎,∞)

|𝑘(𝑥, 𝑣1) − 𝑘(𝑥, 𝑣2)| ‖𝑢2‖𝑉 ‖𝑣‖𝑉 ,

Since

|𝑘(𝑥, 𝑣1) − 𝑘(𝑥, 𝑣2)| 6 |𝑘′
𝑢(𝑣1 − 𝑣2)| 6 𝐾𝑘(2𝑀)‖𝑣1 − 𝑣2‖𝑉 ,

we arrive at the inequality

𝛾1‖𝑣‖𝑉 6 (2𝐾𝑝(2𝑀) + 𝐾𝑘(2𝑀)𝑀 + 𝐾𝑞1(2𝑀))‖𝑣1 − 𝑣2‖𝑉 .

This implies that under condition (4), the operator 𝐴𝑟 is contracting and therefore, boundary
value problems (7), (8) are uniquely solvable in the ball 𝐵𝑀 .

Lemma 5. The solution to problem (7) belongs to 𝐶1(𝐼). The solution to boundary value
problem (8), (9) belongs to 𝐶(𝐼) ∩ 𝐶1(𝐼 ∖ {0}).

Proof. In order to prove the second statement, we introduce the notation 𝐼− = (𝑎, 0) and we
write equation (18) as 𝑟 = 0 for the function 𝑣 ∈ 𝐶∞

0 (𝐼−):∫︁
𝐼−

(𝑘(𝑥, 𝑢0)𝑢
′
0𝑣

′ + 𝑞2(𝑥)𝑢0𝑣) d𝑥 =

∫︁
𝐼−

𝑣𝐹 (𝑢0)d𝑥,

where

𝐹 (𝑢) = 𝑓 − d

d𝑥
𝑝(𝑥, 𝑢) − 𝑞1(𝑥, 𝑢), 𝐹 (𝑢0) ∈ 𝐿2(𝐼−).

This means that the function 𝑧 = 𝑘(𝑥, 𝑢0)𝑢
′
0 has the distributional derivative

𝑧′ = 𝑞2(𝑥)𝑢0 − 𝐹 (𝑢0) ∈ 𝐿2(𝐼−),

that is, the function 𝑧 is absolutely continuous on 𝐼− and equation (8) holds almost everywhere,
𝑢0 ∈ 𝐶1(𝐼−).

Let us estimate the norms of the functions 𝐹 (𝑢0) = 𝐷𝑢0, 𝐹 (𝑢𝜀). We employ inequality (21):

‖𝐹 (𝑢0)‖𝐿2(𝐼) 6 𝛾1𝑀, ‖𝐹 (𝑢𝜀)‖𝐿2(𝐼) 6 𝛾1𝑀.

This implies the estimate

‖𝑧‖𝐶(𝐼−) 6 ‖𝑧‖𝑊 1
2 (𝐼−) 6 𝑘(𝑀)𝑀 + 𝑞2𝑀 + 𝛾1𝑀.

This is why

‖𝑢′
0‖𝐶(𝐼−) 6 𝑘−1

0 ‖𝑧‖𝐶(𝐼−) 6 𝑘−1
0 (𝑘(𝑀) + 𝑞2 + 𝛾1)𝑀 = 𝑐(𝑀). (23)

In the same we establish the inequality ‖𝑢′
0‖𝐶(0,𝑏) 6 𝑐(𝑀).
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We write equation (17) as 𝑟 = 1 for the function 𝑣 ∈ 𝐶∞
0 (𝐼):∫︁

𝐼

(︁
𝑘(𝑥, 𝑢𝜀)(𝑢𝜀)′𝑣′ +

(︁
𝑞2(𝑥) + 𝜀−1𝑄(

𝑥

𝜀
)
)︁
𝑢𝜀𝑣

)︁
d𝑥 =

∫︁
𝐼

𝑣𝐹 (𝑢𝜀)d𝑥.

This means that the function 𝑧 = 𝑘(𝑥, 𝑢𝜀)(𝑢𝜀)′ has the distributional derivative

𝑧′ = 𝑞2(𝑥)𝑢𝜀 + 𝜀−1𝑄(𝑥/𝜀)𝑢𝜀 − 𝐹 (𝑢𝜀) ∈ 𝐿2(𝐼),

that is, the function 𝑧 is absolutely continuous on 𝐼 and equation (7) is satisfied almost ev-
erywhere. The function (𝑢𝜀)′ = 𝑧/𝑘(𝑥, 𝑢𝜀) is also absolutely continuous on 𝐼. As above, we
establish the estimate

‖𝑧‖𝐶(𝑎,−𝜀) 6 (𝑘(𝑀) + 𝑞2 + 𝛾1)𝑀,

and this yields that ‖(𝑢𝜀)′‖𝐶(𝑎,−𝜀) 6 𝑐(𝑀). In the same way, ‖(𝑢𝜀)′‖𝐶(𝜀,𝑏) 6 𝑐(𝑀).
Let us show that

‖(𝑢𝜀)′‖𝐶(𝐼𝜀) 6 𝑐(𝑀) + 3𝑘−1
0 𝑄𝑀 = 𝑐1(𝑀), ‖(𝑢𝜀)′‖𝐿2(𝐼𝜀) 6 𝑐1(𝑀)

√
2𝜀. (24)

This is implied by the inequality

‖𝜀−1𝑄(𝑥/𝜀)𝑢𝜀‖𝐿1(𝐼𝜀) 6 𝑄‖𝑢𝜀‖𝐶(𝐼𝜀)‖𝜀−1‖𝐿1(𝐼𝜀) 6 2𝑄𝑀.

Indeed,

‖𝑧′‖𝐿1(𝐼𝜀) 6
√

2𝜀(𝑞2 + 𝛾1)𝑀 + 2𝑄𝑀 < 3𝑄𝑀

for small 𝜀 and

𝑧(𝑥) = 𝑧(−𝜀) +

∫︁ 𝑥

−𝜀

𝑧′d𝑥.

This implies the inequalities

‖𝑧‖𝐶(𝐼𝜀) 6 (𝑘(𝑀) + 𝑞2 + 𝛾1)𝑀 + 3𝑄𝑀

and (24). The proof is complete.

3. Proof of Theorems 1, 2.

By (3) we obtain the identity 𝑐(𝑀) + 𝑐1(𝑀) = 𝐴, then by (23), (24) we have the inequalities
|𝑢′

0| 6 𝐴, |(𝑢𝜀)′| 6 𝐴 and |𝑣′| 6 𝐴.
We let 𝑣 = 𝑢𝜀 − 𝑢0. We deduct identity (18) with the test function ̃︀𝑣 instead of 𝑣 from (17):

(𝑢𝜀, ̃︀𝑣)𝑢𝜀,1 − (𝑢0, ̃︀𝑣)𝑢0,0 = 𝐷𝑢𝜀(̃︀𝑣) −𝐷𝑢0(̃︀𝑣).

We write the latter in the expanded form for the case 𝐼 = (𝑎, 𝑏):∫︁
𝐼

(︀̃︀𝑣′(𝑘(𝑥, 𝑢𝜀)(𝑢𝜀)′ − 𝑘(𝑥, 𝑢0)𝑢
′
0) + (𝑞2(𝑥)𝑣 + 𝜀−1𝑄(𝑥/𝜀)𝑢𝜀)̃︀𝑣)︀ d𝑥

− ⟨𝑄⟩𝑢0(0)̃︀𝑣(0) + ̃︀ℎ𝑎𝑣(𝑎)̃︀𝑣(𝑎) + ̃︀ℎ𝑏𝑣(𝑏)̃︀𝑣(𝑏)

=

∫︁
𝐼

̃︀𝑣((
d

d𝑥
𝑝(𝑥, 𝑢0) + 𝑞1(𝑥, 𝑢0)) − (

d

d𝑥
𝑝(𝑥, 𝑢𝜀) + 𝑞1(𝑥, 𝑢

𝜀)))d𝑥.

Integrating by the parts in the integral in the right hand side, we get∫︁
𝐼

[̃︀𝑣′ (𝑣′𝑘(𝑥, 𝑢𝜀) + (𝑘(𝑥, 𝑢𝜀) − 𝑘(𝑥, 𝑢0))𝑢
′
0) + (𝑞2(𝑥)𝑣 + 𝜀−1𝑄(𝑥/𝜀)𝑢𝜀)̃︀𝑣]d𝑥

=

∫︁
𝐼

((𝑞1(𝑥, 𝑢0) − 𝑞1(𝑥, 𝑢
𝜀))̃︀𝑣 + (𝑝(𝑥, 𝑢𝜀) − 𝑝(𝑥, 𝑢0))̃︀𝑣′)d𝑥 + ⟨𝑄⟩𝑢0(0)̃︀𝑣(0)+

+ (𝑝(𝑎, 𝑢𝜀(𝑎)) − 𝑝(𝑎, 𝑢0(𝑎))) ̃︀𝑣(𝑎) − ̃︀ℎ𝑎𝑣(𝑎)̃︀𝑣(𝑎) − (𝑝(𝑏, 𝑢𝜀(𝑏)) − 𝑝(𝑏, 𝑢0(𝑏))) ̃︀𝑣(𝑏) − ̃︀ℎ𝑏𝑣(𝑏)̃︀𝑣(𝑏).
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Let us make some estimates. In what follows, the test function ̃︀𝑣 will be chosen to satisfy
the inequality 𝑣(𝑥)̃︀𝑣(𝑥) > 0, 𝑥 ∈ 𝐼. Then

𝑃𝑎 = (𝑝(𝑎, 𝑢𝜀(𝑎)) − 𝑝(𝑎, 𝑢0(𝑎))) ̃︀𝑣(𝑎) − ̃︀ℎ𝑎𝑣(𝑎)̃︀𝑣(𝑎) = (𝑝𝑢(𝑎, 𝜈) − ̃︀ℎ𝑎)𝑣(𝑎)̃︀𝑣(𝑎),

𝜈 ∈ [𝑢0(𝑎), 𝑢𝜀(𝑎)]. Hence, by (5) we obtain the inequality 𝑃𝑎 6 0. In the same way,

− (𝑝(𝑏, 𝑢𝜀(𝑏)) − 𝑝(𝑏, 𝑢0(𝑏))) ̃︀𝑣(𝑏) − ̃︀ℎ𝑏𝑣(𝑏)̃︀𝑣(𝑏) 6 0.

Then, ∫︁
𝐼

|̃︀𝑣′ ((𝑘(𝑥, 𝑢𝜀) − 𝑘(𝑥, 𝑢0))𝑢
′
0) | 6 𝐾𝑘(2𝑀)𝐴

∫︁
𝐼

|̃︀𝑣′𝑣|d𝑥,
∫︁
𝐼

|(𝑝(𝑥, 𝑢𝜀) − 𝑝(𝑥, 𝑢0))̃︀𝑣′|d𝑥 6 𝐾𝑝(2𝑀)

∫︁
𝐼

|̃︀𝑣′𝑣|d𝑥,
∫︁
𝐼

|𝑞1(𝑥, 𝑢0) − 𝑞1(𝑥, 𝑢
𝜀)|̃︀𝑣d𝑥 6 𝐾𝑞1(2𝑀)

∫︁
𝐼

𝑣̃︀𝑣d𝑥.

Now by (25) we get the inequality∫︁
𝐼

[𝑘0̃︀𝑣′𝑣′ + ((𝑞0 −𝐾𝑞1(2𝑀))𝑣 + 𝜀−1𝑄(𝑥/𝜀)𝑢𝜀)̃︀𝑣]d𝑥

6 (𝐾𝑘(2𝑀)𝐴 + 𝐾𝑝(2𝑀))

∫︁
𝐼

|̃︀𝑣′𝑣|d𝑥 + ⟨𝑄⟩𝑢0(0)̃︀𝑣(0).

(25)

To prove Theorem 2, we let ̃︀𝑣 = 𝑣 in the above identity and employ the inequality (15). We
obtain ∫︁

𝐼

(𝑘0 − (𝐾𝑘(2𝑀)𝐴 + 𝐾𝑝(2𝑀))/2)𝑣′2d𝑥

+

∫︁
𝐼

((𝑞0 −𝐾𝑞1(2𝑀) − (𝐾𝑘(2𝑀)𝐴 + 𝐾𝑝(2𝑀))/2)𝑣2d𝑥

6− ⟨𝑄⟩𝑣2(0) + 2𝜀1/2𝑄(‖(𝑢𝜀)′‖𝐿2(𝐼𝜀)‖𝑣‖𝑉 + ‖𝑣′‖𝐿2(𝐼𝜀)‖𝑢𝜀‖𝑉 ).

(26)

By (2) and (11) we have the inequality

−⟨𝑄⟩𝑣2(0) 6
𝑚𝑘𝑞

4
‖𝑣‖𝑉 .

Employing (2), (19), by (26) we obtain

𝑚𝑘𝑞

4
‖𝑣‖𝑉 6 2𝜀1/2𝑄(‖𝐴‖𝐿2(𝐼𝜀) + ‖𝑀‖𝑉 )‖𝑣‖𝑉 .

This implies the statement of Theorem 2.
We proceed to proving Theorem 1. For the sake of definiteness, let 𝑢𝜀(0) > 𝑢0(0), 𝑣(0) > 0.
We let ̃︀𝑣 = max(0, 𝑣 − 𝑣(0) − 𝐴𝜀). It is obvious that

𝑣(𝑥) = 𝑣(0) +

∫︁ 𝑥

0

𝑣′d𝑥 6 𝑣(0) + 𝐴𝜀
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as 𝑥 ∈ (−𝜀, 𝜀). This is why ̃︀𝑣(𝑥) = 0 as 𝑥 ∈ (−𝜀, 𝜀). We redefine ̃︀𝑣(𝑥) = 0 as 𝑥 > 0. By (25) we
get the inequality ∫︁

𝐼−

[𝑘0̃︀𝑣′𝑣′ + (𝑞0 −𝐾𝑞1(2𝑀))𝑣̃︀𝑣]d𝑥

6 (𝐾𝑘(2𝑀)𝐴 + 𝐾𝑝(2𝑀))

∫︁
𝐼−

|̃︀𝑣′𝑣|d𝑥. (27)

It is obvious that∫︁
𝐼−

|̃︀𝑣′𝑣| 6 ∫︁
𝑣>𝑣(0)+𝐴𝜀

((𝑣′)2/2 + 𝑣2/2)d𝑥 6
∫︁

𝑣>𝑣(0)+𝐴𝜀

(̃︀𝑣′𝑣′/2 + ̃︀𝑣2 + (𝑣(0) + 𝐴𝜀)2)d𝑥.

Now by (27) we get the inequality(︂
𝑘0 −

𝐾𝑘(2𝑀)𝐴 + 𝐾𝑝(2𝑀)

2

)︂ ∫︁
𝑣>𝑣(0)+𝐴𝜀

(𝑣′)2d𝑥

+ (𝑞0 −𝐾𝑘(2𝑀)𝐴−𝐾𝑝(2𝑀) −𝐾𝑞1(2𝑀))

∫︁
𝐼−

̃︀𝑣2d𝑥
6

(︂
𝐾𝑘(2𝑀)𝐴 + 𝐾𝑝(2𝑀) +

𝐾𝑞1(2𝑀)

2

)︂∫︁
𝐼−

(𝑣(0) + 𝐴𝜀)2d𝑥.

Since

𝑚𝑘𝑞 > 2𝐾𝑘(2𝑀)𝐴 + 2𝐾𝑞1(2𝑀) + 2𝐾𝑝(2𝑀),

this implies the inequality
𝑚𝑘𝑞

2
‖̃︀𝑣‖2𝐶(𝐼−) 6

𝑚𝑘𝑞

2
‖̃︀𝑣‖2𝑊 1

2 (𝐼−) 6 𝐶(𝑣(0) + 𝐴𝜀)2.

This is why

𝑣(𝑥) 6 𝐶|𝑣(0) + 𝐴𝜀|, 𝑥 ∈ 𝐼−.

In the same way, letting ̃︀𝑣 = max(0,−𝑣 −𝐴𝜀), we establish the same inequality for −𝑣(𝑥) and
then

|𝑣(𝑥)| 6 𝐶|𝑣(0) + 𝐴𝜀|, 𝑥 ∈ 𝐼−. (28)

Of course, these inequalities are also true on the segment [0, 𝑏].
If 0 6 𝑣(0) 6 2𝐴𝜀, the latter inequality implies the estimate |𝑣(𝑥)| < 𝐶𝜀. This is why

hereafter we assume that 𝑣(0) > 2𝐴𝜀.
In order to estimate 𝑣(0), we let ̃︀𝑣 = min(1,max(0, 𝜃𝑣)), 𝜃 = (𝑣(0) − 𝐴𝜀)−1. We note that

𝑣(𝑥) = 𝑣(0) +

∫︁ 𝑥

0

𝑣′d𝑥 > 𝑣(0) − 𝐴𝜀

as 𝑥 ∈ (−𝜀, 𝜀). This is why ̃︀𝑣(𝑥) = 1 as 𝑥 ∈ (−𝜀, 𝜀). It is obvious that ̃︀𝑣′ = 𝜃𝑣′ as 0 < 𝑣 <
𝑣(0) − 𝐴𝜀.

Let us establish an important inequality:∫︁
𝐼

𝜀−1𝑄(𝑥/𝜀)𝑢𝜀̃︀𝑣d𝑥 ⟨𝑄⟩𝑢0(0)̃︀𝑣(0) =

∫︁
𝐼𝜀

𝜀−1𝑄(𝑥/𝜀)(𝑢𝜀 − 𝑢0(0))d𝑥

=

∫︁
𝐼𝜀

𝜀−1𝑄(𝑥/𝜀)(𝑢𝜀 − 𝑢𝜀(0) + 𝑣(0))d𝑥 > 𝑣(0) ⟨𝑄⟩ − 2𝜀𝐴𝑄.
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Hence, by (25) we obtain∫︁
𝐼

[𝑘0̃︀𝑣′𝑣′ + (𝑞0 −𝐾𝑞1(2𝑀))𝑣̃︀𝑣]d𝑥

6 (𝐾𝑘(2𝑀)𝐴 + 𝐾𝑝(2𝑀))

∫︁
𝐼

|̃︀𝑣′𝑣|d𝑥− 𝑣(0) ⟨𝑄⟩ + 2𝜀𝐴𝑄.

(29)

As above, we establish the estimate∫︁
𝐼

|̃︀𝑣′𝑣|d𝑥 6
∫︁

0<𝑣<𝑣(0)−𝐴𝜀

𝜃((𝑣′)2/2 + 𝑣2/2)d𝑥.

Now by (29) we obtain(︂
𝑘0 −

𝐾𝑘(2𝑀)𝐴

2
− 𝐾𝑝(2𝑀)

2

)︂ ∫︁
0<𝑣<𝑣(0)−𝐴𝜀

(̃︀𝑣′)2/𝜃d𝑥

+

(︂
𝑞0 −

𝐾𝑘(2𝑀)𝐴

2
−𝐾𝑞1(2𝑀) − 𝐾𝑝(2𝑀)

2

)︂∫︁
𝐼

(̃︀𝑣)2/𝜃d𝑥

6− 𝑣(0) ⟨𝑄⟩ + 2𝜀𝐴𝑄.

Therefore,
𝑚𝑘𝑞

2𝜃
‖̃︀𝑣‖2𝐶(𝐼) 6

𝑚𝑘𝑞

2𝜃
‖̃︀𝑣‖2𝑊 1

2 (𝐼−) 6 −𝑣(0) ⟨𝑄⟩ + 2𝜀𝐴𝑄.

Thus, by (2),

𝑚𝑘𝑞(𝑣(0) − 𝐴𝜀)

2
=

𝑚𝑘𝑞

2𝜃
‖̃︀𝑣‖2𝐶(𝐼) 6 𝑣(0)(

𝑚𝑘𝑞

4
+ 𝐾𝑝(2𝑀)) + 2𝜀𝐴𝑄,

which implies inequality 𝑣(0) < 𝐶𝜀. Combining this with (28), we find that |𝑣(𝑥)| < 𝐶𝜀.
In the case 𝑢𝜀(0) < 𝑢0(0), one should let 𝑣 = −𝑢𝜀 + 𝑢0 and reproduce the above arguing.

The proof is complete.
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