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SOME FUNCTIONAL EQUATIONS IN SCHWARTZ SPACE
AND THEIR APPLICATIONS

S. BAIZAEV, M.A. RAKHIMOVA

Abstract. In the paper we consider functional equations of form
(B+ 72 F)u(z) =0,

where B is a constant complex n X n matrix, E is the unit n X n matrix, z is a complex
variable, r = |z|, u(z) is the sought generalized vector function. For this equation, we study
the existence of non-trivial solutions and the manifold of all solutions in the functional space
D’ = D'(C, C") of generalized vector function and in the space S’ = S’(C, C") of tempered
distributions. We also study the existence of solutions growing at most polynomially at
infinity.

Such study is motivated by the problem on finding the solutions in S’ for elliptic systems
of first order elliptic equations. Here an important role is played by the statement on
the structure of distributions supported in a circumference. This statement provides an
explicit representation of distributions supported in a circumference and this representation
consists of a linear combinations of Cartesian product of periodic distributions and §-
function and its derivatives. The process of finding all solutions to this equation in the
space D’ consists of three stages. At the first stage, by reducing the matrix to the normal
Jordan form, we split this equation into one-dimensional equations. At the second stage
we prove that if the matrix B has non negative and zero eigenvalues, that is, o(B) N
(—00,0] = @, where o(B) is the spectrum of the matrix B, then in the space D’, this
equation has only the trivial solution. At the third stage, in the case o(B) N (—o0,0] #
@, we find all solutions to this equation in the space D’. Subject to the eigenvalues of
the matrix B, the set of all solutions to this equation in the space D’ is either zero or
depends on finitely many arbitrary 2m-periodic distributions of one variable and finitely
many arbitrary constants. The number of these functions and constants depend on the
order of the solution; the order is prescribed. As an application, we find solutions in
the space S’, in particular, polynomially growing solutions to elliptic systems of partial
differential equations and to overdetermined systems. The results obtained in the work can
be employed in studying the problems on solutions defined on the entire complex plane
or a half-plane and in studying more general linear multi-dimensional elliptic systems and
overdetermined systems of partial differential equations.
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1. INTRODUCTION

In the work we consider functional equations of form
(B+7r*E)u(z) =0 (1.1)

in the Schwarz space D'(C,C") [1], [2]. Here C is the complex plane, C" is the n-dimensional
complex space, B is a constant nx matrix, E is the unit n X n matrix, z = = + iy, r = |z|,
u(z) is the unknown generalized vector function. In the work we obtain the manifold of all
solutions in the space D'(C,C") and the demonstrate the applications of the results to finding
the polynomially growing solutions to elliptic systems of form

wr;+Aw =0, weC" (1.2)
and to the overdetermined systems of form
uz;, = Aju, uwelC", j=1,2

While studying equation in the space S'(C, C") of vector tempered distributions, one
can employ the generalized spherical representation for distributions obtained in works [3], [4].
Many publications are devoted to solving systems of form as well as to more general elliptic,
hyperbolic and overdetermined systems of partial differential equations, see, for instance, [5]-[9].

2. STRUCTURE OF GENERALIZED FUNCTIONS SUPPORTED ON CIRCUMFERENCE

We shall make use of the following spaces (see [2]): C™(G), C>*(G), D(G), D'(G), where
G is a domain in C or an interval in R = (—o00,400). As G = C, we denote C>* = C>(G),
D = D(C), D' = D'(C). By D, we denote the space of infinitely differentiable 2m-periodic
functions of one real variable, while DJ_ stands for the space of 2w-periodic distributions. The
value of a distribution f on a test function ¢ is denoted by (f, ).

Similar to the distributions with a point support, the distributions supported in a circumfer-
ence can be explicitly described [6]. We note that in [6], there was provided a theorem on the
structure of distributions supported in a circumference, but this theorem was not proved. In
that work, the problem on solutions to equation in the space S'(C, C™) was also considered.

Given r > 0 and ¢ € D, we let ¢(r,0) = p(re?). For each value 6, the function 1) belongs to
the space C*°(0, +0o0), while for each r > 0, it belongs to the space Ds,. This is why for each
distribution ¢(f) in D)_ and o > 0 we can define the direct product c(6) x 69 (r — ry):

8j¢(7°0, 0)

(0(6) 89 = o), ¥(r,0)) = (c(0), — 522,

The following theorem holds.

(2.1)

Theorem 2.1. If a distribution f € D' is supported in a circumference I' = {z : |z]| = ro},
it 18 uniquely represented as

N

<f7 90> = Z<Cj<0) X 5(j)<r - To)7¢(T7 0)>7 2 € D7 (22)

5=0
where N is the order of f and c;(0) are some 2m-periodic distributions.
Proof. Let 0 < e <min{l,7} and 7.(t) € C*(—1,1) be a function such that
ne(t) =1 as |t|<e/3; n.(t)=0 as [|t|>¢e |n®P@) <M, |t|<e (2.3)

If r = |z|, the function n.(r — r¢) belongs to C'*°, is equal to 1 in the vicinity of the circum-
ference I' and

supp Ne(r —ro) CGe ={z:19—e < |z| <rg+¢€}.
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This is why f =n.(r —ro)f and n.(r — o) = n-(r — ro)(r,0) for ¢ € D. Therefore, for each
¢ € D we have
(f0) =(e(r —ro) f,0) = (fine(r — o)) = (fime(r — 1))

—(f,n-(r —10) (¢ — ¥n)) + (f.n(r — o)), (2.4)

where
N . .
B >Y(re,0) (r—ro)?
vwin) = ; ori U

Let us show that the first term in the right hand side of identity (2.4]) tends to zero as ¢ — 0.
Since n.(r — o) (v — ¥n) € D(G.), we obtain (see [2])

[(fsme(r —ro) (¥ — )| <cllne(r —ro) (¥ — ¥n)llov @,

gt (2.5)
W[UE(T —70) (¥ — ¥n)]|,

=c max
(r,0)eGe

where ¢ is a constant. Let us estimate the expression in the right hand side in (2.5). We have

OFt d"ne(r —mo) 0 (Y — )
W[ﬁe(r —70)(Y —¥N)] = Z o = 57007 L

|| <k-+
where |v| = vy + 12 + v3. By (22.3)), the inequality

(= 10)] < Myye™ as |r—mof <e

holds. Hence, by the identity

0" (i — ) 0% [Y(ro,0)] JG -1 ... (-2t 1) (r — o)
orv200vs n 0gvs orJ ]' 0 )
j>N |
for |r — ro| < e we have
ak—H N B
5y iggi Me(r = T0) (¥ = ¥n)]|< e o et (2.6)

v1+vo<k+l
For k + 1 < N and sufficiently small €, the right hand side of inequality (2.6) can be estimated
as follows:

Chi E eVl < max eeN ! 5 g (ntre)

v1+va<k+ FHISN v+ <N
-N N+1
:C15N+111__i1 = 015 5 _I : < e
Therefore,
[(f,me(r —10) (¥ — ¥n))| < cse
and

(fime(r—mro)(¥ —¢n)) -0 as e —0.

The second term in the right hand side of identity (2.4) is independent of € and is equal to
< F,¢n >, where F' is the continuation of f on C*°.
Passing in (2.4) to the limit as € — 0, we obtain

<fa‘;0> = <f>¢N> _ Z(F, 8j¢(?(:?,9) ) (T—ro)j

|
i=0 I

). (2.7)
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We define 27-periodic distributions ¢;(6) by letting

(e ) = (—1){F, “‘].—{"“Vuw».

for 11(0) € Dor. Then identity (2.7)) can be rewritten as

) = 31y (o, 2200,

§=0
But 5 .
PO _ 1y a9 (e — o), o, 0),
and hence, employing , we get
N N
(fr0) =D {ei(0), (69 (r = m0),90(r,0))) = D _(¢;(8) x 6V (r — o), 95(r,0)), ¢ € D.
j=0 Jj=0

This implies representation (12.2]).
Let us prove the uniqueness of representation ([2.2)). Assume that apart of (2.2)), we are given
an another representation

N
F= di(0) x5V (r —rg),
j=0

where () are 2m-periodic distributions. Then we have

N

> le;(0) = ¢(0)] x 69 (r — rg) = 0.

=0
Hence, for ¢ = n.(r — 70)(r — 70)¥1(0), where v is an arbitrary function in Dy, we get
N

D ((es(0) = € (6)). 09 = ra).0)) = 0
S 1ei(6) = O] (<1 5 = 7)o (0)) = 0.
Then "

((er — i), (=1)"kl(0)) = 0.
This is why ¢x = ¢, k = 0,..., N. This proves the uniqueness of representation (2.2)). The
proof is complete. O

Remark. While proving Theorem we have employed the definition of a periodic distri-
bution given in [I0]. We note this definition is equivalent to the definition in [2].

3. SOLUTIONS OF FUNCTIONAL EQUATIONS

In this section we consider the problem on finding all solutions to the equation
(B+7r*E)u(z) =0 (3.1)

in the space D'(C,C"). Here B is a constant complex n X n matrix, £ is the unit n x n matrix,
r = |z|, u(z) is an unknown vector function.
If V is a non-degenerate n X n matrix, equation (3.1]) is equivalent to

(VBV '+ 1r*E)u(z) =0 (3.2)
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in the following sense: if u € D'(C,C"™) solves equation , then the function v = Vu solves
equation (3.2)). And vice versa, if v € D’(C,C™) solves equation , then v = Vv solves
equation (13.1)).

We choose the matrix V' so that to transform the matrix B to the normal Jordan form:

VBV_I = dlag[Jl(/\l), JQ()\Q), ey Js()\s)]a (S < n),

where
M O 0 ... 0
1 A 0O ... 0
B =TT
0O 0 ... 1 X\
are Jordan blocks of order my, A\, are the eigenvalues of the matrix B, k =1,...,s, my > 1,

my +mg+ ... +my =n. Let v = (vy,...,v,)". Then equation (3.2)) splits into the following
equations:
(N1 4+ 1)1 = 0, k=0,...,5s—1, (3.3)
v+ (Ak-i-l + T2)Uj+1 =0, l(k) <Jj< l(k + 1)7
where [(k) = my + ma + ... + my, 1(0) = 0.

Let us show that if the matrix B has no negative and zero eigenvalues, then equation ((3.1)
has only the trivial solution in D’(C,C"). Indeed, let u € D'(C,C") be a solution to equation
(3.1). Then for an arbitrary ¢ € D, by equations (3.3]) and (3.4) we obtain

<U1+l(k)7 (AkJrl + 7’2)90> = 07 k= 07 cey S — 17 (35)
(0, ) + (1, Mg + 1)) =0, 1(k) <j <I(k+1). (3.6)
Since iknf [Argp1 + 7% > 0, letting o = (A\p1 +72) 71, (¢ € D) in |) for an arbitrary ¢ € D,
we get ’
<U1+l(k)7 77/J> = O’ ¢ € Dv
that is, vy =0, k=0,...,s— 1. This is why it follows from (3.6] that
(Va1 k1 +77)0) =0, @ e D.

In same way as above, vy = 0. Continuing this procedure, one can show that v; = 0 for
each j. Thus, v = 0 and therefore, v = V~1v = 0.

In view of this, we assume that the matrix B can have eigenvalues in the semi-axis (—oo, 0].
To be definite, we assume that A\j,..., A, € (—00,0] and Apt1,..., A\, & (—00,0], (1 <p<n).
Let us show that the support of the solution u € D’(C,C"™) to equation is contained in
the set

p
D= (e 12l = Iy,
j=1

Indeed, let o € D and suppp (T = 0. We let

Aer1 +12)Lo(z as |z /\-1/2,
B L

0 as |z| = |12
Then ¢ € D and by (3.5))

(V1) @) = (V1) Mg + 7)) =0, k=0,...,p—1,

that is, suppvipx) C I'. In the same way, employing relations , we can establish that
suppv; C I',j < I(p). As it was shown above, other v; vanish, that is, v; = 0 as j > l(p).
Therefore, supp u = supp v C I'. Thus, the support of the solution to equation is contained
in the set I', which is the union of concentric circumferences and the point z = 0 (of course, if
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some \; = 0). This is why, in order to find solutions to equation (3.1f), we shall make use the
representation for distributions supported in a circumference and at a point.

We proceed to solving equation (3.1)) in the space D'(C,C"). In order to do this, we solve
equivalent system of equations , (3.4). Reproducing the proofs of the inclusions supp v; C
I, j < Il(p), we obtain more precise inclusions:

suppv; C Ty, j<I(k+1), Tp={z:|z| = |Ma|V?}, k=0,p— L

In order to employ the representation of the functions v;, j < I(p), we need to know which I'y
are circumferences and which are points. Assume that Aq, ..., \; are negative and Ag41,..., A,
are zero (1 < ¢ <p). Then I'y,..., ', are circumferences and I';1 1, ..., ', are the point z = 0.
Therefore, the functions v; can be represented as

N
> ci(0) xé(”)(r—rk) as (k) <j<lk+1), k=0,q—1,
v=0

) 8+ 5(z .
;Naﬁig—azaa;g’ as 1(q) <j <lp),
a+pB<

(3.7)

V; =

where ¢,; € Djy_, r, = ])\k+1|1/ 2 agg are constants; for the sake of simplicity, we assume that
the orders of the distributions v; are N.

Let n(t) be a function in C'*° such that n(t) = 1 in the vicinity of the point ¢t = r and n(t) = 0
as 0 <t < py and as t > po, where 0 < p; < po. Then the function ps = (r — r4)*n(r)h(6),
where r = |z|, § = arg z, h € Dy, s is a non-negative integer, belongs to D. This is why

) 2 0" s 9",
(0"(r —re), (Mgy1 +7°)s) = 2ury o +v(v—1) 52 ,(0<k<qg—1). (3.8)
This and (B3), () for j = 1+ 1(k), ¢ = i, imply
N
au—lgos 8V_2§03
> eus0), 20m— = + vy — 1)) = 0. (3.9)
v=0
Since
0" s ) h(0) as v =s,
arv 0 as v #s,
r=rg

thenbyass:N—lweget

(en;(0),2N1ph(6)) = 0,h € Doy,
that is, cn;(f) = 0. Letting s = N — 2 in (3.9)), we obtain

(en-1(0),2(N — 1)rh(0)) =0, h € Doy,

that is, cx—1,;(€) = 0. Continuing this process, we find:

CN—2j =CN-3; =...=cC1; =0.
The left hand side in (3.9) does not involve cy;(#) and it remains arbitrary. Thus, v; for
j=1+4+1(k),0 <k < q—1, are determined by the formula

v; = coj(0) x 0(r —ry), (3.10)

where ¢g;(#) are arbitrary 27-periodic distributions.

Letting j = 1+ 1(k), 0 < k< qg—1, ¢ = ps in (3.6, in view of relations (3.7, (3.8) and
(3.10) we obtain

N
0" Loy(ry, 0) 0" Loy (ry, 0)
(cj(0) x 8(r —ry), @s(r,0)) + Z <C,,7j+1(9), 2V’r‘ka +v(v— 1)le> =0.

v=0
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Substituting s = N — 1,...,2,1 into this identity, we get
CNj+1 = CN-1j41 = --- = 2541 = 0, (coj, h(0)) + {1541, 2reh(0)) = 0,
that is, ¢ 11(0) = —co;(0)/2r,. We observe that ¢ ;4+1(6) remain arbitrary. This is why as
j = 2l(k),
v; = coj(0) X O(r —ry) — %mco’j_l(@ x 8 (r—ry).

Continuing this procedure, we find

j—1-U(k)

v; = coj(0) x d(r — i) + Z A, (0 )(r — k), (3.11)
a=1

where [(k) < j <U(k+1),0< k< q—1, ¢;(0) are arbitrary distributions in D5, A,;(0) are
expressed linearly via co(0), [(k) <t < j. Thus, we have determined v; involved in the left
hand sides of , (3.6) with the subscript j: I(k) < j <I(k+1),0 <k < g— 1. These v, are
given by formula (3.11]).

Now let us define v; with the subscript j: I(k) < j <IU(k+1), ¢ <k < p—1. By (3.5) we
have

(vj,7%0) =0, j=1+1k), ¢<k<p-—1, @peD. (3.12)

This implies that either v; = 0 or v; supported at the point z = 0. This is why the theorem
on the structure of distributions with a point support we have

9th§
Vi = Z Co gy agzh (3.13)
a+pB<N

where ¢, are constants, IV is the order of the distribution v;. This is why identity (3.5)) becomes

6‘”56
Y o aaaﬂ’ Zo) =0, peD. (3.14)
ot BN 2207
Letting here
p =n(2)2"7, (3.15)

where v > 0, ¢t >0, n € D, and n(z) = 1 in the vicinity of zero, we obtain
(l/ —+ 1)‘(t + 1)!Cl,+17t+1 = O,

that is, c,3 = 0 as af # 0. We open the brackets in the left hand side in identity (3.14) and
we see that the terms with the coefficients c,0, cos vanish. This is why the coefficients ¢,z at
af = 0 remain arbitrary. Therefore,

o5 oy
Uj:Z<CVj@+cuj@>v ]:1+l(k)7 qgkgp—la (316)
v=0

where ¢, ¢,,; are arbitrary constants.

Asqg<k<p—1,j=1+1(k), by (3.6) we get
(Vi @) + (Vjt1,77%0) =0, ¢ € D.

By this we conclude that the support of v;;; consists of the point z = 0. This is why, repre-
senting the distribution v;1; as (3.13]) with coefficients d,s (o + 8 < N) and choosing function

(13.15) as ¢, by (3.16)) we obtain that dno, dos are arbitrary and
Oé!Caj + B!Clﬁj + (Oé + 1)'(ﬁ + 1)!da+1,ﬁ+1 =0.
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Then
N
9’5, 976 1 , 19
0= (g ) ~ 3 a0 Vet B gz =140,
a+B<N

where ¢, 11, ¢, ;1 are arbitrary constants. In the same way we find other v; with the subscript
Jil(k) <j<lk+1),¢<k<p-1:

s, 9% )
b= (eogm + i)+ 2 Bl

v=0 a,8>1
a+pB<N

where ¢,;, ¢,; are arbitrary constants, ng are expressed linearly in ¢, c,,, t < j, and ng =0
as j =1+ 1(k).
It remains to determine v; for j > I(p). Let us show that all such v; vanish. By with
k = p we obtain
<U1+l(p), ()‘p+1 + TQ)Q0> = 0, (2 € D. (317)
Since inf [A,+1 4+ 7% > 0 (we recall that \,41 € (—00,0]), given an arbitrary ¢ € D, we let
0= (Mpr1 +72) M, p € D, in (3.17) and we get
(Vipe), ) =0 VY eD,

that is, v14p) = 0. It follows from ([3.6) that
<U2+l(p)7 (AP-FQ + 7"2)QO> = O VSO € ‘DJ

and as above, we obtain vy, = 0. Continuing this procedure, we can show that v; = 0 as
j>1p).

Thus, we have determined all components v; of the distribution v, that is, we have described
the set of all solutions to equation (3.2)) in the space D’(C; C™). Then the set of all solutions to
equation (3.1)) in D’(C; C") is given by the formula u = V~'v. We observe that subject to the
eigenvalues of the matrix B, the set of all solutions to equation in the space D'(C;C"™)
is either zero or consists of finitely many arbitrary 27-periodic distributions and finitely many
arbitrary constants, and the number of these functions and constants depend on the order of
the solution. We can prescribe the order of the solution.

4. APPLICATIONS TO SYSTEMS OF PARTIAL DIFFERENTIAL EQUATIONS

Problems on solving multi-dimensional elliptic systems
wr;+Aw =0, weC" (4.1)
and overdetermined systems of form
us, = Ajt, uwed, j=1,2 (4.2)
in the space S’(C, C") are reduced to a particular case of equation .
4.1. Elliptic systems. We consider elliptic system in the space S’(C,C") and make

the Fourier transform: N
iCw(C) 4+ 2Aw(¢) = 0. (4.3)
Replacing ¢ by —( and passing to the complex-conjugate quantities, in view of the identity
w(—¢) = w(¢) we obtain one more equation
245(¢) +i¢ W(¢) = 0. (4.4)
We exclude 5(@“ ) from equations (4.3) and (4.4) and we get the following equation:
(4AA+[CPE)@(C) =0, (4.5)
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which is a particular case of equation . As it was shown in Section 2, if the spectrum o(AA)
of the matrix AA does not intersect the semi-axis (—oo, 0], then equation has only the
trivial solution in the space S’(C, C") and hence, system has also only the trivial solution
in S'(C,C"). If 0(AA) N (—00,0] # @, then similar to equation , we can find solution to
equation ([4.5)) in S’(C,C") and to determine the solutions to systems (4.1]).

We note (see [0]), that if for system (4.1]) we consider the problem on solutions w(z) growing
at most as the power function 2V, N € {0,1,...}, then in the case o(AA) N (—o0,0) # @, the
space Py of solutions to such problem is infinite-dimensional as a linear space over the field of
real numbers; in the case o(AA) N (—o00,0] = {0} it is finite-dimensional and

N
dim Py =2n(N +1) — 2 Zrckaj,
=0

where By, = A(AA), Bypy = (AAM k=0,...,[¥].

4.2. Overdetermined systems. We consider overdetermined system , in which u =
u(z1, 22) is the unknown vector function of complex variables z; and 2, z; = x; + iy;, Uz, =
%(uxj +iuy,), j = 1,2, A; and Ay are constant complex n X n matrices.

For system we seek solutions of power growth, that is, solutions u(zy, 2;) defined in C?
and satisfying the condition

lu(z1, z2)llen < K(1+ [z +|2])", (4.6)

where K is a constant depending in general on u(z1, z3), IV is a non-negative integer.
In the space S'(C?, C"), system (4.2)) is equivalent to the system of functional equations

igl'U(Cl, CQ) - 2A1w(<17 C?) = 07
iGau(C1, G2) — 2A42w(C1, G2) = 0,
where v((1, () and w((1,(2) are the Fourier images u(z1, z2) and u(z1, 22), respectively, in the

following sense: if u € S’(C?, C") is a solution to system (4.2)), then the pair (v, w) satisfies
system (4.7)). If the pair (v, w), v,w € §'(C% C") is a solution to system (4.7) and the identity

w(=C1, —=C2) = v(¢1, C2) (4.8)

holds, then the function u = F~'v, where F~! is the inverse Fourier transform, is a solution to

system (4.2) in the space S'(C?,C"). Employing relation (4.8) in system (4.7), we obtain the
following equations:

(4.7)

2%1?)((17 Ca) — i§1w(C1, () =0 (4.9)
QAQU(CD CQ) - ic2w<C17 CZ) = 0. '
We exclude w((y, ¢2) from equations ([4.7)), and for v({, (3) we obtain the system
(441 A1 + |GPE)v(éry &) =0, (4.10)
(44245 + |G E)u(Gr, &) = 0, (4.11)

where E is the unit n x n matrix. We can apply the results of Section 2 to equations (4.10)),
(4.11]).

By o7 and oy we denote the spectra of the matrices A;A; and A, A, respectively. If the
condition

(o1 Uog) N (—00,0] = @ (4.12)

holds, then it follows from system (4.10]), (4.11)) that v = 0 and hence, u = 0.

If condition (4.12)) fails, the support of distribution v((3, {2) can be a single point, the Carte-
sian product of two circumferences and even a non-compact set. In the first two cases, thanks
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to the theorem on the structure of distributions with a point support and Theorem we can
determine solutions to system (4.10f), (4.11)) and then to overdetermined system ({4.2]).

Let Py be the manifold of solutions to problem (4.2), (4.6). We obviously have Py C
S'(C*,C") and Py is a linear space over the field of real numbers. The space Py can infinite-
dimensional or finite-dimensional. We consider some examples.

Example 1. Let A; = 0 in system (4.2)). Then the solutions of this system are holomorphic
in z; and by the Liouville theorem, the solutions in Py are to be of the form

N .
U(Z’l, Z2) = Cj(22)2{7
=0
where the functions ¢;(22) satisfy the condition
lej(z2)[lon < K (1 + |2 ™). (4.13)

Then by the second equation in system (4.2)) we have

dc
N W
J J=
This implies the following equations for ¢;(z2):

8C0
— = AyG 4.14
822 2C0, ( )
8cj
A
0% ’ (4.15)

Aye; =0, j=1,...,N.

If 05N (—00,0) # &, then the manifold of solutions to equation satisfying condition

is infinite-dimensional. If o N (—00,0) = &, then as det Ay # 0, we have ¢y(z2) = 0, while as

det Ay = 0, the solutions to problem (4.13), (4.14]), as this was mentioned in Section 4.1, form

a finite-dimensional space. By (4.15]) we see that as det Ay # 0, all ¢;(22), ,7 =1,...,N, are
N

identically zero, while if det Ay = 0, then ¢;(22) are holomorphic polynomials of form 3 dj.25,

k=0
where d;j, are the eigenvectors of the matrix A, associated with the zero eigenvalue.
Example 2. Let A = Ay = A in system (4.2)). Then we get
Uz, = Uz, (416)

The solutions of this equation are the functions of form u = ¢(z1, 29) and u = V(21 + 22), where
¢ is a holomorphic in z; and z; vector function, and (z1) is a vector function possessing the
partial derivatives v,, and 1,,. The set of solutions to equation (4.16) is larger than the set of
solutions to system . We substitute the aforementioned solutions of equation into
system (4.2)):

2, (21, 22) = Ap(21, 2), (4.17)
Vo214 2) = AP(z1 + 2), j=1,2. (4.18)

In , the left hand sides are zero and this is why
Ap(z1,2) = 0. (4.19)

If det A # 0, then p = 0. If det A = 0, then (21, 22) = f(21, 22)v, where f is a holomorphic in
z1 and zy scalar function, v is an eigenvector of the matrix A associated with the zero eigenvalue.
Then the vector function

u(z1, 22) = Pn(z1, 22)v,
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where Py is a holomorphic polynomial in z; and zy of degree at most N, solve problem (4.2)),
[3).

If in the first (respectively, in the second) equation in (4.18) we fix z5 (respectively, z1), then
for 1) we obtain system (4.1)) considered in Subsection 4.1.
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