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MINIMUM MODULUS OF LACUNARY POWER SERIES

AND ℎ-MEASURE OF EXCEPTIONAL SETS

T.M. SALO, O.B. SKASKIV

Abstract. We consider some generalizations of Fenton theorem for the entire functions

represented by lacunary power series. Let 𝑓(𝑧) =
∑︀+∞

𝑘=0 𝑓𝑘𝑧
𝑛𝑘 , where (𝑛𝑘) is a strictly

increasing sequence of non-negative integers. We denote by

𝑀𝑓 (𝑟) = max{|𝑓(𝑧)| : |𝑧| = 𝑟},
𝑚𝑓 (𝑟) = min{|𝑓(𝑧)| : |𝑧| = 𝑟},
𝜇𝑓 (𝑟) = max{|𝑓𝑘|𝑟𝑛𝑘 : 𝑘 > 0}

the maximummodulus, the minimummodulus and the maximum term of 𝑓, respectively. Let
ℎ(𝑟) be a positive continuous function increasing to infinity on [1,+∞) with a non-decreasing

derivative. For a measurable set 𝐸 ⊂ [1,+∞) we introduce ℎ−meas (𝐸) =
∫︀
𝐸

𝑑ℎ(𝑟)
𝑟 . In this

paper we establish conditions guaranteeing that the relations

𝑀𝑓 (𝑟) = (1 + 𝑜(1))𝑚𝑓 (𝑟), 𝑀𝑓 (𝑟) = (1 + 𝑜(1))𝜇𝑓 (𝑟)

are true as 𝑟 → +∞ outside some exceptional set 𝐸 such that ℎ−meas (𝐸) < +∞. For some

subclasses we obtain necessary and sufficient conditions. We also provide similar results for

entire Dirichlet series.
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1. Introduction

Let 𝐿 be the class of positive continuous functions increasing to infinity on [0; +∞). By 𝐿+

we denote the subclass of 𝐿 consisting of the differentiable functions with a non-decreasing
derivative, and 𝐿− stands for the subclass of functions with a non-increasing derivative.
Let 𝑓 be an entire function of the form

𝑓(𝑧) =
+∞∑︁
𝑘=0

𝑓𝑘𝑧
𝑛𝑘 , (1)

where (𝑛𝑘) is a strictly increasing sequence of nonnegative integers. Given 𝑟 > 0, we denote by
𝑀𝑓 (𝑟) = max{|𝑓(𝑧)| : |𝑧| = 𝑟}, 𝑚𝑓 (𝑟) = min{|𝑓(𝑧)| : |𝑧| = 𝑟}, 𝜇𝑓 (𝑟) = max{|𝑓𝑘|𝑟𝑛𝑘 : 𝑘 > 0} the
maximum modulus, the minimum modulus and the maximum term of 𝑓 , respectively.
P.C. Fenton [1] (see also [2]) proved the following statement.

Theorem 1 ([1]). If
+∞∑︁
𝑘=0

1

𝑛𝑘+1 − 𝑛𝑘

< +∞, (2)
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then for every entire function 𝑓 of the form (1) there exists a set 𝐸 ⊂ [1,+∞) of finite
logarithmic measure, i.e. log-meas 𝐸 :=

∫︀
𝐸
𝑑 log 𝑟 < +∞, such that the relations

𝑀𝑓 (𝑟) = (1 + 𝑜(1))𝑚𝑓 (𝑟), 𝑀𝑓 (𝑟) = (1 + 𝑜(1))𝜇𝑓 (𝑟) (3)

hold as 𝑟 → +∞ (𝑟 /∈ 𝐸).

P. Erdős and A.J. Macintyre [2] proved that condition (2) implies that (3) holds as
𝑟 = 𝑟𝑗 → +∞ for some sequence (𝑟𝑗).
Denote by 𝐷(Λ) the class of entire (absolutely convergent in the complex plane) Dirichlet

series of the form

𝐹 (𝑧) =
+∞∑︁
𝑛=0

𝑎𝑛𝑒
𝑧𝜆𝑛 , (4)

where Λ = (𝜆𝑛) is a fixed sequence such that 0 = 𝜆0 < 𝜆𝑛 ↑ +∞ (1 6 𝑛 ↑ +∞).
Let us introduce some notations. Given 𝐹 ∈ 𝐷(Λ) and 𝑥 ∈ R, we denote by

𝜇(𝑥, 𝐹 ) = max{|𝑎𝑛|𝑒𝑥𝜆𝑛 : 𝑛 > 0}
the maximal term of series (4), by

𝑀(𝑥, 𝐹 ) = sup{|𝐹 (𝑥 + 𝑖𝑦)| : 𝑦 ∈ R}
we denote the maximum modulus of series (4), by

𝑚(𝑥, 𝐹 ) = inf{|𝐹 (𝑥 + 𝑖𝑦)| : 𝑦 ∈ R}
we denote the minimum modulus of series (4), and

𝜈(𝑥, 𝐹 ) = max{𝑛 : |𝑎𝑛|𝑒𝑥𝜆𝑛 = 𝜇(𝑥, 𝐹 )}
stands for the central index of series (4).
In [3] (see also [4]) we find the following theorem.

Theorem 2 ([3]). For every entire function 𝐹 ∈ 𝐷(Λ) the relation

𝐹 (𝑥 + 𝑖𝑦) = (1 + 𝑜(1))𝑎𝜈(𝑥,𝐹 )𝑒
(𝑥+𝑖𝑦)𝜆𝜈(𝑥,𝐹 ) (5)

holds as 𝑥 → +∞ outside some set 𝐸 of finite Lebesgue measure (
∫︀
𝐸
𝑑𝑥 < +∞) uniformly in

𝑦 ∈ R, if and only if
+∞∑︁
𝑛=0

1

𝜆𝑛+1 − 𝜆𝑛

< +∞. (6)

Note, that in the paper [5] there were proved the analogues of other statements in the paper
by P.C. Fenton [1] for subclasses of functions 𝐹 ∈ 𝐷(Λ) defined by various restrictions on the
growth rate of the maximal term 𝜇(𝑥, 𝐹 ).
The finiteness of Lebesgue measure of an exceptional set 𝐸 in theorem A is the best possible

description. This is implied by the next statement.

Theorem 3 ([6]). For every sequence 𝜆 = (𝜆𝑘) (including those which satisfy (6)) and
for every continuously differentiable function ℎ : [0,+∞) → (0,+∞) such that ℎ′(𝑥) ↗ +∞
(𝑥 → +∞) there exist an entire Dirichlet series 𝐹 ∈ 𝐷(𝜆), a constant 𝛽 > 0 and a measurable

set 𝐸1 ⊂ [0,+∞) of infinite ℎ-measure (ℎ− meas (𝐸1)
𝑑𝑒𝑓
=

∫︀
𝐸1

𝑑ℎ(𝑥) = +∞) such that

(∀ 𝑥 ∈ 𝐸1) : 𝑀(𝑥, 𝐹 ) > (1 + 𝛽)𝜇(𝑥, 𝐹 ), 𝑀(𝑥, 𝐹 ) > (1 + 𝛽)𝑚(𝑥, 𝐹 ). (7)

Recently, Ya.V. Mykytyuk remarked that in Theorem 3, it is sufficient to assume that a
positive non-decreasing function ℎ is such that

ℎ(𝑥)

𝑥
→ +∞ as 𝑥 → +∞.
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It follows from Theorem 3 that the finiteness of logarithmic measure of an exceptional set 𝐸
in Fenton’s Theorem 1 is also the best possible description.
It is easy to see that the relation

𝐹 (𝑥 + 𝑖𝑦) = (1 + 𝑜(1))𝑎𝜈(𝑥,𝐹 )𝑒
(𝑥+𝑖𝑦)𝜆𝜈(𝑥,𝐹 )

holds as 𝑥 → +∞ (𝑥 /∈ 𝐸) uniformly in 𝑦 ∈ R if and only if

𝑀(𝑥, 𝐹 ) ∼ 𝜇(𝑥, 𝐹 ) and 𝑀(𝑥, 𝐹 ) ∼ 𝑚(𝑥, 𝐹 ) (𝑥 → +∞, 𝑥 /∈ 𝐸). (8)

In view of Theorem 3, the natural question arises: what conditions should an entire Dirichlet
series satisfy in order to relation (5) be true as 𝑥 → +∞ outside some set 𝐸2 of finite ℎ-measure,
i.e.,

ℎ− meas (𝐸2) < +∞?

In this paper we provide the answer to this question as ℎ ∈ 𝐿+.

2. ℎ−measure with non-decreasing density

According to Theorem 3, in the case ℎ ∈ 𝐿+, condition (6) must be fulfilled. Therefore, in
the subclass

𝐷(Λ,Φ) = {𝐹 ∈ 𝐷(Λ) : ln𝜇(𝑥, 𝐹 ) > 𝑥Φ(𝑥) (𝑥 > 𝑥0)}, Φ ∈ 𝐿,

it should be strengthened. The following theorem indicates this.

Theorem 4. Let Φ ∈ 𝐿, ℎ ∈ 𝐿+ and 𝜙 be the inverse function for the function Φ. If

(∀𝑏 > 0) :
+∞∑︁
𝑘=0

1

𝜆𝑘+1 − 𝜆𝑘

ℎ′
(︁
𝜙(𝜆𝑘) +

𝑏

𝜆𝑘+1 − 𝜆𝑘

)︁
< +∞, (9)

then for all 𝐹 ∈ 𝐷(Λ,Φ) identity (5) is true as 𝑥 → +∞ outside some set 𝐸 of a finite
ℎ-measure uniformly in 𝑦 ∈ R.

Before proving this theorem, we need additional notations and an auxiliary lemma.
Denote ∆0 = 0 and

∆𝑛 =
𝑛−1∑︁
𝑗=0

(𝜆𝑗+1 − 𝜆𝑗)
∞∑︁

𝑚=𝑗+1

(︂
1

𝜆𝑚 − 𝜆𝑚−1

+
1

𝜆𝑚+1 − 𝜆𝑚

)︂
.

for 𝑛 > 1. The next lemma is similar to Lemma 1 in [8].

Lemma 1. For all 𝑛 > 0 and 𝑘 > 1, the inequality

𝛼𝑛

𝛼𝑘

𝑒𝜏𝑘(𝜆𝑛−𝜆𝑘) 6 𝑒−𝑞|𝑛−𝑘|, (10)

is true, where 𝛼𝑛 = 𝑒𝑞Δ𝑛, 𝑞 > 0, and

𝜏𝑘 = 𝜏𝑘(𝑞) = 𝑞𝑥𝑘 +
𝑞

𝜆𝑘 − 𝜆𝑘−1

, 𝑥𝑘 =
∆𝑘−1 − ∆𝑘

𝜆𝑘 − 𝜆𝑘−1

.

Proof. Since

ln𝛼𝑛 − ln𝛼𝑛−1 = 𝑞(∆𝑛 − ∆𝑛−1) = −𝑞𝑥𝑛(𝜆𝑛 − 𝜆𝑛−1),
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for 𝑛 > 𝑘 + 1 we have

ln
𝛼𝑛

𝛼𝑘

+ 𝜏𝑘(𝜆𝑛 − 𝜆𝑘) = − 𝑞
𝑛∑︁

𝑗=𝑘+1

𝑥𝑗(𝜆𝑗 − 𝜆𝑗−1) + 𝜏𝑘

𝑛∑︁
𝑗=𝑘+1

(𝜆𝑗 − 𝜆𝑗−1)

= −
𝑛∑︁

𝑗=𝑘+1

(𝑞𝑥𝑗 − 𝜏𝑘) (𝜆𝑗 − 𝜆𝑗−1)

6−
𝑛∑︁

𝑗=𝑘+1

(𝑞𝑥𝑗 − 𝜏𝑗−1) (𝜆𝑗 − 𝜆𝑗−1)

= − 𝑞

𝑛∑︁
𝑗=𝑘+1

1 = −𝑞(𝑛− 𝑘).

Similarly, for 𝑛 6 𝑘 − 1 we obtain

ln
𝛼𝑛

𝛼𝑘

+ 𝜏𝑘(𝜆𝑛 − 𝜆𝑘) = − ln
𝛼𝑘

𝛼𝑛

− 𝜏𝑘(𝜆𝑘 − 𝜆𝑛)

=𝑞
𝑘∑︁

𝑗=𝑛+1

𝑥𝑗(𝜆𝑗 − 𝜆𝑗−1) − 𝜏𝑘

𝑘∑︁
𝑗=𝑛+1

(𝜆𝑗 − 𝜆𝑗−1)

= −
𝑘∑︁

𝑗=𝑛+1

(𝜏𝑘 − 𝑞𝑥𝑗) (𝜆𝑗 − 𝜆𝑗−1)

6−
𝑘∑︁

𝑗=𝑛+1

(𝜏𝑗 − 𝑞𝑥𝑗) (𝜆𝑗 − 𝜆𝑗−1) = −𝑞
𝑘∑︁

𝑗=𝑛+1

1 = −𝑞(𝑘 − 𝑛),

and this completes the proof.

Proof of Theorem 4. We first note that condition (9) implies the convergence of series (6). We
consider the function

𝑓𝑞(𝑧) =
+∞∑︁
𝑛=0

𝑎𝑛
𝛼𝑛

𝑒𝑧𝜆𝑛 .

Since ∆𝑛 > 0, we have 𝑓𝑞 ∈ 𝐷(Λ) and 𝜈(𝑥, 𝑓𝑞) → +∞ (𝑥 → +∞).
Let 𝐽 be the range of the central index 𝜈(𝑥, 𝑓𝑞). Denote by (𝑅𝑘) the sequence of the jump

points of central index, numbered in such a way that 𝜈(𝑥, 𝑓𝑞) = 𝑘 for all 𝑥 ∈ [𝑅𝑘, 𝑅𝑘+1) and
𝑅𝑘 < 𝑅𝑘+1. Then for all 𝑥 ∈ [𝑅𝑘, 𝑅𝑘+1) and 𝑛 > 0 we have

𝑎𝑛
𝛼𝑛

𝑒𝑥𝜆𝑛 6
𝑎𝑘
𝛼𝑘

𝑒𝑥𝜆𝑘 .

According to Lemma 1, for 𝑥 ∈ [𝑅𝑘 + 𝜏𝑘, 𝑅𝑘+1 + 𝜏𝑘) we obtain

𝑎𝑛𝑒
𝑥𝜆𝑛

𝑎𝑘𝑒𝑥𝜆𝑘
6

𝛼𝑛

𝛼𝑘

𝑒𝜏𝑘(𝜆𝑛−𝜆𝑘) 6 𝑒−𝑞|𝑛−𝑘| (𝑛 > 0).

Therefore,

𝜈(𝑥, 𝐹 ) = 𝑘, 𝜇(𝑥, 𝐹 ) = 𝑎𝑘𝑒
𝑥𝜆𝑘 (𝑥 ∈ [𝑅𝑘 + 𝜏𝑘, 𝑅𝑘+1 + 𝜏𝑘)) (11)

and
|𝐹 (𝑥 + 𝑖𝑦) − 𝑎𝜈(𝑥,𝐹 )𝑒

(𝑥+𝑖𝑦)𝜆𝜈(𝑥,𝐹 ) | 6
∑︁

𝑛 ̸=𝜈(𝑥,𝐹 )

𝜇(𝑥, 𝐹 )𝑒−𝑞|𝑛−𝜈(𝑥,𝐹 )|

62
𝑒−𝑞

1 − 𝑒−𝑞
𝜇(𝑥, 𝐹 )

(12)
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for all 𝑥 ∈ [𝑅𝑘 + 𝜏𝑘, 𝑅𝑘+1 + 𝜏𝑘) and 𝑘 ∈ 𝐽 . Thus, inequality (12) holds for all

𝑥 /∈ 𝐸1(𝑞)
𝑑𝑒𝑓
=

+∞⋃︀
𝑘=0

[𝑅𝑘+1 + 𝜏𝑘, 𝑅𝑘+1 + 𝜏𝑘+1).

Since

𝜏𝑘+1 − 𝜏𝑘 =
2𝑞

𝜆𝑘+1 − 𝜆𝑘

,

and by the Lagrange theorem

ℎ(𝑅𝑘+1 + 𝜏𝑘+1) − ℎ(𝑅𝑘+1 + 𝜏𝑘) = (𝜏𝑘+1 − 𝜏𝑘)ℎ′(𝑅𝑘+1 + 𝜏𝑘 + 𝜃𝑘(𝜏𝑘+1 − 𝜏𝑘)),

where 𝜃𝑘 ∈ (0; 1), for each 𝑞 > 0 we have

ℎ− meas (𝐸1(𝑞)) =
+∞∑︁
𝑘=0

∫︁ 𝑅𝑘+1+𝜏𝑘+1

𝑅𝑘+1+𝜏𝑘

𝑑ℎ(𝑥)

=
+∞∑︁
𝑘=0

(ℎ(𝑅𝑘+1 + 𝜏𝑘+1) − ℎ(𝑅𝑘+1 + 𝜏𝑘))

62𝑞
+∞∑︁
𝑘=0

1

𝜆𝑘+1 − 𝜆𝑘

ℎ′
(︁
𝑅𝑘+1 + 𝜏𝑘 + 2𝑞

1

𝜆𝑘+1 − 𝜆𝑘

)︁
.

(13)

Here we have employed the condition ℎ ∈ 𝐿+.
For 𝐹 ∈ 𝐷(Λ,Φ) and 𝑥 > max{𝑥0, 1} we have

𝑥Φ(𝑥) 6 ln𝜇(𝑥, 𝐹 ) = ln𝜇(1, 𝐹 ) +

𝑥∫︁
1

𝜆𝜈(𝑥,𝑓)𝑑𝑥 6 ln𝜇(1, 𝐹 ) + (𝑥− 1)𝜆𝜈(𝑥−0,𝐹 ).

This implies

𝑥Φ(𝑥) 6 𝑥𝜆𝜈(𝑥−0,𝐹 ) (14)

for all 𝑥 > 𝑥1 > 𝑥0, i.e.

𝑥 6 𝜙
(︀
𝜆𝜈(𝑥−0,𝐹 )

)︀
(𝑥 > 𝑥1).

Thus, according to (11), for 𝑘 > 𝑘0 we obtain

𝑅𝑘+1 + 𝜏𝑘 6 𝜙
(︀
𝜆𝜈(𝑅𝑘+1+𝜏𝑘−0,𝐹 )

)︀
= 𝜙(𝜆𝑘).

Applying this inequality to inequality (13), by the condition ℎ ∈ 𝐿+ we have

ℎ− meas (𝐸1(𝑞)) 6 2𝑞
+∞∑︁
𝑘=0

1

𝜆𝑘+1 − 𝜆𝑘

ℎ′
(︁
𝜙(𝜆𝑘) + 2𝑞

1

𝜆𝑘+1 − 𝜆𝑘

)︁
. (15)

Therefore, using (9) we conclude that ℎ− meas (𝐸1(𝑞)) < +∞.
Let 𝑞𝑘 = 𝑘. Since ℎ− meas (𝐸1(𝑞𝑘)) < +∞, we have

ℎ− meas (𝐸1(𝑞𝑘) ∩ [𝑥,+∞)) = 𝑜(1) (𝑥 → +∞),

hence, it is possible to choose an increasing to +∞ sequence (𝑥𝑘) such that

ℎ− meas
(︀
𝐸1(𝑞𝑘) ∩ [𝑥𝑘; +∞)

)︀
6

1

𝑘2

for all 𝑘 > 1. Denote 𝐸1 =
+∞⋃︀
𝑘=1

(︀
𝐸1(𝑞𝑘) ∩ [𝑥𝑘;𝑥𝑘+1)

)︀
. Then

ℎ− meas (𝐸1) =
+∞∑︁
𝑘=1

ℎ− meas (𝐸1(𝑞𝑘) ∩ [𝑥𝑘;𝑥𝑘+1)) 6
+∞∑︁
𝑘=1

1

𝑘2
< +∞,
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On the other hand, by inequality (12), for 𝑥 ∈ [𝑥𝑘;𝑥𝑘+1) ∖ 𝐸1 we get

|𝐹 (𝑥 + 𝑖𝑦) − 𝑎𝜈(𝑥,𝐹 )𝑒
(𝑥+𝑖𝑦)𝜆𝜈(𝑥,𝐹 )| 6 2

𝑒−𝑞𝑘

1 − 𝑒−𝑞𝑘
𝜇(𝑥, 𝐹 ),

and therefore, as 𝑥 → +∞ (𝑥 /∈ 𝐸1), we obtain (5). The proof is complete.

We observe that if ℎ(𝑥) ≡ 𝑥, then condition (9) becomes condition (6), and ℎ-measure of the
set 𝐸 is its Lebesgue measure.
Let Φ ∈ 𝐿. Consider the classes

𝐷0(Λ,Φ) =
{︀
𝐹 ∈ 𝐷(Λ) : (∃𝐾 > 0)[ln𝜇(𝑥,Φ) > 𝐾𝑥Φ(𝑥) (𝑥 > 𝑥0)]

}︀
,

𝐷1(Λ,Φ) = {𝐹 ∈ 𝐷(Λ) : (∃𝐾1, 𝐾2 > 0)[ln𝜇(𝑥,Φ) > 𝐾1𝑥Φ(𝐾2𝑥) (𝑥 > 𝑥0)]}.

Theorem 5. Let Φ0 ∈ 𝐿, ℎ ∈ 𝐿+ and 𝜙0 be the inverse function for the function Φ0. If

(∀𝑏 > 0) :
+∞∑︁
𝑛=0

1

𝜆𝑛+1 − 𝜆𝑛

ℎ′
(︂
𝜙0(𝑏𝜆𝑛) +

𝑏

𝜆𝑛+1 − 𝜆𝑛

)︂
< +∞, (16)

then for each function 𝐹 ∈ 𝐷0(Λ,Φ0) relation (5) holds as 𝑥 → +∞ outside some set 𝐸 of
finite ℎ - measure uniformly in 𝑦 ∈ R.

Theorem 6. Let Φ1 ∈ 𝐿, ℎ ∈ 𝐿+, and 𝜙1 be the inverse function to the function Φ1. If

(∀𝑏 > 0) :
+∞∑︁
𝑛=0

ℎ′(𝑏𝜙1(𝑏𝜆𝑛))

𝜆𝑛+1 − 𝜆𝑛

< +∞, (17)

then for every function 𝐹 ∈ 𝐷1(Λ,Φ1) relation (5) holds as 𝑥 → +∞ outside some set 𝐸 of
finite ℎ-measure uniformly in 𝑦 ∈ R.

Proof of Theorems 5 and 6. Theorems 5 and 6 are implied immediately by Theorem 4.
Indeed, if 𝐹 ∈ 𝐷0(Λ,Φ0), then 𝐹 ∈ 𝐷(Λ,Φ) as Φ(𝑥) = 𝐾Φ0(𝑥). But in this case

𝜙(𝑥) = 𝜙0(𝑥/𝐾) and condition (9) follows condition (16). Then it remains to apply Theorem
4.
In the same way, if 𝐹 ∈ 𝐷1(Λ,Φ1), then 𝐹 ∈ 𝐷(Λ,Φ) as Φ(𝑥) = 𝐾1Φ1(𝐾2𝑥). But in this

case 𝜙(𝑥) = 𝜙1(𝑥/𝐾1)/𝐾2 and hence, condition (9) follows condition (17). It remains to employ
Theorem 4 once again.

Remark 1. It is easy to see that for each fixed functions ℎ ∈ 𝐿+ and Φ ∈ 𝐿 there exists a
sequence Λ such that conditions (9), (16) and (17) hold.

The next theorem shows that condition (17) is necessary for relations (5), (8) to hold for each
𝐹 ∈ 𝐷1(Λ,Φ1) as 𝑥 → +∞ outside a set of a finite ℎ-measure. Here we assume that condition
(6) is satisfied.

Theorem 7. Let Φ1 ∈ 𝐿, ℎ ∈ 𝐿+, and 𝜙1 be the inverse function for the function Φ1. For
each sequence Λ such that

(∃𝑏 > 0) :
+∞∑︁
𝑛=0

ℎ′(𝑏𝜙1(𝑏𝜆𝑛))

𝜆𝑛+1 − 𝜆𝑛

= +∞, (18)

there exist a function 𝐹 ∈ 𝐷1(Λ,Φ1), a set 𝐸 ⊂ [0,+∞) and a constant 𝛽 > 0 such that
inequalities (7) hold for all 𝑥 ∈ 𝐸 and ℎ− meas (𝐸) = +∞.
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Proof. We denote κ1 = κ2 = 1, κ𝑛 =
𝑛−2∑︀
𝑘=1

𝑟𝑘, (𝑛 > 3), where

𝑟1 = max
{︁
𝑏𝜙1(𝑏𝜆2),

1

𝜆2 − 𝜆1

}︁
,

𝑟𝑘 = max
{︁
𝑏𝜙1(𝑏𝜆𝑘+1) − 𝑏𝜙1(𝑏𝜆𝑘),

1

𝜆𝑘+1 − 𝜆𝑘

}︁
(𝑘 > 2),

and we also choose

𝑎0 = 1, 𝑎𝑛 = exp
{︁
−

𝑛∑︁
𝑘=1

κ𝑘(𝜆𝑘 − 𝜆𝑘−1)
}︁

(𝑛 > 1).

We prove that the function 𝐹 defined by series (4) with the above defined coefficients (𝑎𝑛) and
the exponents (𝜆𝑛) belongs to the class 𝐷1(Λ,Φ1).

Since the condition
+∞∑︁
𝑛=0

1

𝜆𝑛+1 − 𝜆𝑛

< +∞

implies 𝑛2 = 𝑜(𝜆𝑛) (𝑛 → +∞), we have
ln𝑛

𝜆𝑛
→ 0 (𝑛 → +∞). By the construction,

κ𝑛 =
ln 𝑎𝑛−1 − ln 𝑎𝑛
𝜆𝑛 − 𝜆𝑛−1

(𝑛 > 1)

and κ𝑛 ↑ +∞ (𝑛 → +∞). Therefore Stolz theorem yields that − ln 𝑎𝑛
𝜆𝑛

→ +∞ (𝑛 → +∞) and

by Valiron formula [9] the abscissa of the absolute convergence of series (4) is equal to +∞,
i.e., 𝐹 ∈ 𝐷(Λ).

Moreover, it is known that in the case κ𝑛 ↑ +∞ (𝑛 → +∞) we have

∀𝑥 ∈ [κ𝑛,κ𝑛+1) : 𝜇(𝑥, 𝐹 ) = 𝑎𝑛𝑒
𝑥𝜆𝑛 , 𝜈(𝑥, 𝐹 ) = 𝑛. (19)

Since by the construction

κ𝑛 6 𝑏𝜙1(𝑏𝜆𝑛−1) +
𝑛−2∑︁
𝑘=1

1

𝜆𝑘+1 − 𝜆𝑘

6 2𝑏𝜙1(𝑏𝜆𝑛−1) (𝑛 > 𝑛0),

for sufficiently large 𝑛 for all 𝑥 ∈ [κ𝑛,κ𝑛+1) we have

ln𝜇(2𝑥, 𝐹 ) = ln𝜇(𝑥, 𝐹 ) +

2𝑥∫︁
𝑥

𝜆𝜈(𝑡)𝑑𝑡 > 𝑥𝜆𝜈(𝑥)

=𝑥𝜆𝑛 >
𝑥

𝑏
Φ1

(︁κ𝑛+1

2𝑏

)︁
>

𝑥

𝑏
Φ1

(︁ 𝑥

2𝑏

)︁
.

Hence, for 𝑥 > 𝑥0 we have

ln𝜇(𝑥, 𝐹 ) >
1

2𝑏
𝑥Φ1

(︁ 𝑥

4𝑏

)︁
,

and thus 𝐹 ∈ 𝐷1(Λ,Φ1).
We observe that

κ𝑛+1 − κ𝑛 = 𝑟𝑛−1 >
1

𝜆𝑛 − 𝜆𝑛−1

(𝑛 > 1).

For 𝑥 ∈
[︁
κ𝑛,κ𝑛 + 1

𝜆𝑛−𝜆𝑛−1

]︁
we have

𝑎𝑛−1𝑒
𝑥𝜆𝑛−1

𝜇(𝑥, 𝐹 )
=

𝑎𝑛−1𝑒
𝑥𝜆𝑛−1

𝑎𝑛𝑒𝑥𝜆𝑛
= exp{(𝜆𝑛 − 𝜆𝑛−1)(κ𝑛 − 𝑥)} > 𝑒−1 := 𝛽, (20)
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and, therefore, for 𝑥 ∈ 𝐸 =
∞⋃︀
𝑛=1

[︁
κ𝑛,κ𝑛 + 1

𝜆𝑛−𝜆𝑛−1

]︁
, by choosing 𝑛 = 𝜈(𝑥, 𝐹 ) we get

𝐹 (𝑥) > 𝑎𝑛−1𝑒
𝑥𝜆𝑛−1 + 𝑎𝑛𝑒

𝑥𝜆𝑛 = 𝜇(𝑥, 𝐹 )

(︂
1 +

𝑎𝑛−1𝑒
𝑥𝜆𝑛−1

𝑎𝑛𝑒𝑥𝜆𝑛

)︂
> (1 + 𝛽)𝜇(𝑥, 𝐹 ).

Hence, inequalities (7) are true.
Now we prove that ℎ− meas (𝐸) = +∞. By the construction of (κ𝑛) for all 𝑛 > 1 we have

κ𝑛 > 𝑏𝜙1(𝑏𝜆𝑛−1). (21)

Taking into consideration the Lagrange theorem, the condition ℎ ∈ 𝐿+ and inequality (21),
we obtain

ℎ− meas (𝐸) =
+∞∑︁
𝑛=1

κ𝑛+
1

𝜆𝑛−𝜆𝑛−1∫︁
κ𝑛

𝑑ℎ(𝑥) =
+∞∑︁
𝑛=1

(︂
ℎ(κ𝑛 +

1

𝜆𝑛 − 𝜆𝑛−1

) − ℎ(κ𝑛)

)︂

>
+∞∑︁
𝑛=1

ℎ′(κ𝑛)

𝜆𝑛 − 𝜆𝑛−1

>
+∞∑︁
𝑛=1

ℎ′(𝑏𝜙1(𝑏𝜆𝑛−1))

𝜆𝑛 − 𝜆𝑛−1

= +∞.

The proof is complete.

The next criterion is implied immediately by Theorems 6 and 7.

Theorem 8. Let Φ1 ∈ 𝐿, ℎ ∈ 𝐿+ and 𝜙1 be the inverse function for the function Φ1. For
each entire function 𝐹 ∈ 𝐷1(Λ,Φ1) relation (5) holds as 𝑥 → +∞ outside some set 𝐸 of a
finite ℎ-measure uniformly in 𝑦 ∈ R if and only if (17) is true.

It is worth noting that if condition (16) of Theorem 5 is not fulfilled, that is

(∃𝑏1 > 0) :
+∞∑︁
𝑛=0

1

𝜆𝑛+1 − 𝜆𝑛

ℎ′
(︂
𝜙0(𝑏1𝜆𝑛) +

𝑏1
𝜆𝑛+1 − 𝜆𝑛

)︂
= +∞,

then for 𝑏 = max{𝑏1; 2} we have

+∞∑︁
𝑛=0

ℎ′(𝑏𝜙0(𝑏𝜆𝑛))

𝜆𝑛+1 − 𝜆𝑛

= +∞.

Therefore, condition (18) holds and according Theorem 7, there exist a function 𝐹 ∈ 𝐷1(Λ,Φ0),
a set 𝐸 ⊂ [0,+∞) and a constant 𝛽 > 0 such that inequalities (7) hold for all 𝑥 ∈ 𝐸 and
ℎ− meas (𝐸) = +∞.
Since for Φ0(𝑥) = 𝑥𝛼, 𝛼 > 0, we have 𝐷0(Λ,Φ0) = 𝐷1(Λ,Φ0), from Theorem 5 and 7 we

obtain the following theorem.

Theorem 9. Let Φ0(𝑥) = 𝑥𝛼 (𝛼 > 0), ℎ ∈ 𝐿+. For each entire function 𝐹 ∈ 𝐷0(Λ,Φ0)
relation (5) holds as 𝑥 → +∞ outside some set 𝐸 of a finite ℎ-measure uniformly in 𝑦 ∈ R if
and only if

(∀𝑏 > 0) :
+∞∑︁
𝑛=0

1

𝜆𝑛+1 − 𝜆𝑛

ℎ′
(︂
𝑏(𝜆𝑛)1/𝛼 +

𝑏

𝜆𝑛+1 − 𝜆𝑛

)︂
< +∞,

is true.
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3. ℎ-measure with a non-increasing density

We note that for each differentiable function ℎ : R+ → R+ with a bounded derivative
ℎ′(𝑥) 6 𝑐 < +∞ (𝑥 > 0) we have∫︁

𝐸

𝑑ℎ(𝑥) =

∫︁
𝐸

ℎ′(𝑥)𝑑𝑥 6 𝑐

∫︁
𝐸

𝑑𝑥.

Hence, the finiteness of Lebesgue measure of a set 𝐸 ⊂ R+ implies ℎ − meas (𝐸) < +∞.
Therefore, according Theorem A, condition (6) provides that the exceptional set 𝐸 is of a finite
ℎ-measure. However, we conjecture that for ℎ ∈ 𝐿− in the subclass

𝐷𝜙(Λ) =
{︀
𝐹 ∈ 𝐷(Λ) : (∃𝑛0)(∀𝑛 > 𝑛0)[|𝑎𝑛| 6 exp{−𝜆𝑛𝜙(𝜆𝑛)}]

}︀
, 𝜙 ∈ 𝐿,

condition (6) can be weakened significantly. The following conjecture seems to be true.

Conjecture 1. Let 𝜙 ∈ 𝐿, ℎ ∈ 𝐿−. If
+∞∑︁
𝑛=0

ℎ′(𝜙(𝜆𝑛))

𝜆𝑛+1 − 𝜆𝑛

< +∞,

then for all 𝐹 ∈ 𝐷𝜙(Λ) relation (5) is true as 𝑥 → +∞ outside some set 𝐸 of finite ℎ-measure
uniformly in 𝑦 ∈ R.

4. ℎ−measure and lacunary power series

The important corollaries for entire functions represented by a lacunary power series of the
form (1) are implied by the proven theorems.
For an entire function 𝑓 of the form (1) we let 𝐹 (𝑧) = 𝑓(𝑒𝑧), 𝑧 ∈ C.
We observe that as 𝑥 = ln 𝑟, 𝑦 = 𝜙,

𝐹 (𝑥 + 𝑖𝑦) = 𝐹 (ln 𝑟 + 𝑖𝜙) = 𝑓(𝑟𝑒𝑖𝜙)

and 𝑀(𝑥, 𝐹 ) = 𝑀𝑓 (𝑟), 𝑚(𝑥, 𝐹 ) = 𝑚𝑓 (𝑟), 𝜇(𝑥, 𝐹 ) = 𝜇𝑓 (𝑟), 𝜈(𝑥, 𝐹 ) = 𝜈𝑓 (𝑟). In addition, for

𝐸2
𝑑𝑒𝑓
= {𝑟 ∈ R : ln 𝑟 ∈ 𝐸1} and ℎ1 such that ℎ′

1(𝑥) = ℎ′(𝑒𝑥) we have

ℎ− log − meas(𝐸2)
𝑑𝑒𝑓
=

∫︁
𝐸2

𝑑ℎ(𝑟)

𝑟
=

∫︁
𝐸1

𝑑ℎ(𝑒𝑥)

𝑒𝑥
=

∫︁
𝐸1

𝑑ℎ1(𝑥) = ℎ1 − meas(𝐸1).

The next corollary is implied by Theorem B.

Corollary 1. For each sequence (𝑛𝑘) such that condition (6) holds and for each function
ℎ ∈ 𝐿+ there exist an entire function 𝑓 of the form (1), a constant 𝛽 > 0 and a set 𝐸2 of an

infinite ℎ-log-measure, 𝑖.𝑒.
(︀ ∫︀

𝐸2

𝑑ℎ(𝑟)
𝑟

= +∞
)︀
such that

(∀𝑟 ∈ 𝐸2) : 𝑀𝑓 (𝑟) > (1 + 𝛽)𝜇𝑓 (𝑟), 𝑀𝑓 (𝑟) > (1 + 𝛽)𝑚𝑓 (𝑟). (22)

By Theorem 4 we obtain the following corollary.

Corollary 2. Let Φ ∈ 𝐿, ℎ ∈ 𝐿+ and 𝜙 be the inverse function for the function Φ. If for an
entire function 𝑓 of the form (1)

ln𝜇𝑓 (𝑟) > ln 𝑟Φ(ln 𝑟) (𝑟 > 𝑟0) (23)

and

(∀𝑏 > 0) :
+∞∑︁
𝑘=0

1

𝑛𝑘+1 − 𝑛𝑘

ℎ′
(︁

exp
{︁
𝜙(𝑛𝑘) +

𝑏

𝑛𝑘+1 − 𝑛𝑘

}︁)︁
< +∞, (24)

then the relation
𝑓(𝑟𝑒𝑖𝜙) = (1 + 𝑜(1))𝑎𝜈𝑓 (𝑟)𝑟

𝑛𝜈𝑓 (𝑟)𝑒
𝑖𝜙𝑛𝜈𝑓 (𝑟) (25)

holds as 𝑟 → +∞ outside some set 𝐸2 of finite ℎ-log-measure uniformly in 𝜙 ∈ [0, 2𝜋].
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In fact, it follows from condition (23) that 𝐹 ∈ 𝐷(Λ,Φ) with Λ = (𝑛𝑘) and it remains to
apply Theorem 4 with the function ℎ1.
Denote by ℰ the class of entire functions of positive lower order, i.e.

𝜆𝑓 := lim
𝑟→+∞

ln ln𝑀𝑓 (𝑟)/ ln 𝑟 > 0.

By Theorem 8 we obtain the following corollary.

Corollary 3. Let ℎ ∈ 𝐿+. In order the relations (3) hold for each function 𝑓 ∈ ℰ of the
form (1) as 𝑟 → +∞ outside a set of a finite ℎ-log-measure, it is necessary and sufficient to
have

(∀𝑏 > 0) :
+∞∑︁
𝑘=0

1

𝑛𝑘+1 − 𝑛𝑘

ℎ′(︀(𝑛𝑘)𝑏
)︀
< +∞.
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