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ASYMPTOTICS OF SOLUTIONS TO

A CLASS OF LINEAR DIFFERENTIAL EQUATIONS

N.N. KONECHNAYA, K.A. MIRZOEV

Abstract. In the paper we find the leading term of the asymptotics at infinity for some
fundamental system of solutions to a class of linear differential equations of arbitrary order
𝜏𝑦 = 𝜆𝑦, where 𝜆 is a fixed complex number. At that we consider a special class of Shin-
Zettl type and 𝜏𝑦 is a quasi-differential expression generated by the matrix in this class.
The conditions we assume for the primitives of the coefficients of the quasi-differential
expression 𝜏𝑦, that is, for the entries of the corresponding matrix, are not related with their
smoothness but just ensures a certain power growth of these primitives at infinity. Thus,
the coefficients of the expression 𝜏𝑦 can also oscillate. In particular, this includes a wide
class of differential equations of arbitrary even or odd order with distribution coefficients of
finite order. Employing the known definition of two quasi-differential expressions with non-
smooth coefficients, in the work we propose a method for obtaining asymptotic formulae
for the fundamental system of solutions to the considered equation in the case when the left
hand side of this equations is represented as a product of two quasi-differential expressions.

The obtained results are applied for the spectral analysis of the corresponding singular
differential operators. In particular, assuming that the quasi-differential expression 𝜏𝑦 is
symmetric, by the known scheme we define the minimal closed symmetric operator gener-
ated by this expression in the space of Lebesgue square-integrable on [1,+∞) functions (in
the Hilbert space ℒ2[1,+∞)) and we calculate the deficiency indices for this operator.

Keywords: Quasi-derivative, quasi-differential expression, the main term of asymptotic
of the fundamental system of solutions, minimal closed symmetric differential operator,
deficiency numbers.
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1. Introduction

Let the entries of a matrix 𝐹 = (𝑓𝑗𝑘), the complex-valued functions 𝑓𝑗𝑘, 𝑗, 𝑘 = 1, 2 . . . ,𝑚,
𝑚 > 1, be well-defined and measurable on an interval (𝑎, 𝑏), −∞ 6 𝑎 < 𝑏 6 +∞ and satisfy
the following conditions:
1) 𝑓𝑗𝑘 = 0 almost everywhere in (𝑎, 𝑏) as 2 6 𝑗 + 1 < 𝑘 6 𝑚 and 𝑓𝑗,𝑗+1 ̸= 0 almost everywhere
on (𝑎, 𝑏) as 1 6 𝑗 6 𝑚− 1;
2) the functions 𝑓𝑗𝑘 are locally Lebesgue integrable in (𝑎, 𝑏) for all 1 6 𝑗, 𝑘 6 𝑚, that is, 𝑓𝑗𝑘
are locally Lebesgue integrable in each segment [𝛼, 𝛽] ⊂ (𝑎, 𝑏) (𝑓𝑗𝑘 ∈ ℒ1

𝑙𝑜𝑐(𝑎, 𝑏)).
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We define the quasi-derivatives 𝑦[𝑗] (0 6 𝑗 6 𝑚 − 1) of a given function 𝑦 by means of the
matrix 𝐹 by letting 𝑦[0] := 𝑦 and

𝑦[𝑗] := (𝑓𝑗,𝑗+1)
−1[(𝑦[𝑗−1])′ −

𝑗∑︁
𝑘=1

𝑓𝑗𝑘𝑦
[𝑘−1]], 𝑗 = 1, 2, . . . ,𝑚− 1, (1)

assuming that 𝑦[𝑘−1] (𝑘 = 1, 2, . . . , 𝑗) are already defined and are absolutely continuous functions
on each compact set [𝛼, 𝛽] ⊂ (𝑎, 𝑏) ( 𝑦[𝑘−1] ∈ 𝐴𝐶𝑙𝑜𝑐(𝑎, 𝑏)). We defined also a quasi-differential
expression 𝜏𝑦 by means of the matrix 𝐹 letting

𝜏𝑦 := 𝑖𝑚[(𝑦[𝑚−1])′ −
𝑚∑︁
𝑘=1

𝑓𝑚𝑘𝑦
[𝑘−1]]. (2)

The natural domain 𝒟(𝜏) of the expression 𝜏 is the set of all complex-valued functions 𝑦, for
which there exist locally absolutely continuous quasi-derivatives 𝑦[𝑗] up (𝑚− 1)th order and it
is obvious that 𝜏𝑦 ∈ ℒ1

𝑙𝑜𝑐(𝑎, 𝑏) for each 𝑦 ∈ 𝒟(𝜏).
We consider the differential equation

𝜏𝑦 = 𝜆𝑦, (3)

where 𝜆 ∈ C is a parameter. This equation is equivalent to the system of the first order linear
differential equations

y′ = (𝐹 + Λ)y, (4)

where y is the vector column y := colon (𝑦[0], 𝑦[1], . . . , 𝑦[𝑚−1]), and the entries of a square matrix
Λ = (𝜆𝑖𝑗) of the size 𝑚 ×𝑚 are defined by the identities 𝜆𝑚1 := 𝑖−𝑚𝜆 and 𝜆𝑖𝑗 := 0 for other
values 𝑖 and 𝑗. Scalar equation (3) and system (4) are equivalent in the sense that if 𝑦 is a
solution to equation (3), then y = colon (𝑦[0], 𝑦[1], . . . , 𝑦[𝑚−1]) (𝑦 = 𝑦[0]) solves system (4) and
vice versa, if y = colon (𝑦0, 𝑦1, . . . , 𝑦𝑚−1) is a solution to system (4), then 𝑦 = 𝑦0 solves equation
(3) and 𝑦𝑘 = 𝑦[𝑘] (𝑘 = 0, 1, . . .𝑚− 1).

We note that Condition 1) allows us to define the quasi-derivatives of a function 𝑦 ∈ 𝒟(𝜏)
and the scalar linear quasi-differential expression 𝜏𝑦 (of order 𝑚) in terms of the matrix 𝐹
by formulae (1) and (2), while Condition 2) ensures the validity of the theorem on the unique
solvability of the Cauchy problem for system of equations (4) posed in an arbitrary point of
the segment (𝑎, 𝑏). Thus, under Conditions 1) and 2), the theorem on the unique solvability of
the Cauchy problem is valid for equation (3).

In a special literature, the matrices satisfying Conditions 1) and 2) are called matrices of Shin-
Zettl type and the class of these matrices is denoted by the symbol 𝑍𝑚(𝑎, 𝑏) (see, for instance,
[1, Sect. I] or [2]) or by the symbol 𝒮𝑚(𝑎, 𝑏) (see [3]). The definition of the quasi-derivatives
and of the quasi-differential expression are borrowed from these works.

In what follows we assume that 𝑎 = 1 and 𝑏 = +∞. In Section 2 we define a subclass
of the matrices in 𝑍𝑚[1,+∞) and generated by them quasi-differential equations (3) studied
in the present work. In Section 3 we prove the theorem on an asymptotics at infinity for
some fundamental system of solutions to this class of equations. Following work [2] (see also
[4]), in Section 4 we define the product of two quasi-differential expression and we propose
a method allowing us to obtain asymptotic formulae for the solutions to equation (3) in the
case, when the left hand side of this equations is represented as the product of two expressions
in the class defined in Section 2. Posing additional assumptions for the matrix 𝐹 ensuring
the symmetricity (formal self-adjointness) of the expression 𝜏𝑦, see [1, Sect. I], in Section 5
we define the minimal closed symmetric operator generated by this expression in the space of
Lebesgue square integrable functions in [1,+∞) (in the Hilbert space ℒ2[1,+∞)). The results
obtained in Section 3 is applied for determining the deficiency index of this operator.
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The results of this paper were partially announced in work [5] without the proofs.

2. Construction of a special matrix 𝐹

2.1. Let 𝑚 = 2𝑛. We introduce the matrix 𝐹2𝑛(=: 𝐹 ) as

𝐹2𝑛 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 . . 0 0 0 . . 0
0 0 1 . . 0 0 0 . . 0
. . . . . . . . . . .
0 0 0 . . 1 0 0 . . 0

𝑓𝑛,1 𝑓𝑛,2 𝑓𝑛,3 . . 𝑓𝑛,𝑛 𝑓𝑛,𝑛+1 0 . . 0
𝑓𝑛+1,1 𝑓𝑛+1,2 𝑓𝑛+1,3 . . 𝑓𝑛+1,𝑛 𝑓𝑛+1,𝑛+1 1 . . 0

. . . . . . . . . . .
𝑓2𝑛−1,1 𝑓2𝑛−1,2 𝑓2𝑛−1,3 . . 𝑓2𝑛−1,𝑛 𝑓2𝑛−1,𝑛+1 0 . . 1
𝑓2𝑛,1 𝑓2𝑛,2 𝑓2𝑛,3 . . 𝑓2𝑛,𝑛 𝑓2𝑛,𝑛+1 0 . . 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

We assume that the entries 𝑓𝑗𝑘 of the matrix 𝐹2𝑛 satisfy Conditions 1) and 2) of Section 1,
that is,

(𝐴) 𝑓𝑗𝑘 ∈ ℒ1
𝑙𝑜𝑐[1,+∞) as 𝑛 6 𝑗 6 2𝑛, 1 6 𝑘 6 𝑛 + 1, and 𝑓𝑛,𝑛+1 ̸= 0 almost everywhere in

[1,+∞).
In addition, we assume that
(𝐵) there exists a number 𝜈 > 0, complex numbers 𝛼𝑗𝑘 and complex-valued functions 𝛽𝑗𝑘(𝑥)

such that 𝛼𝑛,𝑛+1 ̸= 0 and for all 𝑥 > 1 the entries 𝑓𝑗𝑘 are of the form

𝑓𝑛,𝑛+1(𝑥) := 𝑥−2𝑛−𝜈(𝛼𝑛,𝑛+1 + 𝛽𝑛,𝑛+1(𝑥));

𝑓𝑛𝑗(𝑥) := 𝑥−𝑛+𝑗−1(𝛼𝑛𝑗 + 𝛽𝑛𝑗(𝑥)), 𝑗 = 1, . . . 𝑛;

𝑓𝑛+𝑘,𝑛+1(𝑥) := 𝑥−𝑘(𝛼𝑛+𝑘,𝑛+1 + 𝛽𝑛+𝑘,𝑛+1(𝑥)), 𝑘 = 1, . . . 𝑛;

𝑓𝑛+𝑘,𝑗(𝑥) := 𝑥𝑛+𝜈−𝑘+𝑗−1(𝛼𝑛+𝑘,𝑗 + 𝛽𝑛+𝑘,𝑗(𝑥)), 𝑘 = 1, . . . 𝑛, 𝑗 = 1, . . . 𝑛.

We denote by 𝐷 := diag (𝑑1, 𝑑2, . . . , 𝑑2𝑛) the diagonal matrix function with the entries

𝑑𝑘(𝑥) := 𝑥−𝑘+ 1
2 , 𝑑𝑘+𝑛(𝑥) := 𝑥𝑛+𝜈−𝑘+ 1

2 , 𝑘 = 1, . . . , 𝑛.

Making the change y = 𝐷Y in system (4) (with 𝐹 = 𝐹2𝑛), it is easy to see that the new
unknown function Y satisfies the system of equations

Y′ = (𝐷−1𝐹2𝑛𝐷 + 𝐷−1Λ𝐷 −𝐷−1𝐷′)Y,

where for the entries 𝑓𝑖𝑗 of the matrix 𝐷−1𝐹2𝑛𝐷 the formulae

𝑓𝑖𝑗 = 𝑑−1
𝑖 𝑓𝑖𝑗𝑑𝑗, 𝑖, 𝑗 = 1, 2, . . . 2𝑛,

hold true and all the entries of the matrix 𝐷−1Λ𝐷 vanish except for the entry in the left lower
corner, which is equal to 𝑥−1(−1)𝑛𝜆/𝑥𝜈 . Moreover,

𝐷−1𝐷′ = 𝑥−1diag (−1

2
,−3

2
, . . . ,−𝑛 +

1

2
, 𝑛 + 𝜈 − 1

2
, 𝑛 + 𝜈 − 3

2
, . . . , 𝜈 +

1

2
).

This arguing imply easily that the unknown vector function Y satisfies the system of equa-
tions

𝑥
𝑑Y

𝑑𝑥
= (𝐴 + 𝐵(𝑥))Y, (5)

where 𝐴 = 𝐴1 + 𝐴2 + 𝐴3 is a constant matrix and the matrix 𝐴1 is of the same form as 𝐹2𝑛

with the only difference that 𝑓𝑗𝑘 are replaced by 𝛼𝑗𝑘 and 𝐴2 is the diagonal matrix defined by
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the identity

𝐴2 = diag

(︂
1

2
,
3

2
, . . . , 𝑛− 1

2
,
1

2
− 𝑛− 𝜈,

3

2
− 𝑛− 𝜈, . . . ,−1

2
− 𝜈

)︂
,

and 𝐴3 is the matrix, which is equal to Λ (see (4)) as 𝜈 = 0 and to the zero matrix as
𝜈 > 0. Moreover, in (5), the non-zero entries 𝑏𝑗𝑘(𝑥) of the matrix function 𝐵(𝑥) are such that
𝑏𝑗𝑘(𝑥) = 𝛽𝑗𝑘(𝑥) as 𝑛 6 𝑗 6 2𝑛, 1 6 𝑘 6 𝑛 + 1, except for the entry 𝑏2𝑛,1(𝑥), and

𝑏2𝑛,1(𝑥) =

⎧⎨⎩
𝛽2𝑛,1(𝑥), if 𝜈 = 0;

𝛽2𝑛,1(𝑥) +
(−1)𝑛𝜆

𝑥𝜈
, if 𝜈 > 0.

2.2. Let 𝑚 = 2𝑛 + 1. We define the matrix 𝐹2𝑛+1(=: 𝐹 ) as

𝐹2𝑛+1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 . . 0 0 0 0 . . 0
0 0 1 . . 0 0 0 0 . . 0
. . . . . . . . . . . .
0 0 0 . . 1 0 0 0 . . 0
0 0 0 . . 0 𝑓𝑛,𝑛+1 0 0 . . 0

𝑓𝑛+1,1 𝑓𝑛+1,2 𝑓𝑛+1,3 . . 𝑓𝑛+1,𝑛 𝑓𝑛+1,𝑛+1 𝑓𝑛+1,𝑛+2 0 . . 0
𝑓𝑛+2,1 𝑓𝑛+2,2 𝑓𝑛+2,3 . . 𝑓𝑛+2,𝑛 𝑓𝑛+2,𝑛+1 0 1 . . 0

. . . . . . . . . . .
𝑓2𝑛,1 𝑓2𝑛,2 𝑓2𝑛,3 . . 𝑓2𝑛,𝑛 𝑓2𝑛,𝑛+1 0 0 . . 1
𝑓2𝑛+1,1 𝑓2𝑛+1,2 𝑓2𝑛+1,3 . . 𝑓2𝑛+1,𝑛 𝑓2𝑛+1,𝑛+1 0 0 . . 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

In the considered case we assume that all entries 𝑓𝑗𝑘 of the matrix 𝐹2𝑛+1 satisfy the conditions
(𝐴) 𝑓𝑛,𝑛+1, 𝑓𝑛+1,𝑛+2, 𝑓𝑗𝑘 ∈ ℒ1

𝑙𝑜𝑐[1,+∞) as 𝑛 + 1 6 𝑗 6 2𝑛 + 1, 1 6 𝑘 6 𝑛 + 1, and 𝑓𝑛,𝑛+1 ̸= 0,
𝑓𝑛+1,𝑛+2 ̸= 0 almost everywhere in [1,+∞),

and
(𝐵) there exists a number 𝜈 > 0, complex numbers 𝛼𝑗𝑘 and complex-valued functions 𝛽𝑗𝑘(𝑥)

such that 𝛼𝑗,𝑗+1 ̸= 0 as 𝑗 = 𝑛, 𝑛 + 1 and for all 𝑥 > 1 the entries 𝑓𝑗𝑘 are of the form

𝑓𝑛,𝑛+1(𝑥) := 𝑥−𝑛− 𝜈
2
− 1

2 (𝛼𝑛,𝑛+1 + 𝛽𝑛,𝑛+1(𝑥));

𝑓𝑛+1,𝑛+2(𝑥) := 𝑥−𝑛− 𝜈
2
− 1

2 (𝛼𝑛+1,𝑛+2 + 𝛽𝑛+1,𝑛+2(𝑥));

𝑓𝑛+1,𝑛+1(𝑥) := 𝑥−1(𝛼𝑛+1,𝑛+1 + 𝛽𝑛+1,𝑛+1(𝑥));

𝑓𝑛+1,𝑗(𝑥) := 𝑥
𝜈
2
+𝑗− 3

2 (𝛼𝑛+1,𝑗 + 𝛽𝑛+1,𝑗(𝑥)), 𝑗 = 1, . . . , 𝑛;

𝑓𝑛+1+𝑗,𝑛+1(𝑥) := 𝑥
𝜈
2
+𝑛−𝑗− 1

2 (𝛼𝑛+1+𝑗,𝑛+1 + 𝛽𝑛+1+𝑗,𝑛+1(𝑥)), 𝑗 = 1, . . . , 𝑛;

𝑓𝑛+1+𝑗,𝑘(𝑥) := 𝑥𝜈+𝑛−𝑗+𝑘−1(𝛼𝑛+1+𝑗,𝑘 + 𝛽𝑛+1+𝑗,𝑘(𝑥)), 𝑗 = 1, . . . 𝑛, 𝑘 = 1, . . . , 𝑛.

Moreover, now the entries 𝑑𝑘 of the matrix 𝐷 := diag (𝑑1, 𝑑2, . . . , 𝑑2𝑛+1) in the change y = 𝐷Y
are defined by the identities

𝑑𝑘(𝑥) := 𝑥−𝑘+ 1
2 , 𝑑𝑛+1(𝑥) := 𝑥

𝜈
2 , 𝑑𝑛+1+𝑘(𝑥) := 𝑥𝜈+𝑛−𝑘+ 1

2 , 𝑘 = 1, 2, . . . , 𝑛.

By means of such change system (4) (with 𝐹 = 𝐹2𝑛+1) is again transformed to the system of
the form

Y′ = (𝐷−1𝐹2𝑛+1𝐷 + 𝐷−1Λ𝐷 −𝐷−1𝐷′)Y

for the unknown vector function Y. We note that in this case the entries 𝑓𝑖𝑗 of the matrix
𝐷−1𝐹2𝑛+1𝐷 can be found, as before, by the formulae

𝑓𝑖𝑗 = 𝑑−1
𝑖 𝑓𝑖𝑗𝑑𝑗, 𝑖, 𝑗 = 1, 2, . . . 2𝑛 + 1,
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and all entries of the matrix 𝐷−1Λ𝐷 are equal to zero except the entry in the left lower corner,
which is equal to 𝑥−1𝑖(−1)𝑛+1𝜆/𝑥𝜈 . Moreover,

𝐷−1𝐷′ = 𝑥−1diag

(︂
−1

2
,−3

2
, . . . ,−𝑛 +

1

2
,
𝜈

2
, 𝑛 + 𝜈 − 1

2
, 𝑛 + 𝜈 − 3

2
, . . . , 𝜈 +

1

2

)︂
.

Thus, in this case the unknown vector function Y also satisfies system of equations (5), where
𝐴 = 𝐴1+𝐴2+𝐴3 and the matrices 𝐴1 and 𝐴3 are formed in the same way as in the case 𝑚 = 2𝑛
with 𝐹2𝑛 replaced by 𝐹2𝑛+1, and the matrix 𝐴2 is of the form

𝐴2 = diag

(︂
1

2
,
3

2
, . . . , 𝑛− 1

2
,−𝜈

2
,
1

2
− 𝑛− 𝜈,

3

2
− 𝑛− 𝜈, . . . ,−1

2
− 𝜈

)︂
.

Moreover, in (5), the non-zero entries 𝑏𝑗𝑘(𝑥) in 𝐵(𝑥) are such that 𝑏𝑗,𝑗+1(𝑥) = 𝛽𝑗,𝑗+1(𝑥) as
𝑗 = 𝑛, 𝑛 + 1, 𝑏𝑗𝑘(𝑥) = 𝛽𝑗𝑘(𝑥) as 𝑛 + 1 6 𝑗 6 2𝑛 + 1, 1 6 𝑘 6 𝑛 + 1, except the entry 𝑏2𝑛+1,1(𝑥)
and

𝑏2𝑛+1,1(𝑥) =

⎧⎨⎩
𝛽2𝑛+1,1(𝑥), if 𝜈 = 0;

𝛽2𝑛+1,1(𝑥) + 𝑖
(−1)𝑛+1𝜆

𝑥𝜈
, if 𝜈 > 0.

Condition (C) we formulate below is the same for both cases 𝑚 = 2𝑛 and 𝑚 = 2𝑛 + 1. Let
𝑟 + 1 be the maximal multiplicity of the characteristic roots of the matrix 𝐴 and let

(𝐶) the matrices 𝐴 and 𝐵(𝑥) are such that
∞∫︁
1

(ln𝑥)𝑟

𝑥
‖𝐵(𝑥)‖𝑑𝑥 < ∞, (6)

where ‖𝐵(𝑥)‖ stands for the sum of the absolute values of all entries in the matrix 𝐵(𝑥).

Remark 1. The matrices 𝐹2𝑛 and 𝐹2𝑛+1 are chosen so that each differential expression of
the form

𝜏𝑦 =

[𝑚/2]∑︁
𝑘=0

(𝑝𝑘𝑦
(𝑘))(𝑘) + 𝑖

[(𝑚−1)/2]∑︁
𝑘=0

[(𝑞𝑘𝑦
(𝑘+1))(𝑘) + (𝑞𝑘𝑦

(𝑘))(𝑘+1)], (7)

where [𝑎] is the maximal integer number not exceeding 𝑎, and 𝑚 = 2𝑛 or 𝑚 = 2𝑛 + 1, with
sufficiently smooth coefficients is generated by the matrices of such form and all the entries
of these matrices vanish except for the necessary non-zero entries (cf. the form of matrices
𝐹2𝑛, 𝐹2𝑛+1 and Condition (𝐴)) and possibly the entries at the secondary diagonal and at two
diagonals to the right and to the left of the secondary one and the non-zero entries are smooth
functions, for details see [1, Append. A]. Moreover, the Shin-Zettl matrices 𝐹2𝑛 and 𝐹2𝑛+1

constructed in [1] and generating expression (7)) are such that if we replace the smoothness
of the entries in these matrices by their local integrability and if the derivatives in formulae
(1) and (2) are treated in the distribution sense, then we can open the brackets and a regular
generalized function 𝜏𝑦 in (2) for 𝑦 ∈ 𝒟(𝜏) is represented as (7) in terms of the theory of
generalized functions. At that we stress that the coefficients 𝑝𝑘 and 𝑞𝑘 in expression (7) should
be only locally integrable (see [6], [7]).

It was announced in work [3] that a wide class of expressions of form (7) of arbitrary order
with distribution coefficients is also covered by the class of quasi-differential expression generated
by the Shin-Zettl matrices of form 𝐹2𝑛 or 𝐹2𝑛+1.

Remark 2. The definition of quasi-derivatives and quasi-differential expression via formulae
(1) and (2) by means of the matrices 𝐹2𝑛 and 𝐹2𝑛+1 allows us to state that 𝑦[𝑗] = 𝑦(𝑗) as
0 6 𝑗 6 𝑛−1, that is, the entries of these matrices not equalling to one are involved only in the
definition of 𝑦[𝑗] as 𝑛 6 𝑗 6 𝑚− 1 and 𝜏𝑦. Using this fact, we can show that in the case when
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the matrices 𝐹2𝑛 and 𝐹2𝑛+1 generate differential expression (7), as 𝑦 ∈ 𝒟(𝜏), the expressions
𝑝𝑘𝑦

(𝑘) (0 6 𝑘 6 [𝑚/2]) and 𝑞𝑘𝑦
(𝑘+1) (0 6 𝑘 6 [(𝑚 − 1)/2]) are regular generalized functions.

Thus, as 𝑦 ∈ 𝒟(𝜏), the terms in expression (7) are generalized derivatives of regular generalized
functions and their sum 𝜏𝑦 is a regular generalized function.

3. Leading term in the asymptotics of solutions

3.1. In what follows we make use of the following statement proved in [8], see also [9]; [10, Ch.
III, Prob. 35]; [11, Ch. IV].

Lemma 1. We consider the system of differential equations

𝑉 ′(𝑡) = (𝐴 + 𝑅(𝑡))𝑉 (𝑡), (8)

where the matrix 𝐴 is constant and the canonical form of the matrix 𝐴 has Jordan blocks 𝐽𝑘,
𝑘 > 1, and maximal number of the rows for all blocks 𝐽𝑘 is equal to 𝑟+ 1, (𝑟 > 1). Assume that

∞∫︁
1

𝑡𝑟||𝑅(𝑡)||𝑑𝑡 < ∞. (9)

Let 𝑧 be the characteristic root 𝐴 and let the equation

𝑉 ′(𝑡) = 𝐴𝑉 (𝑡) (10)

has a solution of the form
𝑒𝑧𝑡𝑡𝑘𝐶 + 𝑂(𝑒𝑧𝑡𝑡𝑘−1),

where 𝐶 is a constant vector. Then equation (8) has a solution 𝜙 such that

𝜙(𝑡) = 𝑒𝑧𝑡𝑡𝑘(𝐶 + 𝑜(1)), 𝑡 → +∞.

3.2. We prove the following theorem.

Theorem 1. Let the entries of the matrix 𝐹 satisfy conditions (A)-(C) and 𝑧1, 𝑧2, . . . , 𝑧𝑞,
𝑧𝑞+1, . . . , 𝑧𝑞+𝑗 be different characteristic roots of the matrix 𝐴 and 𝑧1, 𝑧2, . . . , 𝑧𝑞 are simple
roots; as 1 6 𝑝 6 𝑗, the multiplicity of the root 𝑧𝑞+𝑝 is equal to 𝑟𝑝. Then equation (3) has a
fundamental system of solutions 𝑦𝑘(𝑥) such that as 𝑥 → +∞

𝑦𝑘(𝑥) = 𝑐𝑘𝑥
𝑧𝑘− 1

2 (1 + 𝑜(1)), 𝑘 = 1, 2, . . . , 𝑞, (11)

and as 𝑘 = 𝑞, 𝑞 + 𝑟1, . . . , 𝑞 + 𝑟1 + . . . + 𝑟𝑗−1,

𝑦𝑘+𝑖(𝑥) = 𝑐𝑘+𝑖𝑥
𝑧𝑞+𝑝− 1

2 (ln𝑥)𝑖−1(1 + 𝑜(1)), 𝑖 = 1, . . . , 𝑟𝑝, if 𝑘 = 𝑞 + 𝑟1 + . . . + 𝑟𝑝−1, (12)

where 𝑐1, 𝑐2, . . . , 𝑐𝑚 are arbitrary non-zero constants.

Proof. The structure of the matrix 𝐴 both as 𝑚 = 2𝑛 and 𝑚 = 2𝑛 + 1 is such that 𝑎𝑗,𝑗+1 ̸= 0
as 1 6 𝑗 6 𝑚 − 1 and 𝑎𝑗𝑘 = 0 as 2 6 𝑗 + 1 < 𝑘 6 𝑚, see Section 2. This is an eigenvector
associated with an eigenvalue is uniquely determined by its first coordinate. Thus, the geometric
multiplicity of each eigenvalue of the matrix 𝐴 is equal to one. In other words, with each
eigenvalue of the matrix 𝐴, only one Jordan block in its canonical form is associated. This
is why the maximal dimension of a Jordan block in the canonical form of the matrix 𝐴, the
number 𝑟 + 1 in Lemma 1 coincides with the maximal multiplicity of the eigenvalues of the
matrix 𝐴, the number 𝑟 + 1 in Condition (C).

We transform system of differential equations (5) by letting 𝑥 = 𝑒𝑡. Then this system casts
into form (8), where 𝑉 (𝑡) = Y(𝑒𝑡), 𝑅(𝑡) = 𝐵(𝑒𝑡). Moreover, if the matrices 𝐴 and 𝐵(𝑥) satisfy
Condition (C), then the matrix 𝑅(𝑡) satisfies condition (9) of Lemma 1. If 𝑧1, 𝑧2, . . . , 𝑧𝑞 are
different characteristic roots of the matrix 𝐴, then system of equations with constant coefficients
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(10) has the solutions 𝑒𝑧𝑘𝑡𝐶𝑘, where 𝐶𝑘 is an eigenvector corresponding to the eigenvalue 𝑧𝑘,
(1 6 𝑘 6 𝑞). Applying Lemma 1, we find that system (8) has solutions of the form

𝑒𝑧𝑘𝑡(𝐶𝑘 + 𝑜(1)), 𝑡 → +∞.

Thus, making the inverse change 𝑡 = ln𝑥 and taking into consideration the transformation
y = 𝐷Y, we find that system (4) has solutions represented as

𝑥𝑧𝑘𝐷(𝐶𝑘 + 𝑜(1)), 𝑥 → +∞.

Therefore, the first coordinate of this solution, the solution 𝑦𝑘 of equation (3), is represented
as (11), where 𝑐𝑘, the first coordinate of the eigenvector 𝐶𝑘, is non-zero.

Let 𝑧𝑞+𝑝 be the characteristic root of matrix 𝐴 of multiplicity 𝑟𝑝. As we know, only one
Jordan block in the canonical expansion of the matrix 𝐴 is associated with this characteristic
root and this is why the dimension of this block is equal to 𝑟𝑝 and it does not exceed the number
𝑟 + 1. This implies that system of equations (10) has solution represented as

𝑒𝑧𝑞+𝑝𝑡𝐶𝑞+𝑝 and 𝑒𝑧𝑞+𝑝𝑡𝑡𝑘𝐶𝑞+𝑝 + 𝑂(𝑒𝑧𝑞+𝑝𝑡𝑡𝑘−1), 𝑘 = 1, 2, . . . , 𝑟𝑝 − 1,

where 𝐶𝑞+𝑝 is an eigenvector associated with the eigenvalue 𝑧𝑞+𝑝. Applying Lemma 1 one more
time and arguing as in the case of a simple eigenvalue, we can easily find that equation (3) has
exactly 𝑟𝑝 solutions represented as (12) and associated with the eigenvalue 𝑧𝑞+𝑝. It remains to
consider the set of solutions to equation (3) represented as (11) and (12) and associated with all
eigenvalues of the matrix 𝐴. It is obvious that this set forms a fundamental system of solutions
to this equation.

We denote by F(𝑧, 𝜈) the characteristic polynomial of the matrix 𝐴. Theorem 1 implies the
following statement.

Corollary 1. Assume that the entries of the number of linearly independent solutions to
equations (3) belonging to the space ℒ2[1,+∞) is equal to
1) the number of the roots of the polynomial F(𝑧, 𝜈) located in the domain Re 𝑧 < 0 as 𝜈 > 0;
this number is independent of 𝜆;
2) the number of the roots of the polynomial F(𝑧, 0) − 𝜆 located in the domain Re 𝑧 < 0 as
𝜈 = 0.

Remark 3. Let 𝑦(𝑥) be an arbitrary solution to equation (3), whose asymptotic behavior
is determined by Theorem 1. The given proof of this theorem allows us to obtain the leading
term of the asymptotics at infinity for the quasi-derivatives 𝑦[𝑗](𝑥) of the function 𝑦(𝑥). In
order to do this, the (𝑗 + 1)th component of the corresponding eigenvector should be non-zero.
In particular, in view of Remark 2, we obtain that in some cases, the asymptotic formulae in
Theorem 1 can be differentiated up to (𝑛− 1)th order.

Remark 4. The matrix function 𝐵(𝑥) is not explicitly involved in the asymptotic formulae
in Theorem 1, it is just sufficient this matrix to satisfy Condition (C). Assume that the entries
𝑓𝑗𝑘(𝑥) of the matrix 𝐹 (equal to 𝐹2𝑛 or to 𝐹2𝑛+1) are chosen so that the corresponding differential
expression 𝜏𝑦 is represented as (7) and at that 𝐵(𝑥) is a zero matrix, see Remark 1. In this
situation, the analysis of expression 𝜏𝑦 shows that in the case 𝑚 = 2𝑛, if the coefficients 𝑝𝑘,
𝑘 = 0, 1, . . . , 𝑛, and 𝑞𝑘, 𝑘 = 0, 1, . . . , 𝑛 − 1, satisfy Condition (B), then there exist complex
numbers 𝑎𝑘, 𝑘 = 0, 1, . . . , 𝑛, and 𝑏𝑘, 𝑘 = 0, 1, . . . , 𝑛 − 1, such that the roots of the polynomial
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F(𝑧, 𝜈) coincide, as 𝜈 > 0, with the roots of the polynomial

F2𝑛(𝑧, 𝜈) =𝑎0 +
𝑛∑︁

𝑘=1

𝑎𝑘

𝑘−1∏︁
𝑗=0

[︃(︁
𝑧 +

𝜈

2

)︁2

−
(︂
𝜈 + 1

2
+ 𝑗

)︂2
]︃

+ 2𝑖
(︁
𝑧 +

𝜈

2

)︁{︁
𝑏0 +

𝑛−1∑︁
𝑘=1

𝑏𝑘

𝑘−1∏︁
𝑗=0

[︁(︁
𝑧 +

𝜈

2

)︁2

−
(︂
𝜈 + 1

2
+ 𝑗

)︂2]︁}︁
.

The similar statement is true as 𝑚 = 2𝑛 + 1, that is, there exists the polynomial F2𝑛+1(𝑧, 𝜈)
of the form

F2𝑛+1(𝑧, 𝜈) = F2𝑛(𝑧, 𝜈) + 2𝑖
(︁
𝑧 +

𝜈

2

)︁
𝑏𝑛

𝑛−1∏︁
𝑗=0

[︃(︁
𝑧 +

𝜈

2

)︁2

−
(︂
𝜈 + 1

2
+ 𝑗

)︂2
]︃

such that the eigenvalues of the matrix 𝐴 coincide, as 𝜈 > 0, with the roots of this polynomial,
for more details on the polynomials F2𝑛 and F2𝑛+1 see [6], [7].

4. Product of quasi-differential expressions

4.1. In the present section we equip the quasi-derivatives 𝑦[𝑗], the quasi-differential expression
𝜏𝑦, the matrices 𝐷, 𝐴, 𝐵(𝑥) and the polynomials F(𝑧, 𝜈) (see Sections 2 and 3) by the subscript
𝐹 stressing in this way that they are constructed in terms of the matrix 𝐹 . Following works
[2] and [4], first we define the product of two quasi-differential expressions. Let ℱ ∈ 𝑍𝑚(𝑎, 𝑏),
𝒢 ∈ 𝑍𝑙(𝑎, 𝑏), 𝑚, 𝑙 > 1, and

ℋ :=

(︂
𝒢 𝑀

𝑂𝑚×𝑙 ℱ

)︂
,

where 𝑀 is the matrix of size 𝑙×𝑚; all its entries are zero except that in the left lower corner,
which is equal to 1, and 𝑂𝑚×𝑙 is the zero matrix of size 𝑚× 𝑙. It is obvious that ℋ ∈ 𝑍𝑚+𝑙(𝑎, 𝑏),
that is, the matrix ℋ satisfies Conditions 1) and 2) of Section 1. In view of the definition of
the quasi-derivatives and the quasi-differential expression, see formulae(1) and (2) in Section 1,
it is easy to establish that

𝑦
[0]
ℋ := 𝑦, 𝑦

[𝑗]
ℋ := 𝑦

[𝑗]
𝒢 , 𝑗 = 1, . . . , 𝑙 − 1,

𝑦
[𝑙]
ℋ := (𝑦

[𝑙−1]
𝒢 )′ −

𝑙∑︁
𝑘=1

𝑔𝑙𝑘𝑦
[𝑘−1]
𝒢 ,

𝑦
[𝑙+𝑟]
ℋ := (𝑦

[𝑙]
𝒢 )

[𝑟]
ℱ , 𝑟 = 1, . . . ,𝑚− 1,

and

𝜏ℋ𝑦 := 𝑖𝑚+𝑙[(𝑦
[𝑙+𝑚−1]
ℋ )′ −

𝑚∑︁
𝑘=1

𝑓𝑚𝑘𝑦
[𝑙+𝑘−1]
ℋ ].

By these formulae we see that the domain 𝒟(𝜏ℋ) of the expression 𝜏ℋ is given by the identity

𝒟(𝜏ℋ) = {𝑦|𝑦 ∈ 𝒟(𝜏𝒢) and 𝜏𝒢𝑦 ∈ 𝒟(𝜏ℱ)},

and moreover,

𝜏ℋ𝑦 = 𝜏ℱ(𝜏𝒢𝑦) as 𝑦 ∈ 𝒟(𝜏ℋ)(= 𝒟(𝜏ℱ𝜏𝒢)),

for details see [2], [4].
In the case 𝜏 = 𝜏ℋ equation (3) is, as usually, equivalent to system (4), that is,

y′ = (ℋ + Λ)y, (13)
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where y is the unknown vector column with 𝑚 + 𝑙 components and the entries of the square
matrix Λ = (𝜆𝑖𝑗) of the size (𝑚+ 𝑙)× (𝑚+ 𝑙) are defined by the identities 𝜆𝑚+𝑙,1 := 𝑖−𝑚−𝑙𝜆 and
𝜆𝑖𝑗 := 0 for all other values 𝑖 and 𝑗.

4.2. Now let the matrices 𝒢 ∈ 𝑍𝑙[1,+∞) and ℱ ∈ 𝑍𝑚[1,+∞) have the same structrure as the
matrix 𝐹 in Section 2 and therefore, they satisfy Condition (A). Let 𝜈1, 𝜈2 > 0 be some constants
and the entries 𝑔𝑗𝑘 and 𝑓𝑗𝑘 of the matrices 𝒢 and ℱ are determined by the identities similar to
the identities in Condition (B) in Section 2 with the parameters 𝜈1 and 𝜈2, respectively.

We define the diagonal matrix

𝐷ℋ :=

(︂
𝐷𝒢 𝑂𝑙×𝑚

𝑂𝑚×𝑙 𝑥𝜈1𝐷ℱ

)︂
and we transform system (13) to (5) by he change y = 𝐷ℋY, where Y is the unknown vector
function with 𝑚 + 𝑙 components, that is, Y satisfies the system of equations

𝑥
𝑑Y

𝑑𝑥
= (𝐴ℋ + 𝐵ℋ(𝑥))Y.

Here the scalar matrix 𝐴ℋ and the matrix function 𝐵ℋ(𝑥) are determined by the identities

𝐴ℋ =

(︂
𝐴𝒢 𝑀

𝑂𝑚×𝑙 𝐴ℱ

)︂
, 𝐵ℋ(𝑥) =

(︂
𝐵̃𝒢(𝑥) 𝑂𝑙×𝑚

𝑆(𝑥) 𝐵̃ℱ(𝑥)

)︂
,

where the matrices 𝐴𝒢, 𝐴ℱ and the matrix functions 𝐵̃𝒢, 𝐵̃ℱ are defined via the procedure
applied in Section 2, see equation (5)), and 𝑆(𝑥) is a matrix of size 𝑚× 𝑙 and all its elements
vanish except the element 𝑖−𝑚−𝑙𝜆/𝑥𝜈1+𝜈2 in the left lower corner.

It is clear that the detailed description of the matrices 𝐷ℋ, 𝐴ℋ and 𝐵ℋ(𝑥) depend on the
parity of the numbers 𝑙 and 𝑚 and would take a lot of place. This is why we restrict ourselves
by what has been said above.

Let 𝑟 + 1 be the maximal size of the Jordan block in the canonical form of the matrix 𝐴ℋ
and let the number 𝑟 and the matrix 𝐵(𝑥)(= 𝐵ℋ(𝑥)) satisfy Condition (C), see (6). Then, as
in Section 3, we can apply Lemma 1 and prove the analogues of Theorem 1 and Corollary 1 for
equation (3) in the case 𝜏 = 𝜏ℋ, that is, for the equation

𝜏ℱ𝜏𝒢𝑦 = 𝜆𝑦.

Remark 5. We can show that the characteristic polynomial Fℋ(𝑧, 𝜈1, 𝜈2) of the matrix 𝐴ℋ
is determined by the identity

Fℋ(𝑧, 𝜈1, 𝜈2) = F𝒢(𝑧, 𝜈1)Fℱ(𝑧 + 𝜈1, 𝜈2),

and the number 𝑟+1 is the maximal multiplicity of the roots of the product of these polynomials.
In particular, in the case 𝒢 = ℱ = 𝐹 (for the definition of the matrix 𝐹 see Section 2) and,
respectively, 𝜈1 = 𝜈2 = 𝜈, the characteristic polynomial for the square of the expression 𝜏 2𝐹 is
defined by the identity

Fℋ(𝑧, 𝜈) = F𝐹 (𝑧, 𝜈)F𝐹 (𝑧 + 𝜈, 𝜈),

where, according to Remark 4, the polynomial F𝐹 (𝑧, 𝜈) is such that

F𝐹 (𝑧, 𝜈) = F2𝑛(𝑧, 𝜈) or F𝐹 (𝑧, 𝜈) = F2𝑛+1(𝑧, 𝜈).

We observe that here the conditions 𝜈1, 𝜈2 > 0 were needed for the sake of the brevity of
the exposition and they can be replaced by the conditions 𝜈1, 𝜈2 > 0. Moreover, the method
proposed in this section for the product of two expression is generalized with no problems for
the product of finitely many quasi-differential expressions.
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5. Deficiency index for the minimal operator

5.1. In this section we assume that apart of Conditions 1) and 2) (cf. Introduction), the matrix
𝐹 satisfies also the condition:
3)𝐹 = −𝐽−1𝐹 *𝐽, where 𝐹 * is the adjoint matrix of 𝐹 and

𝐽 :=
(︀
(−1)𝑖𝛿𝑖,𝑚+1−𝑗

)︀
, 𝑖, 𝑗 = 1, 2, . . . ,𝑚,

𝛿𝑖𝑗 is the Kronecker delta.
This condition ensures the validity of the Lagrange formula for the quasi-differential expres-

sion 𝜏𝑦 (see (2)), namely, for all functions 𝑢, 𝑣 ∈ 𝒟(𝜏), the identity

𝛽∫︁
𝛼

𝑣𝜏𝑢−
𝛽∫︁

𝛼

𝑢𝜏𝑣 = [𝑢, 𝑣](𝛽) − [𝑢, 𝑣](𝛼), 𝛼, 𝛽 ∈ (𝑎, 𝑏),

hold true, where

[𝑢, 𝑣](𝑥) = 𝑖𝑚
𝑚−1∑︁
𝑗=0

(−1)𝑚+1−𝑗𝑢[𝑗](𝑥)𝑣[𝑚−1−𝑗](𝑥),

and the quasi-derivatives 𝑦[𝑗] (𝑗 = 0, 1, . . . ,𝑚− 1) are defined by formulae (1).
Following the well-known procedure (see, for instance, [1, Sect. I]), we define the minimal

closed symmetric operator 𝐿0 generated by the expression 𝜏𝑦 in the Hilbert space ℒ2[1,+∞).
By 𝐷′

0 we denote the set of all complex-valued compactly supported functions on [1,+∞) in
𝒟(𝜏) such that 𝜏𝑦 ∈ ℒ2[1,+∞). It was established in work [1, Appen. A] that the set 𝐷′

0

is everywhere dense in ℒ2[1,+∞) and by the formula 𝐿′
0𝑦 = 𝜏𝑦, the expression 𝜏𝑦 defines a

symmetric (non-closed) operator in ℒ2[1,+∞) on the domain 𝐷′
0. By the symbols 𝐿0 and 𝐷0

we denote the closure of this operator and its domain, respectively.
Thus, in the considered case, the expression 𝜏𝑦 generates the minimal closed symmetric

operator 𝐿0 in the Hilbert space ℒ2[1,+∞). This is why the expression 𝜏𝑦 is called symmetric
(formally self-adjoint) quasi-differential expression generated by the matrix 𝐹 .

Let 𝜆 be a complex number with a non-zero imaginary part, Im𝜆 ̸= 0. By 𝑅𝜆 and 𝑅𝜆

we denote the range of the operators 𝐿0 − 𝜆𝐼 and 𝐿0 − 𝜆𝐼, respectively, (𝐼 is the identity
mapping), while by 𝒩𝜆 and 𝒩𝜆 we denote their orthogonal complements in the space ℒ2[1,+∞).
The spaces 𝒩𝜆 and 𝒩𝜆 are called defect subspaces associated with the numbers 𝜆 and 𝜆.
Their dimensions dim𝒩𝜆 and dim𝒩𝜆 are same in the upper and lower half-planes. We denote
𝑛+ = dim𝒩𝜆 and 𝑛− = dim𝒩𝜆 as Im𝜆 > 0. The pair (𝑛+, 𝑛−) is called the deficiency index
of the operator 𝐿0. It is known that the numbers 𝑛+ and 𝑛− coincide with the maximal
number of linearly independent solutions to equation (3) belonging to the space ℒ2[1,+∞) as
the parameter 𝜆 is taken in the upper (Im𝜆 > 0) or lower (Im𝜆 < 0) half-plane, respectively.
As 𝑚 = 2𝑛, the numbers 𝑛+ and 𝑛− satisfy the inequalities

𝑛 6 𝑛+, 𝑛− 6 𝑚,

while as 𝑚 = 2𝑛 + 1, they satisfy the inequalities

𝑛 6 𝑛+ 6 𝑚, 𝑛 + 1 6 𝑛− 6 𝑚, or 𝑛 + 1 6 𝑛+ 6 𝑚, 𝑛 6 𝑛− 6 𝑚.

5.2. Assume now that the entries of the matrix 𝐹 (𝐹2𝑛 or 𝐹2𝑛+1) obey Conditions (A)–(C)
and, in addition, Condition 3). The according to Section 3, Theorem 1 and Corollary 1 are
true for equation (3) and, moreover, according to Subsection 5.1, the expression 𝜏𝑦 generates
the minimal closed symmetric operator 𝐿0 in the Hilbert space ℒ2[1,+∞). Thus, Corollary 1
is the statement on the deficiency index of the operator 𝐿0, that is, the following theorem is
true.
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Theorem 2. Let the entries of the matrix 𝐹 (𝐹2𝑛 or 𝐹2𝑛+1) satisfy Conditions (A)–(C) and
Condition 3). Then as 𝜈 > 0, the deficiency numbers of the operator 𝐿0 coincide and are equal
to the numbers of the polynomial F(𝑧, 𝜈) (see Remark 4) lying in the domain Re 𝑧 < 0.

We can formulate and prove a theorem similar to Theorem 2 for the case were the quasi-
differential expression 𝜏𝑦 is the product of two quasi-differential expressions (see Section 4 and,
in particular, Remark 5).
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