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LEVI-FLAT WORLD: A SURVEY OF LOCAL THEORY

A. SUKHOV

Abstract. This expository paper concerns local properties of Levi-flat real analytic
manifolds with singularities. Levi-flat manifolds arise naturally in Complex Geometry and
Foliation Theory. In many cases (global) compact Levi-flat manifolds without singularities
do not exist. These global obstructions make natural the study of Levi-flat objects with
singularities because they always exist. The present expository paper deals with some recent
results on local geometry of Levi-flat singularities. One of the main questions concerns an
extension of the Levi foliation as a holomorphic foliation to a full neighborhood of singularity.
It turns out that in general such extension does not exist. Nevertheless, the Levi foliation
always extends as a holomorphic web (a foliation with branching) near a non-dicritical
singularity. We also present an efficient criterion characterizing these singularities.
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1. Introduction

This expository paper paper concerns local properties of real analytic Levi-flat manifolds
with singularities. Such manifolds arise naturally in the theory of holomorphic foliations and
differential equations, in particular, in the study of minimal sets for foliations. They were
studied recently by several authors from different points of view (see, e.g., [1–6, 11]). In the
present paper I discuss recent progress achieved in the series of our joint papers [16–18] with
S. Pinchuk and R. Shafikov. Of course, they always must be considered as co-authors of the
present work.
This paper is written for the special issue of Ufa Mathematical Journal dedicated to the

100th anniversary of A.F. Leontiev, the foundator of the theory function research school in
Ufa. I dedicate this work to the memory of this remarkable mathematician.

2. Real analytic Levi-flat hypersurfaces in C𝑛

2.1. Real analytic sets and their complexification. Let Ω ⊂ R𝑛 be a domain. A real
analytic set Γ ⊂ Ω is a closed set locally defined as a zero locus of a finite collection of real
analytic functions. In fact, we can always take just one function to locally define any real analytic
set. We say that Γ is irreducible in Ω if it cannot be represented as the union Γ = Γ1∪Γ2 of two
real analytic sets Γ𝑗 in Ω with Γ𝑗 ∖ (Γ1∩Γ2) ̸= ∅, 𝑗 = 1, 2, (this is the geometric irreducibility).
In the present paper we always deal with germs of real analytic sets (without mentioning this
explicitely) and assume that they are irreducible as germs. A set Γ is called a real hypersurface
if there exists a point 𝑞 ∈ Γ such that near 𝑞 the set Γ is a real analytic submanifold of
dimension 𝑛 − 1. For a real hypersurface Γ we call such 𝑞 a regular point. The union of all
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regular points form a regular locus denoted by Γ*. Its complement Γ𝑠𝑖𝑛𝑔 := Γ ∖ Γ* is called the
singular locus of Γ. Note that our convention is different from the usual definition of a regular
point in semianalytic or subanalytic geometry, where a similar notion is less restrictive and a
real analytic set is allowed to be a submanifold of some dimension near a regular point. By our
definition, the points of a hypersurface Γ, where Γ is a submanifold of dimension smaller than
𝑛− 1, belong to the singular locus. For that reason, Γ* may not be dense in Γ, this can happen
even if Γ is irreducible (so-called umbrellas). Note that Γ𝑠𝑖𝑛𝑔 is a closed semianalytic subset of
Γ (possibly empty) of real dimension at most 𝑛− 2.
In local questions we are interested in the geometry of a real hypersurface Γ in an arbitrarily

small neighbourhood of a given point 𝑎 ∈ Γ, i.e., of the germ at 𝑎 of Γ. If the germ is irreducible
at 𝑎, we may consider a sufficiently small open neighbourhood 𝑈 of 𝑎 and a representative of the
germ which is irreducible at 𝑎, see [14] for details. In what follows we will not distinguish between
the germ of Γ at a given point 𝑎 and its particular representative in a suitable neighbourhood
of 𝑎.
Let Γ ⊂ R𝑛

𝑥 be the germ of a real analytic set at the origin. By ΓC we denote the
complexification of Γ, i.e., a complex analytic germ at the origin in C𝑛

𝑧 = R𝑛
𝑥 + 𝑖R𝑛

𝑦 , 𝑧 = 𝑥+ 𝑖𝑦,

with the property that each holomorphic function vanishing on Γ necessarily vanishes on ΓC.
Equivalently, ΓC is the smallest complex analytic germ in C𝑛 that contains Γ. It is well known
that the dimension of Γ is equal to the complex dimension of ΓC and that the germ of ΓC

is irreducible at zero whenever the germ of Γ is irreducible, see Narasimhan [14] for further
details and proofs. Also, given a real analytic germ

∑︀
|𝐽 |≥0 𝑎𝐽 𝑥

𝐽 , 𝑎𝐽 ∈ R, 𝑥 ∈ R𝑛, we define its

complexification to be the complex analytic germ
∑︀

𝑎𝐽 𝑧
𝐽 .

While the complexification of the germ of a real analytic set is canonical and is independent
of the choice of the defining function, the next lemma gives a convenient way of constructing
the complexification of a real analytic hypersurface using a suitably chosen defining function.
We will need the following notion of a minimal defining function for a complex hypersurface.
Given a complex hypersurface 𝐴 = {𝑧 ∈ Ω : 𝑓(𝑧) = 0} in a domain Ω ⊂ C𝑛, 𝑓 is called minimal
if for every open subset 𝑈 ⊂ Ω and any function 𝑔 holomorphic on 𝑈 and such that 𝑔 = 0 on
𝐴∩𝑈 , there exists a function ℎ holomorphic in 𝑈 such that 𝑔 = ℎ𝑓 . If 𝑓 is a minimal defining
function, then the singular locus of 𝐴 coincides with the set 𝑓 = 𝑑𝑓 = 0. Locally, any irreducible
complex hypersurface admits a minimal defining function, see Chirka [7].

Lemma 2.1. Let Γ ⊂ R𝑛 be an irreducible germ of a real analytic hypersurface at the
origin. Then there exists a defining function 𝜌(𝑥) of the germ of Γ at the origin such that
its complexification 𝜌(𝑧) is a minimal defining function of the complexification ΓC.

2.2. Levi-flat hypersurfaces. Let 𝑧 = (𝑧1, . . . , 𝑧𝑛), 𝑧𝑗 = 𝑥𝑗 + 𝑖𝑦𝑗, be the standard
coordinates in C𝑛. Let Γ be an irreducible germ of a real analytic hypersurface at the
origin defined by a function 𝜌 provided by Lemma 2.1. In a (connected) sufficiently small
neighbourhood of the origin Ω ⊂ C𝑛, the hypersurface Γ is a closed irreducible real analytic
subset of Ω of dimension 2𝑛− 1.
For 𝑞 ∈ Γ* consider the holomorphic tangent space 𝐻𝑞(Γ) := 𝑇𝑞(Γ) ∩ 𝐽𝑇𝑞(Γ). The Levi form

of Γ is a Hermitian quadratic form defined on 𝐻𝑞(Γ) by

𝐿𝑞(𝑣) =
∑︁
𝑘,𝑗

𝜌𝑧𝑘𝑧𝑗(𝑞)𝑣𝑘𝑣𝑗

with 𝑣 ∈ 𝐻𝑞(Γ). A real analytic hypersurface Γ is called Levi-flat if its Levi form vanishes on
𝐻𝑞(Γ) for every regular point 𝑞 of Γ. By the classical result of Elie Cartan, for every point
𝑞 ∈ Γ* there exists a local biholomorphic change of coordinates centred at 𝑞 such that in the
new coordinates Γ in some neighbourhood 𝑈 of 𝑞 = 0 has the form {𝑧 ∈ 𝑈 : 𝑧𝑛 + 𝑧𝑛 = 0} .
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Hence, Γ ∩ 𝑈 is locally foliated by complex hyperplanes {𝑧𝑛 = 𝑐, 𝑐 ∈ 𝑖R}. This foliation is
called the Levi foliation of Γ*, and will be denoted by ℒ. We denote by ℒ𝑞 the leaf of the Levi
foliation through 𝑞. Note that by definition it is a connected complex hypersurface closed in Γ*.
Let 0 ∈ Γ

*
. We choose the neighbourhood Ω of the origin in the form of a polydisc

∆(𝜀) = {𝑧 ∈ C𝑛 : |𝑧𝑗| < 𝜀} of radius 𝜀 > 0. Then for 𝜀 small enough, the function 𝜌 admits
the Taylor expansion convergent in 𝑈 :

𝜌(𝑧, 𝑧) =
∑︁
𝐼𝐽

𝑐𝐼𝐽𝑧
𝐼𝑧𝐽 , 𝑐𝐼𝐽 ∈ C, 𝐼, 𝐽 ∈ N𝑛. (1)

The coefficients 𝑐𝐼𝐽 satisfy the condition

𝑐𝐼𝐽 = 𝑐𝐽𝐼 , (2)

because 𝜌 is a real-valued function. Note that in local questions we may further shrink Ω as
needed.
By Lemma 2.1, the choice of the defining function 𝜌 guarantees that the complexification of

(the germ of) Γ is given by

ΓC = {(𝑧, 𝑤) ∈ C𝑛 × C𝑛 : 𝜌(𝑧, 𝑤) = 0}. (3)

The hypersurface Γ lifts canonically to ΓC as

Γ̂ = ΓC ∩ {𝑤 = 𝑧}.
In what follows we denote by ΓC𝑠𝑖𝑛𝑔 the singular locus of ΓC.

2.3. Segre Varieties. Our key tool is the family of Segre varieties associated with a real
analytic hypersurface Γ. For 𝑤 ∈ ∆(𝜀) consider a complex analytic hypersurface given by

𝑄𝑤 = {𝑧 ∈ ∆(𝜀) : 𝜌(𝑧, 𝑤) = 0}. (4)

It is called the Segre variety of the point 𝑤. This definition uses the defining function 𝜌 of Γ
in a neighbourhood of the origin which appears in (3). We will always consider the case where
the germ of Γ at the origin is irreducible and everywhere through the paper we use a defining
function provided by Lemma 2.1 in a neighbourhood of the origin (the same convention is used
in [18]). In general the Segre varieties 𝑄𝑤 also depend on the choice of 𝜀 (some irreducible
components of 𝑄𝑤 may disappear when we shrink 𝜀). Throughout the paper we consider only
the Segre varieties 𝑄𝑤 defined by means of the complexification at the origin. The reader should
keep this in mind. Also note that if 0 is a regular point of Γ, then the notion of the Segre variety
𝑄𝑤 is independent of the choice of a defining function 𝜌 with non-vanishing gradient when 𝑤
is close enough to the origin.
The following properties of Segre varieties are immediate.

Lemma 2.2. Let Γ be a germ of an irreducible real analytic hypersurface in C𝑛, 𝑛 > 1. Then

(a) 𝑧 ∈ 𝑄𝑧 if and only if 𝑧 ∈ Γ,
(b) 𝑧 ∈ 𝑄𝑤 if and only if 𝑤 ∈ 𝑄𝑧.

We also recall the property of local biholomorphic invariance of some distinguished
components of the Segre varieties near regular points. Since here we are working near a
singularity, we state this property in detail using the notation introduced above. Consider
a regular point 𝑎 ∈ Γ* ∩ ∆(𝜀) and fix 𝛼 > 0 small enough with respect to 𝜀. Consider any
function 𝜌𝑎 real analytic on the polydisc ∆(𝑎, 𝛼) = {|𝑧𝑗 − 𝑎𝑗| < 𝛼, 𝑗 = 1, . . . , 𝑛} such that
Γ ∩ ∆(𝑎, 𝛼) = 𝜌−1

𝑎 (0) and the gradient of 𝜌𝑎 does not vanish on ∆(𝑎, 𝛼). Then for 𝑤 ∈ ∆(𝑎, 𝛼)
we can define the Segre variety 𝑎𝑄𝑤 (“the Segre variety with respect to the regular point 𝑎”) as

𝑎𝑄𝑤 = {𝑧 ∈ ∆(𝑎, 𝛼) : 𝜌𝑎(𝑧, 𝑤) = 0},
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(we use the Taylor series of 𝜌𝑎 at 𝑎 to define the complexification). For 𝛼 small enough, 𝑎𝑄𝑤

is a connected nonsingular complex submanifold of dimension 𝑛− 1 in ∆(𝑎, 𝛼). This definition
is independent of the choice of the local defining function 𝜌𝑎 satisfying the above properties.
We have the inclusion 𝑎𝑄𝑤 ⊂ 𝑄𝑤. Note that in general 𝑄𝑤 can have irreducible components in
∆(𝜀) which do not contain 𝑎𝑄𝑤.

Lemma 2.3. (Invariance property) Let Γ, Γ′ be irreducible germs of real analytic
hypersurfaces, 𝑎 ∈ Γ*, 𝑎′ ∈ (Γ′)*, and ∆(𝑎, 𝛼), ∆(𝑎′, 𝛼′) be small polydiscs. Let
𝑓 : ∆(𝑎, 𝛼) → ∆(𝑎′, 𝛼′) be a holomorphic map such that 𝑓(Γ ∩ ∆(𝑎, 𝛼)) ⊂ Γ′ ∩ ∆(𝑎′, 𝛼′) and
𝑓(𝑎) = 𝑎′. Then

𝑓(𝑎𝑄𝑤) ⊂ 𝑎′𝑄′
𝑓(𝑤)

for all 𝑤 ∈ ∆(𝑎, 𝛼) close enough to 𝑎. In particular, if 𝑓 : ∆(𝑎, 𝛼) → ∆(𝑎′, 𝛼′) is biholomorphic,
then 𝑓(𝑎𝑄𝑤) = 𝑎′𝑄′

𝑓(𝑤). Here
𝑎𝑄𝑤 and 𝑎′𝑄′

𝑓(𝑤) are the Segre varieties associated with Γ and Γ′

and the points 𝑎 and 𝑎′ respectively.

For the proof see for instance, [8]. As a simple consequence of Lemma 2.2 we have

Corollary 2.4. Let Γ ⊂ C𝑛 be an irreducible germ at the origin of a real analytic Levi-flat
hypersurface. Let 𝑎 ∈ Γ*. Then the following holds:

(a) There exists a unique irreducible component 𝑆𝑎 of 𝑄𝑎 containing the leaf ℒ𝑎. This is also
a unique complex hypersurface through 𝑎 which is contained in Γ.

(b) For every 𝑎, 𝑏 ∈ Γ* one has 𝑏 ∈ 𝑆𝑎 ⇐⇒ 𝑆𝑎 = 𝑆𝑏.
(c) Suppose that 𝑎 ∈ Γ* and ℒ𝑎 touches a point 𝑞 ∈ Γ such that dimC𝑄𝑞 = 𝑛− 1 (the point 𝑞

may be singular). Then 𝑄𝑞 contains 𝑆𝑎 as an irreducible component.

The proof is contained in [18]. Again, we emphasize that Corollary 2.4 concerns the “global”
Segre varieties, i.e., those defined by (4) using the complexification at the origin.

2.4. Characterization of dicritical singularities for Levi-flat hypersurfaces. Let Γ
be an irreducible germ of a real analytic Levi-flat hypersurface in C𝑛 at 0 ∈ Γ*. Fix a local
defining function 𝜌 chosen by Lemma 2.1 so that the complexification ΓC is an irreducible
germ of a complex hypersurface in C2𝑛 given as the zero locus of the complexification of 𝜌. As
already mentioned above, all Segre varieties which we consider are defined by means of this
complexification at the origin.
Fix also 𝜀 > 0 small enough; all considerations are in the polydisc ∆(𝜀) centred at the origin.

A point 𝑞 ∈ Γ* ∩ ∆(𝜀) is called a dicritical singularity if 𝑞 belongs to the closure of infinitely
many geometrically different leaves ℒ𝑎. Singular points in Γ* which are not dicritical are called
nondicritical.
A singular point 𝑞 is called Segre degenerate if dim𝑄𝑞 = 𝑛.

Lemma 2.5. Let Γ be a real analytic Levi-flat hypersurface. Then dicritical singular points
form a complex analytic subset of Γ of complex dimension at most 𝑛 − 2, in particular, it is
a discrete set if 𝑛 = 2. If Γ is algebraic, then the set of dicritical singularities is also complex
algebraic.

We recall that the Segre degenerate singular points form a complex analytic subset of ∆(𝜀)
of complex dimension at most 𝑛 − 2, in particular, it is a discrete set if 𝑛 = 2. For the proof
see [11, 18].

Theorem 2.6. Let Γ = 𝜌−1(0) be an irreducible germ at the origin of a real analytic Levi-flat
hypersurface in C𝑛 and 0 ∈ Γ*. Then 0 is a dicritical point if and only if it is Segre degenerate.

This result is obtained in [16].
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3. Singular webs

In this section we define singular holomorphic webs and outline the connection between webs
and differential equations. This connection is transparent in dimension two, so we will discuss
this case separately. For a comprehensive treatment of singular webs see, e.g., [15].

3.1. Webs in C2. Recall that the germ of a holomorphic codimension one foliation ℱ in C𝑛,
𝑛 ≥ 2, can be given by the germ of a holomorphic 1-form 𝜔 ∈ Λ1(𝑈) satisfying the Frobenius
integrability condition 𝜔 ∧ 𝑑𝜔 = 0. The leaves of ℱ are then complex hypersurfaces 𝐿 that are
tangent to ker𝜔. The foliation ℱ is singular if the set ℱ sng = {𝑧 : 𝜔(𝑧) = 0} is nonempty and
of codimension at least 2.
In dimension 2 the integrability condition for 𝜔 always holds, and the above definition of a

(nonsingular) foliation can be interpreted in the following way: for a suitably chosen open set
𝑈 and coordinate system in C2 the foliation ℱ is given by a holomorphic first order ODE

𝑑𝑧2
𝑑𝑧1

= 𝐹 (𝑧1, 𝑧2) (5)

with respect to unknown function 𝑧2 = 𝑧2(𝑧1). The leaves of the foliation ℱ are then the graphs
of solutions of the ODE. This interpretation admits a far reaching generalization which we now
describe. Our considerations are local and should be understood on the level of germs, but to
simplify the discussion we will work with appropriate representatives of the germs.
Let 𝑈1, 𝑈2 be domains in C containing the origin. Set 𝑈 = 𝑈1 × 𝑈2 ⊂ C2, and consider a

holomorphic function Φ on 𝑈 × C. It defines a holomorphic ordinary differential equation on
𝑈 × C,

Φ(𝑧1, 𝑧2, 𝑝) = 0 (6)

with 𝑧 = (𝑧1, 𝑧2) ∈ 𝑈 and 𝑝 = 𝑑𝑧2
𝑑𝑧1

∈ C. This is an equation for the unknown function 𝑧2 = 𝑧2(𝑧1);
in other words, we view 𝑧1 and 𝑧2 as the independent and the dependent variables respectively.
For 𝑑 ∈ N, a singular holomorphic 𝑑-web 𝒲 in 𝑈 is defined by equation (6) where Φ is of the
form

Φ(𝑧, 𝑝) =
𝑑∑︁

𝑗=0

Φ𝑗(𝑧)𝑝𝑗. (7)

In general, there are 𝑑 families of solutions of (6) (with Φ(𝑧, 𝑝) as in (7)), which are either
unrelated to each other or may fit together along some complex curves (branching). The graphs
of solutions are called the leaves of 𝒲 .

Example 3.1. Consider the ODE of the form 𝑝2 = 4𝑧2 in C
2. Its solutions form a complex

one-dimensional family of curves 𝐿𝑐 = {𝑧2 = (𝑧1 + 𝑐)2}, 𝑐 ∈ C. For every point 𝑏 = (𝑏1, 𝑏2) ∈ C2

with 𝑏2 ̸= 0, there exist exactly two curves passing through this point, namely, 𝐿−𝑏1−
√
𝑏2

and

𝐿−𝑏1+
√
𝑏2

(we can take an arbitrary branch of
√
𝑧). These curves meet at 𝑏 transversely. But

any point (𝑏1, 0) is contained only in one curve 𝐿−𝑏1 of the family. ◇

If 𝑑 = 1, then (6) becomes resolved with respect to the derivative, so 1-webs simply coincide
with holomorphic foliations (possibly singular). If (7) factors into distinct, linear in 𝑝 terms,
i.e., Φ(𝑧, 𝑝) = Π𝑑

𝑗=1(𝑝−𝑓𝑗(𝑧)), where 𝑓𝑗(𝑧) are holomorphic functions, then each ODE 𝑝 = 𝑓𝑗(𝑧)
defines a holomorphic foliation ℱ𝑗. If the leaves of ℱ𝑗 intersect in general position (resp. pairwise
transversely) then the union of ℱ𝑗 is called a smooth (resp. quasi-smooth) holomorphic 𝑑-
web. Thus, our definition of a singular 𝑑-web is a proper generalization of smooth webs. From
this point of view one can consider singular 𝑑-webs as a “branched"version of their smooth
counterparts.
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3.2. Webs in C𝑛, 𝑛 ≥ 2. The definition of a 𝑑-web (singular or smooth) via differential
equations does not have a simple generalization to higher dimensions. There are several
equivalent definitions in the literature. We will use a more geometric one that is more suitable
for our purposes.
We denote by P𝑇 *

𝑛 := P𝑇 *C𝑛 the projectivization of the cotangent bundle of C𝑛 with the
natural projection 𝜋 : P𝑇 *

𝑛 → C𝑛. A local trivialization of P𝑇 *
𝑛 is isomorphic to 𝑈 × 𝐺(1, 𝑛),

where 𝑈 ⊂ C𝑛 is an open set and 𝐺(1, 𝑛) ∼= C𝑃 𝑛−1 is the Grassmanian space of linear
complex one dimensional subspaces in C𝑛. The space P𝑇 *

𝑛 has the canonical structure of a
contact manifold, which can be described (using coordinates) as follows. Let 𝑧 = (𝑧1, . . . , 𝑧𝑛)
be the coordinates in C𝑛 and (𝑝1, . . . , 𝑝𝑛) be the fibre coordinates corresponding to the basis
of differentials 𝑑𝑧1, . . . , 𝑑𝑧𝑛. We may view [𝑝1, . . . , 𝑝𝑛] as homogeneous coordinates on 𝐺(1, 𝑛).
Then in the affine chart {𝑝𝑛 ̸= 0}, in nonhomogeneous coordinates 𝑝𝑗 = 𝑝𝑗/𝑝𝑛, 𝑗 = 1, . . . , 𝑛−1,
the 1-form

𝜂 = 𝑑𝑧𝑛 +
𝑛−1∑︁
𝑗=1

𝑝𝑗𝑑𝑧𝑗 (8)

is a local contact form. Considering all affine charts {𝑝𝑗 ̸= 0} we obtain a global contact
structure.
Let 𝑈 be a domain in C𝑛. Consider a complex purely n-dimensional analytic subset 𝑊 in

𝜋−1(𝑈) ⊂ P𝑇 *
𝑛 . Suppose that the following conditions hold:

(a) the image under 𝜋 of every irreducible component of 𝑊 has dimension 𝑛;
(b) a generic fibre of 𝜋 intersects 𝑊 in 𝑑 regular (smooth) points and at every such point 𝑞

the differential 𝑑𝜋(𝑞) : 𝑇𝑞𝑊 → C𝑛 is surjective;
(c) the restriction of the contact form 𝜂 on the regular part of 𝑊 is Frobenius integrable. So

𝜂|𝑊 = 0 defines the foliation ℱ𝑊 of the regular part of 𝑊 . (The leaves of the foliation ℱ𝑊

are called Legendrian submanifolds.)

Under these assumptions we define a singular 𝑑-web 𝒲 in 𝑈 as a triple (𝑊,𝜋,ℱ𝑊 ). A leaf of
the web 𝒲 is a component of the projection of a leaf of ℱ𝑊 into 𝑈 . Note that at a generic
point 𝑧 ∈ 𝑈 a 𝑑-web (𝑊,𝜋,ℱ𝑊 ) defines in 𝑈 near 𝑧 exactly 𝑑 families of smooth foliations.
We need first to interpret a first order PDE as a subvariety of a 1-jet bundle. Recall

that two smooth functions 𝜑1 and 𝜑2 have the same 𝑘-jet at a source point 𝑥0 ∈ C𝑛 if
|𝜑1(𝑥) − 𝜑2(𝑥)| = 𝑜(|𝑥− 𝑥0|𝑘). In other words, this simply means that their Taylor expansions
of order 𝑘 at 𝑥0 coincide. The equivalence classes with respect to this relation are called 𝑘-jets
at 𝑥0.
Let 𝑈 ⊂ C𝑛−1 be a domain. Consider 𝐽1(𝑈,C), the space of 1-jets of holomorphic functions

𝑓 : 𝑈 → C. We can view such functions as sections of the trivial line bundle 𝑈 ×C → 𝑈 . Then
𝐽1(𝑈,C) can be viewed as a vector bundle

𝜋 : 𝐽1(𝑈,C) → 𝑈 × C (9)

of rank (𝑛 − 1). Let 𝑧′ = (𝑧1, . . . , 𝑧𝑛−1) be the coordinates on 𝑈 ⊂ C𝑛−1, 𝑧𝑛 be the
coordinate in the target space, and let 𝑝𝑗 denote the partial derivatives of 𝑧𝑛 with respect
to 𝑧𝑗. Then (𝑧, 𝑝) = (𝑧1, . . . , 𝑧𝑛, 𝑝1, . . . , 𝑝𝑛−1) form the coordinate system on 𝐽1(𝑈,C). Note that
dim 𝐽1(𝑈,C) = 2𝑛− 1. The space 𝐽1(𝑈,C) admits the structure of a contact manifold with the
contact form

𝜃 = 𝑑𝑧𝑛 −
𝑛−1∑︁
𝑗=1

𝑝𝑗𝑑𝑧𝑗. (10)

Given a local section 𝑓 : 𝑈 → C, let 𝑗1𝑓 : 𝑈 → 𝐽1(𝑈,C), 𝑗1𝑓 : 𝑧 ↦→ 𝑗1𝑧𝑓 denote the
corresponding section of the 1-jet bundle. Then a section 𝐹 : 𝑈 → 𝐽1(𝑈,C) locally coincides



178 A. SUKHOV

with 𝑗1𝑓 for some section 𝑓 : 𝑈 → C if and only if 𝐹 annihilates 𝜃. Now observe that the map
𝜄 : (𝑧, 𝑝) ↦→ (𝑧,−𝑝) in the chosen coordinate systems is a biholomorphism whose pullback sends
𝜂 to 𝜃 in (8), i.e., 𝜄 : 𝐽1(𝑈,C) → P𝑇 *

𝑛 is a contactomorphism. Using the map 𝜄 we may view the
projectivized cotangent bundle P𝑇 *

𝑛 as a compactification of the 1-jet bundle. Alternatively, we
may compactify 𝐽1(𝑈,C) in the variables 𝑝, that is, we compactify every fibre C𝑛−1

𝑝 to C𝑃 𝑛−1.
Since the dependence of the form 𝜃 is linear in 𝑝, the compactified bundle will be a contact
complex manifold.
Any first order holomorphic PDE of the form

Φ

(︂
𝑧1, . . . , 𝑧𝑛−1, 𝑧𝑛,

𝜕𝑧𝑛
𝜕𝑧1

, . . . ,
𝜕𝑧𝑛
𝜕𝑧𝑛−1

)︂
= 0 (11)

with respect to the unknown function 𝑧𝑛 = 𝑧𝑛(𝑧1, . . . , 𝑧𝑛−1) defines a complex hypersurface 𝑊Φ

in 𝐽1(𝑈,C) given by the equation Φ(𝑧, 𝑝) = 0. Any solution 𝑧𝑛 = 𝑓(𝑧1, . . . , 𝑧𝑛−1) of (11) admits
prolongation to 𝐽1(𝑈,C), i.e., defines there an (𝑛− 1)-dimensional submanifold 𝑆𝑓 given by{︂

𝑧𝑛 = 𝑓(𝑧1, . . . , 𝑧𝑛−1), 𝑝𝑗 =
𝜕𝑓

𝜕𝑧𝑗
(𝑧1, . . . , 𝑧𝑛−1), 𝑗 = 1, . . . , 𝑛− 1

}︂
.

Hence, solutions of this differential equation can be identified with holomorphic sections 𝑆𝑓

of 𝑊Φ annihilated by the contact form 𝜃. As an example, for equation (5), the corresponding
hypersurface 𝑊 ⊂ 𝐽1(𝑈,C), 𝑈 ⊂ C, is simply the graph of a holomorphic function 𝑝 = 𝐹 (𝑧). It
is foliated by graphs of solutions, which are integral curves of the distribution defined by 𝜃, and
the corresponding foliation ℱ in C2 is obtained by the biholomorphic projection 𝜋|𝑊 : 𝑊 → C2

𝑧.
Suppose now that we have several differential equations of the form (11) such that the

intersection of the corresponding hypersurfaces 𝑊Φ is a complex analytic subset 𝑊 of 𝐽1(𝑈,C)
of pure dimension 𝑛. For example, we can have 𝑛 − 1 equations in general position. Suppose
further that the compactification of 𝑊 in the projectivized cotangent bundle P𝑇 *

𝑛𝑈 still forms
a complex subvariety of the same dimension. This is the case, for example, if all Φ(𝑧, 𝑝)
are polynomial with respect to 𝑝 with coefficients holomorphic in 𝑧. Then 𝑊 satisfies the
definition of a singular web given in the previous subsection. Note that we need to consider
compactification of 𝑊 only if the projection in (9) has fibres of positive dimension, since
otherwise the projection from 𝐽1(𝑈,C) gives the same web in 𝑈 ⊂ C𝑛.
Also note that for 𝑛 = 2 both definitions of a singular web agree. Indeed, given a differential

equation (6), (7), the function Φ(𝑧, 𝑝) is polynomial in 𝑝 and thus it can be projectivized to define
a hypersurface in P𝑇 *

2𝑈 . This gives the hypersurface in P𝑇 *
2𝑈 that has the required properties.

Conversely, let 𝑈 be a neighbourhood of the origin in C2, let 𝑊 be a complex hypersurface in
P𝑇 *

2𝑈 with the surjective projection 𝜋 : 𝑊 → 𝑈 . Without loss of generality assume that 𝑊
is irreducible. If 𝜋−1 is discrete, then by the Weierstrass preparation theorem, in a sufficiently
small neighbourhood �̃� of the origin 𝑊 can be represented by a Weierstrass pseudo-polynomial
in 𝑝, and we obtain the definition of the web given in Section 3.1. Suppose that dim 𝜋−1(0) = 1.
Let 𝜏 : C2

(𝑝0,𝑝1)
∖ {0} → C𝑃 1 be the natural projection given by 𝜏(𝑝0, 𝑝1) = [𝑝0, 𝑝1]. Let

𝜏 = (Id, 𝜏) : 𝑈 × (C2 ∖ {0}) → 𝑈 × C𝑃 1.

Then the set �̃� = 𝜏−1(𝑊 ) is complex analytic in 𝑈×(C2∖{0}) of dimension 3. The set 𝑈×{0}
is removable, and so we may assume that �̃� is complex analytic in 𝑈×C2. In a neighbourhood
of (0, 0) it can be given by an equation 𝜑(𝑧, 𝑝) = 0. But since its image is complex analytic
in 𝑈 × C𝑃 1, the function 𝜑 is in fact a homogenous polynomials in 𝑝. This shows that in a
neighbourhood of the origin in 𝑈 , the hypersurface 𝑊 can be given by an equation which is
polynomial in variable 𝑝, and we again recover the definition of Section 3.1.
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We also need a related notion of a multi-valued meromorphic first integral. Let 𝑋 and 𝑌 be
two complex manifolds and 𝜋𝑋 : 𝑋 × 𝑌 → 𝑋 and 𝜋𝑌 : 𝑋 × 𝑌 → 𝑌 be the natural projections.
A 𝑑-valued meromorphic correspondence between 𝑋 and 𝑌 is a complex analytic subset
𝑍 ⊂ 𝑋 × 𝑌 such that the restriction 𝜋𝑋 |𝑍 is a proper surjective generically 𝑑-to-one map.
Hence, 𝜋𝑌 ∘𝜋−1

𝑋 is defined generically on 𝑋 (i.e., outside a proper complex analytic subset in 𝑋),
and can be viewed as a 𝑑-valued map. In what follows we denote a meromorphic correspondence
by a triple (𝑍;𝑋, 𝑌 ) equipped with the canonical projections:

𝑍

𝑋 𝑌

𝜋𝑋 𝜋𝑌

A multiple-valued meromorphic first integral of a singular 𝑑-web 𝒲 in 𝑈 is a 𝑑-valued
meromorphic correspondence (𝑍;𝑈,C𝑃 ) such that level sets 𝜋𝑋 ∘ 𝜋−1

𝑌 (𝑐), 𝑐 ∈ C𝑃 are invariant
subsets of 𝒲 , i.e., they consist of the leaves of 𝒲 .

Definition 3.2. Let Γ be a real analytic Levi-flat hypersurface in a domain Ω ⊂ C𝑛. We
say that a holomorphic 𝑑-web 𝒲 in Ω is the extension of the Levi foliation of Γ* if every leaf
of the Levi foliation is a leaf of 𝒲 .

Although in this definition we do not require 𝒲 to be irreducible, we suppose that at least
one leaf of every component of 𝑊 meets Γ*. Clearly, under this condition the singular web
extending the Levi foliation is unique.

4. Extension of the Levi foliation

Global or local extension of the Levi foliation to the ambient space is an important question,
see, e.g., [2, 3, 5, 9] for recent results in this direction. Brunella [2] gave an example of a
Levi-flat hypersurface in C2, singular at the origin, such that the Levi foliation extends to
a neighbourhood of the origin as a singular web, but not as a foliation, see Example 4.3. The
following result is obtained in [18].

Theorem 4.1. Let Γ ⊂ Ω be an irreducible Levi-flat real analytic hypersurface in a domain
Ω ⊂ C𝑛, 𝑛 ≥ 2, and 0 ∈ Γ*. Assume that at least one of the following conditions holds:

(a) 0 ∈ Γ is not a dicritical singularity.
(b) Γ is a real algebraic hypersurface.

Then there exist a neighbourhood 𝑈 of the origin and a singular holomorphic 𝑑-web 𝒲 in 𝑈 such
that 𝒲 extends the Levi foliation ℒ. Furthermore, 𝒲 admits a multiple-valued meromorphic
first integral in 𝑈 .

We note that under some additional assumptions on the singular locus of Γ, part (a)
of our result was obtained recently by Fernández-Pérez [9]. Our approach is rather constructive,
especially under condition (b) in Theorem 4.1. In many cases one can write down explicitly
the 𝑑-web that gives the extension of the Levi foliation. The key point of our approach lies
in the connection between singular webs and first order analytic partial differential equations,
although we do not claim any particular originality here. Presently, the most commonly used
definition of webs is through the geometry the projectivized cotangent bundle. We reconstruct
the connection between geometry of singular webs and analytic PDEs through compactification
of the 1-jet bundle of functions on C𝑛−1 and its identification with the projectivized cotangent
bundle of C𝑛, see Section 3 for details.
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The proof of Theorem 4.1 (in the Case (𝑎)) is based on the following idea. The leaves of the
Levi foliation can be identified with the components of the Segre varieties associated with Γ.
It is possible to find a complex line parametrizing all Segre varieties of Γ. While for a general
real analytic hypersurface Γ in C𝑛, the corresponding family of Segre varieties is 𝑛-dimensional,
Levi-flat hypersurfaces can be characterized as those whose Segre family is one-dimensional,
and ultimately this is the reason why the Levi foliation admits extension to the ambient space.
Essentially, a suitably chosen one-dimensional family of Segre varieties is the meromorphic
(perhaps, multiple-valued) first integral. Its graph can be described by a system of 𝑛 − 1 first
order PDEs. This system defines an 𝑛-dimensional complex analytic subvariety of the 1-jet
bundle of holomorphic functions on C𝑛−1. This subvariety can then be compactified in the
projectivized cotangent bundle of C𝑛, which gives the singular 𝑑-web.
The key statement is the following

Proposition 4.2. Under the assumptions of Theorem 4.1, for a sufficiently small
neighbourhood Ω of the origin there exists a complex line 𝐴 ⊂ C𝑛 with the following properties:

(i) 𝐴 ∩𝑄0 = {0};
(ii) 𝐴 ̸⊂ Γ𝑠𝑛𝑔;
(iii) For every 𝑞 ∈ Γ* ∩ Ω, there exists a point 𝑤 ∈ 𝐴 such that ℒ𝑞 ⊂ 𝑄𝑤.

The existence of such 𝐴 should be compared to the transversal of the Levi foliation in the
smooth case: if Γ is given by {Re 𝑧𝑛 = 0}, then the complex line {𝑧1 = · · · = 𝑧𝑛−1 = 0} intersects
all Segre varieties, and can be used as a local parametrization both of the Levi foliation and its
extension. The complex one-parameter family of the Segre varieties constructed in Proposition
4.2 can be viewed as a holomorphic web. The equations of this web can be explicitely constructed
using tools of the local complex analytic geometry (on jet bundles). As an illustration consider
the following example.

Example 4.3. This example, discovered by M. Brunella [2], shows that in general the Levi
foliation of a Levi-flat hypersurface admits extension to a neighbourhood of a singular point
only as a web, not as a singular foliation. Consider the Levi-flat hypersurface

Γ = {𝑧 ∈ C2 : 𝑦22 = 4(𝑦21 + 𝑥2)𝑦
2
1}. (12)

The singular locus of Γ is the set {𝑦1 = 𝑦2 = 0}. Its subset given by {𝑦1 = 𝑦2 = 0, 𝑥2 < 0} is a
“stick i.e., it does not belong to the closure of smooth points of Γ. The Segre varieties of Γ are
given by

𝑄𝑤 = {𝑧 ∈ C2 : (𝑧2 − �̄�2)
2 + (𝑧1 − �̄�1)

4 − 2(𝑧2 + �̄�2)(𝑧1 − �̄�1)
2 = 0}. (13)

We see that 𝑄0 = {𝑧22 + 𝑧41 − 2𝑧2𝑧
2
1 = 0}, and the origin is a nondicritical singularity. Following

the algorithm in the proof of Theorem 4.1 we choose 𝐴(𝑡) to be given by 𝑤1 = 0, 𝑤2 = 𝑡.
Then (13) becomes

(𝑧2 − 𝑡)2 + 𝑧41 − 2𝑧21(𝑧2 + 𝑡) = 0.

After differentiation with respect to 𝑧1, and using the notation 𝑝 = 𝑑𝑧2
𝑑𝑧1

we obtain

2(𝑧2 − 𝑡)𝑝 + 4𝑧31 − 4𝑧1(𝑧2 + 𝑡) − 2𝑧21𝑝 = 0.

Direct calculation shows that the resultant of the two polynomials in 𝑡 above vanishes (after
dropping irrelevant factors) when

𝑝2 = 4𝑧2. (14)

This is the 2-web that extends the Levi foliation of Γ*. Its behaviour is described in Example 3.1.
Note that the exceptional set {𝑧2 = 0} intersects Γ along the line {𝑧2 = 𝑦1 = 0} ⊂ Γ𝑠𝑛𝑔.
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By inspection of solutions of (14) we see that a first integral of Γ can be taken to be

𝑓(𝑧1, 𝑧2) = 𝑧1 ±
√
𝑧2,

where 𝑓 is understood as a multiple-valued 1− 2 map. In fact, one can immediately verify that
the closure of the smooth points of Γ is given by

{𝑧 ∈ C2 : Im (𝑧1 ±
√
𝑧2) = 0} = {Im (𝑧1 +

√
𝑧2)} ∪ {Im (𝑧1 −

√
𝑧2)}.

However, the points of the stick cannot be recovered from the first integral. ◇

5. Levi-flat subsets, Segre varieties and Segre envelopes

A real analytic Levi-flat set 𝑀 in C𝑁 is a real analytic set such that its regular part is a
Levi-flat CR manifold of hypersurface type. An important special case (closely related to the
theory of holomorphic foliations) arises when 𝑀 is a hypersurface. The main question here
concerns an extension of the Levi foliation of the regular part of 𝑀 as a (singular) holomorphic
foliation (or, more generally, a singular holomorphic web) to a full neighbourhood of a singular
point. The existence of such an extension allows one to use the holomorphic resolution theorems
in order to study local geometry of singular Levi-flat hypersurfaces.
In this section we provide relevant background material on real analytic Levi-flat sets (of

higher codimension) and their Segre varieties. This is quite similar to the special case of
hypersurfaces considered in previous sections.

5.1. Real and complex analytic sets. Let Ω be a domain in C𝑁 . We denote by
𝑧 = (𝑧1, . . . , 𝑧𝑁) the standard complex coordinates. A closed subset 𝑀 ⊂ Ω is called a real
(resp. complex) analytic subset in Ω if it is locally defined by a finite collection of real analytic
(resp. holomorphic) functions.
For a real analytic 𝑀 this means that for every point 𝑞 ∈ Ω there exist a neighbourhood 𝑈

of 𝑞 and real analytic vector function 𝜌 = (𝜌1, . . . , 𝜌𝑘) : 𝑈 → R𝑘 such that

𝑀 ∩ 𝑈 = 𝜌−1(0) = {𝑧 ∈ 𝑈 : 𝜌𝑗(𝑧, 𝑧) = 0, 𝑗 = 1, . . . , 𝑘}. (15)

In fact, one can reduce the situation to the case 𝑘 = 1 by considering the defining function
𝜌21 + . . . + 𝜌2𝑘. Without loss of generality assume 𝑞 = 0 and choose a neighbourhood 𝑈 in (15)
in the form of a polydisc ∆(𝜀) = {𝑧 ∈ C𝑁 : |𝑧𝑗| < 𝜀} of radius 𝜀 > 0. Then, for 𝜀 small enough,
the (vector-valued) function 𝜌 admits the Taylor expansion (1) convergent in 𝑈 . Of course, the
(C𝑘-valued) coefficients 𝑐𝐼𝐽 also satisfy the condition (2), since 𝜌 is a real-valued (R𝑘-valued)
function.
An analytic subset 𝑀 is called irreducible (as a germ) if its germ at 0 ∈ 𝑀 can not be

represented as a union 𝑀 = 𝑀1∪𝑀2 where 𝑀𝑗 are analytic germs at 0 different from the germ
of 𝑀 . In what follows we always use this notion of irreducibility. A set 𝑀 can be decomposed
into a disjoint union 𝑀 = 𝑀𝑟𝑒𝑔 ∪𝑀𝑠𝑖𝑛𝑔, the regular and the singular part respectively. Notice
that here we change the notation with respect to the case of a hypersurface. The regular part
𝑀𝑟𝑒𝑔 is a nonempty and open subset of 𝑀 . In the real analytic case we adopt the following
convention: 𝑀 is a real analytic submanifold of maximal dimension in a neighbourhood of every
point of 𝑀𝑟𝑒𝑔. This dimension is called the dimension of 𝑀 and is denoted by dim𝑀 . The set
𝑀𝑠𝑖𝑛𝑔 is a real semianalytic subset of Ω of dimension < dim𝑀 . Unlike complex analytic sets,
for a real analytic 𝑀 , the set 𝑀𝑠𝑖𝑛𝑔 may contain manifolds of smaller dimension which are not
in the closure of 𝑀𝑟𝑒𝑔, as seen in the classical example of the Whitney umbrella. Therefore, in
general 𝑀𝑟𝑒𝑔 is not dense in 𝑀 .
Recall that the dimension of a complex analytic set 𝐴 at a point 𝑎 ∈ 𝐴 is defined as

dim𝑎𝐴 := lim
𝐴𝑟𝑒𝑔∋𝑧→𝑎

dim𝑧 𝐴,
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and that the the function 𝑧 ↦→ dim𝑧 𝐴 is upper semicontinuous. Suppose that 𝐴 is an irreducible
complex analytic subset of a domain Ω and let 𝐹 : 𝐴 → 𝑋 be a holomorphic mapping
into some complex manifold 𝑋. The local dimension of 𝐹 at a point 𝑧 ∈ Ω is defined as
dim𝑧 𝐹 = dim𝐴− dim𝑧 𝐹

−1(𝐹 (𝑧)) and the dimension of 𝐹 is set to be dim𝐹 = max𝑧∈𝐴 dim𝑧 𝐹 .
Note that the identity dim𝑧 𝐹 = dim𝐹 holds on a Zariski open subset of 𝐴, and that dim𝐹
coincides with the rank of the map 𝐹 .

5.2. Complexification and Segre varieties. Let 𝑀 be (the germ of) an irreducible real
analytic subset of C𝑁 defined by (1). Denote by 𝐽 the standard complex structure of C𝑁 and
consider the opposite structure −𝐽 . Consider the space C2𝑁

∙ := (C𝑁
𝑧 , 𝐽) × (C𝑁

𝑤 ,−𝐽) and the
diagonal

∆ =
{︀

(𝑧, 𝑤) ∈ C2𝑁
∙ : 𝑧 = 𝑤

}︀
.

The set 𝑀 can be lifted to C2𝑁
∙ as the real analytic subset

�̂� :=
{︀

(𝑧, 𝑧) ∈ C2𝑁
∙ : 𝑧 ∈ 𝑀

}︀
.

There exists a unique irreducible complex analytic subset 𝑀C in C2𝑁
∙ of complex dimension

equal to the real dimension of 𝑀 such that �̂� = 𝑀C ∩ ∆ (see [14]). The set 𝑀C is called the
complexification of 𝑀 . The antiholomorphic involution

𝜏 : C2𝑁
∙ → C2𝑁

∙ , 𝜏 : (𝑧, 𝑤) ↦→ (𝑤, 𝑧)

leaves 𝑀C invariant and �̂� is the set of fixed points of 𝜏 |𝑀C .
The complexification 𝑀C is equipped with two canonical holomorphic projections

𝜋𝑧 : (𝑧, 𝑤) ↦→ 𝑧 and 𝜋𝑤 : (𝑧, 𝑤) ↦→ 𝑤. We always suppose by convention that the domain of
these projections is 𝑀C. The triple (𝑀C, 𝜋𝑧, 𝜋𝑤) is represented by the following diagram

𝑀C

(C𝑁 , 𝐽) (C𝑁 ,−𝐽)

𝜋𝑧 𝜋𝑤

which leads to the central notion of the present paper in full generality. The Segre variety of a
point 𝑤 ∈ C𝑁 is defined as

𝑄𝑤 := (𝜋𝑧 ∘ 𝜋−1
𝑤 )(𝑤) =

{︀
𝑧 ∈ C𝑁 : (𝑧, 𝑤) ∈ 𝑀C

}︀
.

When 𝑀 is a hypersurface defined by (15) (with 𝑘 = 1) this definition coincides with the usual
definition

𝑄𝑤 = {𝑧 : 𝜌(𝑧, 𝑤) = 0} .
The following properties of Segre varieties are well-known for hypersurfaces.

Proposition 5.1. Let 𝑀 be any real analytic subset of a domain Ω. Then

(a) 𝑧 ∈ 𝑄𝑧 ⇐⇒ 𝑧 ∈ 𝑀 .
(b) 𝑧 ∈ 𝑄𝑤 ⇐⇒ 𝑤 ∈ 𝑄𝑧,
(c) (invariance property) Let 𝑀1, 𝑀2 be real analytic subsets in C𝑁 and C𝐾 respectively,

𝑝 ∈ (𝑀1)𝑟𝑒𝑔, 𝑞 ∈ (𝑀2)𝑟𝑒𝑔, and 𝑈1 ∋ 𝑝, 𝑈2 ∋ 𝑞 be small neighbourhoods such that 𝑀𝑗 ∩𝑈𝑗 is
a CR manifold. Let also 𝑓 : 𝑈1 → 𝑈2 be a holomorphic map such that 𝑓(𝑀1∩𝑈1) ⊂ 𝑀2∩𝑈2.
Then

𝑓(𝑄1
𝑤) ⊂ 𝑄2

𝑓(𝑤)

for all 𝑤 close to 𝑝. In particular, if 𝑓 : 𝑈1 → 𝑈2 is biholomorphic, then 𝑓(𝑄1
𝑤) = 𝑄2

𝑓(𝑤).

Here 𝑄1
𝑤 and 𝑄2

𝑓(𝑤) are Segre varieties associated with 𝑀1 and 𝑀2 respectively.
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5.3. Levi-flat sets. We say that an irreducible real analytic set 𝑀 ⊂ C𝑛+𝑚 is Levi-flat if
dim𝑀 = 2𝑛− 1 and 𝑀𝑟𝑒𝑔 is locally foliated by complex manifolds of complex dimension 𝑛− 1.
In particular, 𝑀𝑟𝑒𝑔 is a CR manifold of hypersurface type. The most known case arises when
𝑚 = 0, i.e., when 𝑀 is a Levi-flat hypersurface in C𝑛.
We use the notation 𝑧′′ = (𝑧𝑛+1, . . . , 𝑧𝑛+𝑚), and similarly for the 𝑤 variable. It follows from the

Frobenius theorem and the implicit function theorem that for every point 𝑞 ∈ 𝑀𝑟𝑒𝑔 there exist
an open neighbourhood 𝑈 and a local biholomorphic change of coordinates 𝐹 : (𝑈, 𝑞) → (𝑈 ′, 0)
such that 𝐹 (𝑀) has the form

{𝑧 ∈ 𝑈 ′ : 𝑧𝑛 + 𝑧𝑛 = 0, 𝑧′′ = 0}. (16)

The subspace 𝐹 (𝑀) is foliated by complex affine subspaces 𝐿𝑐 = {𝑧𝑛 = 𝑖𝑐, 𝑧′′ = 0, 𝑐 ∈ R},
which gives a foliation of 𝑀𝑟𝑒𝑔 ∩ 𝑈 by complex submanifolds 𝐹−1(𝐿𝑐). This defines a foliation
on 𝑀𝑟𝑒𝑔 which is called the Levi foliation and denoted by ℒ. Every leaf of ℒ is tangent to the
complex tangent space of 𝑀𝑟𝑒𝑔. The complex affine subspaces

{𝑧𝑛 = 𝑐, 𝑧′′ = 0} , 𝑐 ∈ C (17)

in local coordinates given by (16) are precisely the Segre varieties of 𝑀 for every complex 𝑐.
Thus, the Levi foliation is closely related to Segre varieties.
For 𝑀 defined by (16) its Segre varieties (17) fill the complex subspace 𝑧′′ = 0 of C𝑛+𝑚.

In particular, if 𝑤 is not in this subspace, then 𝑄𝑤 is empty. We need to study some general
properties of projections 𝜋𝑧 and 𝜋𝑤.
Let 𝜋 be one of the projections 𝜋𝑧 or 𝜋𝑤. Following the discussion in the previous subsection

we introduce the dimension of 𝜋 by setting dim𝜋 = max(𝑧,𝑤)∈𝑀C dim(𝑧,𝑤) 𝜋. If 𝑀 is irreducible,

then so is 𝑀C (see [14, p.92]). Hence, (𝑀C)𝑟𝑒𝑔 is a connected complex manifold of dimension
2𝑛− 1. Then the equality dim(𝑧,𝑤) 𝜋 = dim𝜋 holds on a Zariski open set

𝑀C
* := 𝑀C ∖ 𝐸 ⊂ (𝑀C)𝑟𝑒𝑔, (18)

where 𝐸 is a complex analytic subset of dimension < 2𝑛 − 1. Here dim𝜋 coincides with the
rank of 𝜋. Furthermore, dim(𝜋|(𝑀C)𝑠𝑖𝑛𝑔) ≤ dim𝜋.

Lemma 5.2. (a) We have dim𝜋𝑧 = 𝑛.
(b) The image 𝜋𝑧(𝑀

C) is contained in the (at most) countable union of complex analytic sets
of dimension ≤ 𝑛.

Proof. (a) The image of 𝜋𝑧 near a regular point of �̂� is swept out by the Segre varieties (17).
Hence it coincides with the subspace {𝑧′′ = 0}.

(b) This is a consequence of (a).

Of course, the projection 𝜋𝑤 has similar properties. Therefore, we have the following

Lemma 5.3. For every 𝑤, one of the following holds:

(a) 𝑄𝑤 is empty.
(b) 𝑄𝑤 is a complex analytic subset of dimension 𝑛− 1.
(c) 𝑄𝑤 is a complex analytic subset of dimension 𝑛.

The case (b) holds for 𝜋𝑤(𝑀C
* ).

A singular point 𝑞 ∈ 𝑀 is called Segre degenerate if dim𝑄𝑞 = 𝑛. Note that the set of Segre
degenerate points is contained in a complex analytic subset of dimension 𝑛 − 2. The proof is
quite similar to [18] (where this claim is established for hypersurfaces) so we skip the proof.

Let 𝑞 ∈ 𝑀𝑟𝑒𝑔. Denote by ℒ𝑞 the leaf of the Levi foliation through 𝑞. Note that by definition
this is a connected complex submanifold of complex dimension 𝑛 − 1 closed in 𝑀𝑟𝑒𝑔. Denote
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by 𝑀* ⊂ 𝑀𝑟𝑒𝑔 the image of �̂� ∩𝑀C
* under the projection 𝜋, where 𝑀C

* is defined as in (18).
This set coincides with 𝑀𝑟𝑒𝑔 ∖ 𝐴 for some proper complex analytic subset 𝐴.

Finally, let 𝑀 be an irreducible real analytic Levi-flat subset of dimension 2𝑛−1 in a domain
Ω in C𝑛+𝑚. Consider the set

𝑆(𝑀) = {𝑧 ∈ Ω : 𝑧 ∈ 𝑄𝑤 for some 𝑤} .
We call 𝑆(𝑀) the Segre envelope of 𝑀 . Thus, we simply have

𝑆(𝑀) = 𝜋(𝑀C).

This notion will play a crucial role in our approach. It follows from (16) and (17) that near
every regular point of 𝑀 the Segre envelope of 𝑀 is a complex submanifold of dimension 𝑛
containing 𝑀𝑟𝑒𝑔. One of our goals is to describe the Segre envelope near a singular point of 𝑀 .

Let 𝑀 be a real analytic Levi-flat subset of dimension 2𝑛 − 1 in C𝑛+𝑚. A singular point
𝑞 ∈ 𝑀 is called dicritical if 𝑞 belongs to infinitely many geometrically different leaves ℒ𝑎.
Singular points which are not dicritical are called nondicritical. We have the following efficient
criterion obtained in [17].

Theorem 5.4. Let 𝑀 be an irreducible real analytic Levi-flat subset of dimension 2𝑛− 1 in
a domain Ω ⊂ C𝑛+𝑚. Then the point 0 ∈ 𝑀𝑟𝑒𝑔 is dicritical if and only if dimC𝑄0 = 𝑛, that is,
the origin is a Segre degenerate point.

This generalizes the case of hypersurfaces treated in Theorem 2.6.
The connection between holomorphic webs and the Levi foliation is described by the following

proposition [17] generalizing Proposition 4.2 :

Proposition 5.5. Let 𝑀 be an irreducible real analytic Levi-flat subset of dimension 2n-1
in a domain Ω ⊂ C𝑛+𝑚. Assume that 0 ∈ 𝑀𝑟𝑒𝑔 is a nondicritical singularity for 𝑀 . For a suffi-
ciently small neighbourhood Ω of the origin there exists a complex linear map 𝐿 : C𝑚+1 → C𝑛+𝑚

with the following properties:

(i) 𝐿(C𝑚+1) ∩𝑄0 = {0};
(ii) the 1-dimensional real analytic set 𝛾 = 𝐿(C𝑚+1) ∩𝑀 is not contained in 𝑀𝑠𝑖𝑛𝑔

(iii) For every 𝑞 ∈ 𝑀𝑟𝑒𝑔 ∩ Ω, there exists a point 𝑤 ∈ 𝛾 such that ℒ𝑞 ⊂ 𝑄𝑤.

The first consequence is the following theorem obtained by Brunella [2].

Corollary 5.6. Let 𝑀 be an irreducible real analytic Levi-flat subset in C𝑛+𝑚.The Segre
envelope 𝑆(𝑀) is an irreducible complex analytic subset of dimension 𝑛 containing 𝑀𝑟𝑒𝑔.

Proof. We have 𝑆(𝑀) = 𝜋(𝑀C). There are two cases.
Case 1. dim𝑄0 = 𝑛 − 1. Then the desired result follows from Proposition 5.5 and the

Remmert Rank theorem.
Case 2. dim𝑄0 = 𝑛. By Theorem 5.4 for every regular point 𝑎 of 𝑀 we have 0 ∈ 𝑄𝑎, hence

𝑎 ∈ 𝑄(0).

The main application of Corollary 5.6 is the following result due to Brunella [2]:

Corollary 5.7. Let 𝑀 be an irreducible real analytic Levi-flat hypersurface in a complex
manifold 𝑉 of dimension 𝑛. Then there exist a complex manifold 𝑋 of dimension 𝑛, a real
analytic Levi-flat hypersurface 𝑁 in 𝑋, a holomorphic foliation ℱ in 𝑋 extending the Levi
foliation of 𝑁 , and a holomorphic map 𝜋 : 𝑋 → 𝑉 such that for some Zariski open subset
𝑈 ⊂ 𝑋 one has:

(i) 𝜋 : 𝑁 ∩ 𝑈 → 𝑀𝑟𝑒𝑔 is an embedding;
(ii) 𝜋 : 𝑁 ∩ 𝑈 → 𝑀𝑟𝑒𝑔 is a proper map.
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The main idea of the proof is to consider the holomorphic tangent bundle 𝐻(𝑀) of 𝑀 . This
is a real analytic Levi-flat subset of the projectivization of the cotangent bundle of 𝑉 , see
Section 3. The second step is to apply the Hironaka desingularization theorem to the Segre
envelope of 𝐻(𝑀).
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