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PAULI OPERATORS AND THE 0-NEUMANN PROBLEM

F. HASLINGER

Abstract. We apply methods from complex analysis, in particular the 9-Neumann operator,
to study spectral properties of Pauli operators. For this purpose we consider the weighted
O-complex on C" with a plurisubharmonic weight function. The Pauli operators appear at
the beginning and at the end of the weighted d-complex. We use the spectral properties of
the corresponding O-Neumann operator to answer the question when the Pauli operators
are with compact resolvent. It is also of importance to know whether the related Bergman
space of entire functions is of infinite dimension. The main results are formulated in terms of
the properties of the Levi matrix of the weight function. If the weight function is decoupled,
one gets additional informations. Finally, we point out that a corresponding Dirac operator
fails to be with compact resolvent.
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1. INTRODUCTION

Let ¢ : R?® — R be a C2-function. We consider the Schrédinger operators with magnetic field of
the form

PL=—-A 41V,
also called Pauli operators, where
_1(_8<p Do Oy 8g0)
2 oy  0xy’ 7 Oy, Oz,

is the magnetic potential and

j=1
and V = %Agp. We write elements of R?" in the form (x1,y1,...,%n, ys). We shall identify R?" with
C™, writing (21,...,2n) = (1,91, -+, Zn,Yn), this is mainly because we will use methods of complex

analysis to analyze spectral properties of the above Schrodinger operators with magnetic field.
For n =1, there is an interesting connection to Dirac and Pauli operators: recall the definition of A
in this case and define the Dirac operator D by

.0 .0
D= (_Z% —Ay)or + (—za—y

o — 0 1 oy — 0 —2
“\10/)°7 i o )~
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—Ag) o9 = A0 +A20’2, (1)

where
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Hence we can write

D < 0 Al —iAs >

A+ 1A 0 '
We remark that i(A3.A4; — A1 A2) = V and hence it turns out that the square of D is diagonal with
the Pauli operators Py on the diagonal:

0 < A2 — (g Ay — Ards) + A2
- 0

0
.A% + i(A2A1 — ./41./42) + .A% )
_ P 0
- 0o Py )’
where

P = (-ii—A1>2+ (
see [3] and [10].

8 2
———A +V =
Zay 2) Vv

Our aim is to investigate spectral properties of the Pauli operators Py. For this purpose we shall
plurisubharmonic C2-function.

—Ayu+V,
use methods from complex analysis, the weighted O-complex. We suppose that ¢ : C* — R is a
Let

L*(C",e %) = {g: C* — C measurable : HgHi =(9,9)p = / lg)%e™% d\ < o0}
Cn
Let 1 < ¢ <nand

F=>""fsdz;,
|7|=q
where the sum is taken only over increasing multiindices J = (j1,
and f; € L2(C", e %).

,jq) and dzj = dfjl VAR /\dqu
We write f € L%O q)((D", e~ %) and define

— " Of; _
of = E E —azj dz; Ndz
‘J|:q ]:1
for1<g<n-—1and

dom(9) = {f € L{y,(C",e7%) = 0f € L{y 411y (C" e )},
12

where the derivatives are taken in the sense of distributions.

We consider the weighted d-complex

L2

In this way O becomes a densely defined closed operator and its adjoint 5:; depends on the weight
(€ e?) LI
(0,(171) ’ —

n oo D _—
%qu)(c '€ )jL?07q+1)(C e%)
5:; 5:2
and we set
009 = 53, + 359,
where

dom(0P?) = {u € dom(d) N dom(d,,) : du € dom(3,,), J,,u € dom(D)}

It turns out that Dg) D s a densely defined, non-negative self-adjoint operator, which has a
uniquely determined self-adjoint square root (D(O’Q))l/ 2. The domain of (OJ

(0,9)
dom(9) Ndom(d,,), which is also the domain of the corresponding quadratic form

o Y1/2) coincides with
Qou(u,v) := (Ou, dv), + (éj;u,éj;v)w,
and dom(D( ’q)) is a core of (DEB’Q))U2, see for instance [4].



PAULI OPERATORS AND THE O-NEUMANN PROBLEM 167

Next we consider the Levi matrix

02 >n
M, =
(sz%k k=1

and suppose that the lowest eigenvalue u, of M, satisfies

liminf p,(2) > 0. (2)

|z| =00

This inequality implies that D&O’l) is injective and that the bottom of the essential spectrum

UC(DS(@OJ)) is positive (Persson’s Theorem), see [6]. Now this yields that Dfpo’l) has a bounded inverse,
which we denote by
NOD - LE (€ em?) — Lf 1) (C e %),

)

Using the square root of ]\Q(DO’1 we get the basic estimates

*

lullf < C(10ull3 + 19,ul3), (3)

for all u € dom(9) Ndom(d,,), see [5] for more details.
In the following it will be important to know conditions on ¢ implying that the Bergman space of
entire functions
A%(C™, %) := L*(C™, e ¥) N O(C")
is infinite dimensional. This space coincides with kerd, where
0:L*C" e %) — L%OJ)(C”, e ).

If n = 1, we can use the following concept. Let D(z,r) = {w : |z — w| < r}. A non-negative Borel
measure p on C is doubling, if there exists a constant C' > 0 such that for any z € C and any r > 0

w(D(z,1)) < Cu(D(z,1/2)). (4)
It can be shown that
w(D(z,2r)) = (1+C)u(D(z,1)), ()
for each z € C and for each r > 0; in particular u(C) = oo, unless p(C) = 0 (see [9]).
Example: if p(z, %) is a polynomial on C of degree d, then

dp(z) = [p(z,2)|" dA(2), a > fé

is a doubling measure on C, see [9).

Theorem 1.1. [2], [7] Let ¢ : C — R, be a subharmonic C*-function. Suppose that du = Ao d\
1s a non-trivial doubling measure.
Then the weighted space of entire functions

A%(C,e %) = {f entire : HfH?D = / |f|?e™% d\ < oo}
C
is of infinite dimension.

More general, in C", Hérmanders L2-estimates for the solution of the inhomogeneous Cauchy-
Riemann equations yield

Theorem 1.2. [§], [5] Suppose that the lowest eigenvalue p, satisfies
lim |2[2pu,(2) = +oc. (6)
|z]—o0

Then the weighted space of entire functions
A%(C",e™%?) = {f entire : ”in = /(D" |f]?e™% d\ < oo}
is of infinite dimension.

Concerning compactness of the d-Neumann operator we have the following result:
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Theorem 1.3. [5] Let 1 < g < n. Suppose that the sum s, of the smallest q eigenvalues of the Levi
matriz M, satisfies
lim s4(2) = +o0. (7)

|z]—o00
Then the 0-Neumann operator

N+ L3, (€7 e7?) — L3, (€™ e7%)

15 compact.

The next result asserts that compactness percolates up the d-complex.
Theorem 1.4. [5] Let 1 < ¢ < n—1. Suppose thal NéO’Q) 1s compact. Then N;O’QH) 18 also compact.

We will also consider special weight functions, the so-called decoupled weights, and, using the tensor

product structure of the essential spectrum Je(D&O’q)) we get the following (see [1])

Theorem 1.5. Let p; € C*(C,R) for 1 < j < n withn > 2, and set
(215 oy 2n) == p1(21) + -+ ©nlzn).

Assume that all p; are subharmonic and such that Ap; defines a nontrivial doubling measure. Then
(i) dim(ker(DL(po’O)) = dim(A%(C", e~%)) = oo, where D&O’O) = a*p 0,
. 0
(ii) ker(Oy ) = {0}, for q > 1,
199 48 bounded for 0 <g<n
(iii) NS is bounded for 0 < q < n,
(1v) NSE,O’Q) with 0 < ¢ < n —1 is not compact, and
(v) Néo’n) = 55; is compact if and only if

lim tr(My) d\ = oo,

|z2|—00 J By (2)
where Bi(z) = {w € C": |w — 2| < 1}.
2. PAULI OPERATORS

Now we apply the results on the weighted 9-Neumann operator to derive spectral properties of the
Pauli operators and discuss some special examples.

Theorem 2.1. Let ¢ : C" — R be a plurisubharmonic C?-function. Suppose that the smallest
eigenvalue p, of the Levi matriz M, satisfies

lim p,(2) = oo. (8)
|z]—o00
Let
AL 0p Op  Op Op
2 8y1 6951" Gyn aﬁﬂn
and V = %Agp. Then the Pauli operator P— = —A 4, —V fails to have a compact resolvent, whereas the
Pauli operator P, = —A 4 +V has a compact inverse operator acting on L?(R?").

Proof. For the proof we first consider the complex Laplacian DEOO 0 = 5; 0, which acts on L?(C", e~ %)
at the beginning of the weighted J-complex as a non-negative self-adjoint, densely defined operator,
we take the maximal extension from C§°(C™), as DSPO T essentially self-adjoint, there is only one

self-adjoint extension. For f € C5°(C") we get
—x = - 0 0 of
(0,0) f _ - _ 9
DL'O / aap af Z <aZ]‘ 8Zj> 85]' '

Now we apply the isometry
U, : L*(C") — L*(C",,e™¥)
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defined by U,(g) = e?/2g. for g € L*(C"), and afterwards the isometry
U_y,: L*(C" e ?) — L*(C™)
defined by U_,(f) = e~ ¢/2f for f € L?(C", e*). Hence we get
n 2 2
e=#/2000) (¢9/2g) = (- 0% 100099 10p9g 10p0p 1 0y g
s —1 aZjafj 2 aZj 67]' 2 8§j 8Zj 4 sz 8@- 2 8zj6§j ’

=

and separating into real and imaginary part

9 _ 1 9 9N 2 _1(9 9
0z; or; Oy;) 0z, 2\0x; Oy

we obtain

000 (¢#2) = L (~Aa—V)g, )
where
gl (_a‘%’ O  _Op 89")
2 oy, O0xy’ 7 Oy, Oz,
and

1
V =2tr(M,) = §Agp.

Since the kernel of 0 : L?(C", e~ %) — L%O 1)((13", e~ %) coincides with the Bergman space A%(C",e~%)
we get from (9) and the fact that (8) implies that A%(C™,e™%) is infinite dimensional (see Theorem
that 0 € ae(Dc(pO ’0)). Hence DS) ’O) fails to be with compact resolvent.

In order to show that the Pauli operator Py has a compact inverse we look at the end of the
weighted J-complex.

Let w =udz) A --- Adz, be a smooth (0, n)-form belonging to the domain of Dc(pﬂ’n). For1<j<n
denote by K the increasing multiindex K; := (1,...,j — 1,7+ 1,...,n) of length n — 1. Then

—x - , Oy ou
= —1)t1L
dyu E (-1) (8,2] 823) dZk, .
Jj=1
Hence

— Op ou _
90 u = Zﬁ <8zJ azj>]‘h/\ A dz,

_ i 82 u+%%_ﬂ
T | &= \020z; | 0207 02;0%;

dzi A -+ N dzy.

Conjugation with the unitary operator U_, : L%(C™, e~¥) — L?*(C") of multiplication by e?/2 gives

n 2 2
e—w/QDE}")e@ﬂg:Z(_ g _10p0g 10p0g 10p0p 1 &¢ >

= 8,2]'82]' B 567@67% 2 aZj 8Ej 4 afj ang 2 823'853' g
where g € L*(C") and we just wrote down the coefficient of the corresponding (0,7n)-form. This
operator can be expressed by real variables in the form

1
e—w/?mg)vn)e@/%g = 1(—AA —+ V)g, (10)

with

and V = 2tr (M,). It follows that —A 4 + V is a Schrédinger operator on L?*(R?") with the magnetic

vector potential
A_l( dp Oy dp 8g0>

2

Oy1  0x1” 7 Oy, Oz,
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where z; = x; +iy;, j = 1,...,n, and non-negative electric potential V' in the case where ¢ is
plurisubharmonic.

From we get that NLE,O’D is compact (Theorem and by Theorem that NS(DO’n) is compact.
Finally implies that the Pauli operator P, has a compact inverse.

O
For decoupled weights ¢(21,...,2n) = ¢1(21) + - - + ©n(2n) even more can be said.
Theorem 2.2. Let ¢; € C%(C,R) for 1 < j <n withn > 1, and set
(21, oy 2n) = 01(21) + - 4+ ©nlzn).
Assume that all ¢; are subharmonic and such that Ay; defines a nontrivial doubling measure.
Let
_L( 9% ¢ 9p dp
2 Oy1  0x1” 7 Oy, Oz,
and V. = %A(p. Then the Pauli operator P = —A s —V fails to have a compact resolvent, the Pauli
operator Py = —A, +V has a compact inverse if and only if
lim tr(My) d\ = oo,

|zl=00 J B, (2)
where Bi(z) = {w e C": |w— z| < 1}.

Proof. By Theorem we obtain that A2(C", e~¥) is infinite dimensional. So, P_ fails to be with
compact resolvent. The assertion about P, follows from Theorem O

Example: For ¢(z1,...,2,) = |21/? + -+ + |2|? both Pauli operators P_ and Py fail to be with
compact resolvent.
Finally, we get the following result for Dirac operators .

Theorem 2.3. Letn =1 and let ¢ be a subharmonic C2-function such that A defines a nontrivial
doubling measure. Then the Dirac operator

_ .0 10y .0 10y
D—< Z(‘9x+28y> 01+< lﬁiy 26%) 02,

where

fails to be with compact resolvent.

Proof. By spectral analysis (see [5]) it follows that D? has compact resolvent, if and only if D has
compact resolvent. Suppose that D has compact resolvent. Since

P 0
D? =
< 0 P ) ’
this would imply that both Pauli operators P_ and P, have compact resolvent, contradicting Theo-

rem
O
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