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ON A HILBERT SPACE OF ENTIRE FUNCTIONS

I.KH. MUSIN

Abstract. We consider the Hilbert space ch of entire functions of n variables constructed
by means of a convex function ¢ in C™ depending on the absolute value of the variable and
growing at infinity faster than a|z| for each a > 0. We study the problem on describing the
dual space in terms of the Laplace transform of the functionals. Under certain conditions
for the weight function ¢, we obtain the description of the Laplace transform of linear
continuous functionals on F, (g. The proof of the main result is based on using new properties
of Young-Fenchel transform and one result on the asymptotics of the multi-dimensional
Laplace integral established by R.A. Bashmakov, K.P. Isaev, R.S. Yulmukhametov.
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1. INTRODUCTION

1.1. Problem. Let H(C") be the space of entire functions in C", du, be the Lebesgue

measure in C" and for u = (uq,...,u,) € R" (C") we define absu := (|u1|, ..., |u]).
We denote by V(R") the set of all convex functions ¢g in R™ such that
D) g(xy, ... xn) = g(|za], - - |znl), (x1,...,2,) € R
2) the restriction g on [0, 00)" is non-decaying in each variable;
3) lim % = 400; ||z|| is the Euclidean norm of a point x € R").
z—o0 ||

To each function ¢ € V(R") we associate the Hilbert space

Fi = {f e 1) fl, = ([ 17pee dun<z>)% < oo}

with the scalar product
(fo9)e = | F(2)g(2)e™ D duy(2), f,g € F.
Cn

If p(z) = \\952”27 then Fj is the Fock space.
It is obvious that for each function ¢ € V(R") and each A € C", the function fy(z) = e

belongs to F, 3. This is why for each linear continuous functional S on the space Fj, the function
S(A) = S(EM)), recn,

is well defined in C"; this function is the Laplace transform of the functional S. It is easy to
see that S is an entire function.
By (F7)* we denote the dual space for F.
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—

The aim of the work is to find the conditions for ¢ € V(R"), under which the space (F2)* of
the Laplace transforms of the linear continuous functionals on F 5 can be described as Fj*.

—

If p(x) = @, then (F2)* = F?. Indeed, in this case the problem on describing the space
(F 3)* in terms of the Laplace transform of the functionals is easily solved thanks to the classical

representation: for each f € F2,
FO)y =7 | ()T dp, (), e
Cn

If the function ¢ € V(R™) is radial, the mentioned problem was solved by V.V. Napalkov and
S.V. Popenov [5], [0].

1.2. Notations and definitions. For u = (uy,...,u,), v = (v1,...,v,) € R*(C") we let
(u,v) :=ugv1 + + - - + Upy, ||u|| is the Euclidean norm of w.

Given o = (aq,...,0p) € 21}, 2 = (21,...,2,) € C", by |a| := a1 + ... + a;, we denote
the length of the multi-index o, & := (a1 + 1,...,a, + 1), and we denote z* := 20" --- 20",
a . oLl
Dy = o

Given a = (o, ..., 0,) € Z%, v € V(R™), we define

cal) 1= [ [ e ) g ),

For a function u with a domain containing the set (0,00)", we define a function ufe] in R"
by the rule:

ule](z) = u(e™, ..., ™), v = (21,...,2,) € R™
By B(R™) we denote the set of all continuous functions u : R — R satisfying the condition
lim M = +o0.
w00 ||z
The Young-Fenchel transform of the function v : R™ — [—o00,+400] is the function

u* : R" — [—o00, +00] defined by the formula

w(@) = sup ((a.9) —u(y), @€ R

If F is a convex domain in R", h is a convex set in E, E = {y € R” : h*(y) < oo}, p > 0,
then

Dy(p) :={z € E: h(z) + h"(y) — (z,y) <p}, y€EL.
By V(D) we denote the n-dimensional volume of a set D C R".
1.3. Main result.

Theorem. Let ¢ € V(R™) and for some K > 0 and each o = (ay,...,a,) € N" the

imequalities
1 <V | D¥lel 1 vV [ D#"[e] 1 ﬁa. <K
K = @ \2 ©\2))

hold. Then the mapping L : S € (Fj)* — S makes an isomorphism between the spaces (Fg)*
and F2..
©

The proof of Theorem in Subsection 3.2 is based on new properties of Young-Fenchel trans-
form, see Subsection 2.1, and one result on the asymptotics of the multi-dimensional Laplace
integral in work [9], see Subsection 2.2.
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2.  AUXILIARY DATA AND RESULTS

2.1. On some properties of Young-Fenchel transform. It is easy to confirm that the
following statement holds.

Proposition 1. Let u € B(R"™). Then (ule])*(z) > —o0 as x € R", (ule])*(z) = +o0 as
x ¢ [0,00)" and (ule])*(z) < +00 as x € [0, 00)".

We note that the last statement of Proposition 1 is implied, for instance, by the fact that for
each M > 0 there exists a constant A > 0 such that

We)'@) < Y (g m% — )+ A, ze0,00)"
1<j<nie; #0
Proposition 2. Let u € B(R"). Then

p () (@)

00,
z€[0,00)" ||x||

= +00.

Proof. For each z € [0,00)" and t € R™ we have

(ulel)™(z) = (z,) = (ule])(®).

Employing this inequality, we obtain that for each M > 0

umwm>mw—w(%@7xemwww}
This completes the proof. O

The next three statements were proved in work [I], see there Lemma 6, Proposition 3,
Proposition 4.

Proposition 3. Let u € B(R™). Then

(ule])"(2) + (w"[e])"(2) < Z (zjInz; —x;), w=(21,...,20) €[0,00)" \ {0};

a:]-760

(ule])*(0) + (u"[e])"(0) < 0.
Proposition 4. Let u € B(R™) N C?(R™) be a convex function. Then

n

(ule))*(2) + (w[e])* (@) = S (aylay — ), @ = (2., 7)€ (0,00)".

Proposition 5. Let u € V(R™) N C*(R™) be a convex function. Then
(ule])"(@) + (@'e])"(@) = Y (e;lnz; —a;), @=(21,....2,) € [0,00)" \ {0};

1<gsn:
zj;ﬁO

(ule])"(0) + (u*[e])*(0) = 0.

Propositions 4 and 5 can be strengthen by employing the results by D. Azagra [2], [3]. He
proved the following theorem.

Theorem A. Let U C R"™ be an open convex set. For each convex function f:U — R and
each € > 0 there exists a real analytic convex function g : U — R such that

fx) —e<yg(x) < flz), zel.
Thus, the following corollary hold [3].
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Corollary A. Let U C R"™ be an open convez set. For each convex function f:U — R and
each € > 0 there exists an infinitely differentiable conver function g : U — R such that

fla) —e<yg(z) < flx), zel.
Employing Proposition 4 and Corollary A, we easily confirm the following statement.

Proposition 6. Let u € B(R") be a convex function. Then

n

(ule)*(@) + (w'[e])"(2) = Y (e y —2)), 2= (1, 2,) € (0,00)".

j=1
Moreover, the following proposition is true.

Proposition 7. Let u € V(R") be a convex function. Then

(ule)*(2) + (We])"(2) = Y (a5lna; —a;), = (21,...,2,) € [0,00)" \ {0};

1<gsn:
Zj730

(ule])"(0) + (u*[e])*(0) = 0.

Proof. According Proposition 6, our statement is true for the points = € (0, 00)". Assume that
x = (x1,...,2,) belongs to the boundary of [0,00)" and x # 0. For the sake of simplicity we
consider the case when the first k£ (1 < k < n — 1) coordinates of x are positive and all other
are equal to zero. For each £ = (&,...,&,), = (u1, ..., pn) € R™ we have

(ule])*(x) + ( ij &+ ) — (u(ef, .. e) fut(eM, ... etn)).

By this inequality we obtain that

(ule])"(z) + Zma & + 1)

—(u(e®, ... e, 0,...,0) +u*(e,. .. e, 0,...,0)).

We define a function u;, on R* by the rule: (Aj,...,\) € R¥ — u(Aq,..., M\, 0,...,0). We
observe that for each t = (t1,...,t;) € R¥, £ = (t1,...,1,0,...,0) € R" we have

u' (1) = sup ({, v) — u(v))

< sup Zt vj —u(vy, ..., 0%, 0,...,0)) = sup ((t,v) — ug(v)) = ug(t).

Vlyeeny UkE]R veEREF

Employing this and the above inequality, for & = (x1,...,2x) € RF and each £ =
(&1, &), = (u1, ..., ) € RF we have

(ule])*(x) + (u"[e))"(2) > (&,€) — wele] () + (&, 1) — uile] (R).

Therefore,

Since by the Proposition 6,

(unle])" (@) + (uile])* () = Y (a;lnz; — ),
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then (ule])*(x)+(u*le])*(z) = > (z;Inx;—x;). By Proposition 3 this implies the first statement

of the proposition. -
If x =0, then
(ule])"(0) = = inf wlel(§) = —u(0),
(7 [€])*(0) = — inf w’lel(§) = ~u’(0) = inf u(e) = u(0).
Therefore, (ule])*(0) + (u*[e])*(0) = 0. O

2.2. Asymptotics of multi-dimensional Laplace integral. In work [9] there was estab-
lished the following theorem.

Theorem B. Let E be a convex domain in R™, h be a convex function in E, F = {y e R™:
h*(y) < oo} and the interior of E is non-empty. Let

D" = {(z,y) € R" x R" : h(z) + I"(y) — (z,y) < 1},
DZ:{mER":(x,y)ED}, yeR"

Then

e’lV(DZ)eh*(y) </ @)= gy < (1 +n!)V(DZ)eh*(y)7 y€E.

n

Here we assume that h(x) = 400 as z ¢ E.

3. DESCRIPTION OF DUAL SPACE

3.1. Auxiliary lemmata. In the proof of Theorem the following four lemmata will be useful.

Lemma 1. Let ¢ € V(R"). Then the system {exp(X, 2) }acen is complete in F.

Proof. Let S be a linear continuous functional on the space F such that S (eM#)) = 0 for each
A € C". Since for each multi-index o € Z" we have (D$S)(\) = S(2%e®), this identity
implies that S(z%) = 0. Since the function ¢(|z1],...,|z,|) is convex in C", it follows from
the result by B.A. Taylor on the weight approximation of entire functions by polynomials [4],
Thm. 2] that the polynomials are dense in Fz. Hence, S is the zero functional. By the known

corollary of Khan-Banach theorem we obtain that the system {exp(A\, z)}icen is complete in
F2. O
©

We note that the system {2} 4|0 is orthogonal in Ff,. Moreover, it is dense in F 5. Therefore,

the system {2} 4120 is a basis in F.

Lemma 2. Let p € V(R™). Then

" (5
> 2(le))*(a) c7n.
Calp) 041~~Oén6 G +

In particular, for each M > 0 there exists a constant Cyp; > 0 such that c,(¢) = Cp M for
each o € 721,
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Proof. For each av € Z7 and each positive numbers Ry, ..., R, we have
o0
Ca(gp) / / 201+1 | 2an+1672tp(r1, “\Tn) dry---dr,
0 0
Ri Ry
/ /7" a1+l 2an+1672ap(R1, -, Rn) dry - -~ dr,
0 0
R2a1+2 R2an+2

o—20(R1+ Ru)

=(2m)" :
2001 + 2 2an + 2
This implies that for each t € R”

Calp) > — 28t =20lel(®)
Qg Oy
Therefore,
calip) > — T (2ele) (@)
Q- Gy,
Employing now Proposition 2, we obtain easily the second statement of the lemma. O]

Lemma 3. Assume that an entire in C" function satisfies f(z) = Y anz® € F. Then
50

D aalcalp) <00 and |fII2 =" laal*cale)
|a| =0 |a|=0

And vice versa, let the sequence (aq)jaj=0 of complex number a, is such that the series
> laalca(p) converges. Then f(z) = > aqz® € H(C"). At that, f € F?.

|20 || >0

Proof. Let

2= 3 e

la[>0

be an entire function in C™ in the class Fg . Then

= [ @R are) = [ 3 e 3 a0 (2

n
|a|>0 181>0
_Z |aa|2/ |Z1|2&1-"‘Z |2an —2¢(abs z) d#n Z |aa|20a
|| =0 || =0

Vice versa, the convergence of the series > |aq|*ca(p) and Lemma 2 implies that for each
|a| =0
€ > 0 there ex1sts a constant ¢. > 0 such that |a,| < c.e elel for each o € 77 . This means that

f(2) = > anz® is an entire function in C". It is easy to see that f € F7. O
|| >0

Lemma 4. Let p € V(R™). Then

1 (5 1 s
(2m)"e 'V (Dq’ (5)) D@ < e () < (2m)"(1 + )V (Dg[el (5)) e2(elel)" (@)

for each o € Z} .



ON A HILBERT SPACE OF ENTIRE FUNCTIONS 115

Proof. Let a = (a1, ..., ) € Z'y. Then

0 0

That is,
cip) = (27)" / o280 -260el(t) 3¢
By Theorem B we have n
(2m)"e 1V (D2) 2@ e, () < (20)"(1 + )V (D52 21D (@
Since Dgg[e] = Dg[e] (1), by the previous inequality this completes the proof. O

3.2. Proof of Theorem. Let us prove that the mapping £ acts from (F7)* into F7.. Let
S € (F7)*. Then there exists a function gg € F; such that S(f) = (f, gs),, that is,

S(U) = [ s du(a). S € B

At that, [|S]| = |lgsly. If gs(2) = 32 baz®, then S(\) = D laf30 Ca(;p!)g)\a, A € C". Therefore,

|| =0

o3 () )

lal>0

15

By Lemma 3,
1

calp) < (2m)" (1 +n)V (Dg[el <§)>) 2" (@)

0 (1 s
Ca($™) < 2m)" (1 +n)V (Dg e (5)) 202" ()" (@)

for each o € 77
Therefore,

e ]- *Te ]_ * ([~ * * ([~
qxwyawﬁ)g(mﬁ%(y+nn%/(pg}(§>)xf(pg[}(§>>e%ﬂ@<®+ﬂwM>W>

for each o € Z7}..
According Proposition 6, for each a = (v, ..., a,) € Z') we have

n

(ple])*(@) + (@7 [e) (@) = Y ((ay + 1) In(a; +1) = (g + 1))

j=1
Since by the Stirling’s formula [10], for each m € Z, we have

0

<m+nmm+n—m+w=MFW+U—m“§+%Wm+”_mm+n’

where 6 € (0,1) depends on m, then

(ple)*(@) + (¢*[e])*(a) = —nlnV2r + Z (ln I(aj+1) + % In(o; + 1) — ﬁ) ;
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where 6; € (0,1) depends on «;. Then

2(2le)* (@)+(*[e])* (@) 1 i
ME = @y Ll e T 2)
7j=1
Thus,
Ca(p)Calp”) n 2 ole 1 ot [ 1 .
S < @)V DI (S ) ) VDT 5 I1a

Employing the condition for ¢, we obtain that
Ca(P)Cal)
al?
for each a € 7. Letting M; = (2m)"(1 + n!)?K, by (1) we obtain
1912 < My )~ cal@)bal® = Millgs|l}, = Ma|[S|P*.

laf>0

< (2m)"(1 + n!)2K

Hence, S e Fz*. Moreover, the latter estimate implies that the linear mapping £ acts continu-
ously from (F2)* into F7..

We observe that the mapping £ is injective from (F 3)* into Fz* since by Lemma 1 the system
{exp(A, 2) acen is complete in F7.

Let us show that the mapping £ acts from (F7)* onto F2.. Assume that G € F.. Employing
the representation of an entire function G' by the Taylor series

G\ = doX*, AecCr,
|| >0
we get

G

g20* = Z |da|*caly”).

>0

For each o € 7 we define the numbers g, = CCTD‘(Z!) and consider the convergence of the series

> [gal*calp). We have

la>0

dyal

ca()

S lgalPeale) = 32

|| >0 || >0

By Lemma 4,

calp) = eV (DEM <%>) e2(ele)™(@)

for each o € Z . Therefore,

Cal)eale?) > €2V (Dg[el (%)) v (pg*[@] (%)) A @+ @)

for each a € Z7. By identity (2) this implies
al? < e?(2em)"

(e "y (g (1)) v (D2 (2)) T + 1)

o
AS)
N
WV
Cb‘
<<
VR
=
SIS
o
VR
N | —
~~
~~
o
=3
ﬁ*
o
S

for each o = (ay,...,a,) € Z7.



ON A HILBERT SPACE OF ENTIRE FUNCTIONS 117

Employing the condition for ¢, we obtain that Wiw) < Ke?(2em)", Va € Z7. Therefore,

for the considered series we have

3 loelPea(o) < Ke2(2em) Y ldaPeals?) = Ke(2en) |G- )
|a|=0 || =0
Thus, the series Y. |ga|?ca() converges. But by Lemma 3 the function
la[>0
g(N) =D g%, A€l
|| =0
is entire and by (3), g belongs to Fj and
lgll} < Ke?(2em)"||G[3- (4)
We define a functional S on ch by the formula
S(f) = | f@)g(2)e ) dpn(z),  f € F.
CTL
It is clear that S is a linear continuous functional on F7. At that, S =G. Since ||S|| = |||,

estimate (4) shows that the inverse mapping £~! is continuous. Thus, £ makes an isomorphism
between the spaces (F7)* and F.. The proof is complete.
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