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ON A HILBERT SPACE OF ENTIRE FUNCTIONS

I.KH. MUSIN

Abstract. We consider the Hilbert space 𝐹 2
𝜙 of entire functions of 𝑛 variables constructed

by means of a convex function 𝜙 in C𝑛 depending on the absolute value of the variable and
growing at infinity faster than 𝑎|𝑧| for each 𝑎 > 0. We study the problem on describing the
dual space in terms of the Laplace transform of the functionals. Under certain conditions
for the weight function 𝜙, we obtain the description of the Laplace transform of linear
continuous functionals on 𝐹 2

𝜙. The proof of the main result is based on using new properties
of Young-Fenchel transform and one result on the asymptotics of the multi-dimensional
Laplace integral established by R.A. Bashmakov, K.P. Isaev, R.S. Yulmukhametov.
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1. Introduction

1.1. Problem. Let 𝐻(C𝑛) be the space of entire functions in C𝑛, 𝑑𝜇𝑛 be the Lebesgue
measure in C𝑛 and for 𝑢 = (𝑢1, . . . , 𝑢𝑛) ∈ R𝑛 (C𝑛) we define abs𝑢 := (|𝑢1|, . . . , |𝑢𝑛|).

We denote by 𝒱(R𝑛) the set of all convex functions 𝑔 in R𝑛 such that
1) 𝑔(𝑥1, . . . , 𝑥𝑛) = 𝑔(|𝑥1|, . . . , |𝑥𝑛|), (𝑥1, . . . , 𝑥𝑛) ∈ R𝑛;
2) the restriction 𝑔 on [0,∞)𝑛 is non-decaying in each variable;

3) lim
𝑥→∞

𝑔(𝑥)

‖𝑥‖
= +∞; ‖𝑥‖ is the Euclidean norm of a point 𝑥 ∈ R𝑛).

To each function 𝜙 ∈ 𝒱(R𝑛) we associate the Hilbert space

𝐹 2
𝜙 =

{︃
𝑓 ∈ 𝐻(C𝑛) : ‖𝑓‖𝜙 =

(︂∫︁
C𝑛

|𝑓(𝑧)|2𝑒−2𝜙(abs 𝑧) 𝑑𝜇𝑛(𝑧)

)︂ 1
2

< ∞

}︃
with the scalar product

(𝑓, 𝑔)𝜙 =

∫︁
C𝑛

𝑓(𝑧)𝑔(𝑧)𝑒−2𝜙(abs 𝑧) 𝑑𝜇𝑛(𝑧), 𝑓, 𝑔 ∈ 𝐹 2
𝜙.

If 𝜙(𝑥) = ‖𝑥‖2
2

, then 𝐹 2
𝜙 is the Fock space.

It is obvious that for each function 𝜙 ∈ 𝒱(R𝑛) and each 𝜆 ∈ C𝑛, the function 𝑓𝜆(𝑧) = 𝑒⟨𝜆,𝑧⟩

belongs to 𝐹 2
𝜙. This is why for each linear continuous functional 𝑆 on the space 𝐹 2

𝜙, the function

𝑆(𝜆) = 𝑆(𝑒⟨𝜆,𝑧⟩), 𝜆 ∈ C𝑛,

is well defined in C𝑛; this function is the Laplace transform of the functional 𝑆. It is easy to
see that 𝑆 is an entire function.

By (𝐹 2
𝜙)* we denote the dual space for 𝐹 2

𝜙.
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The aim of the work is to find the conditions for 𝜙 ∈ 𝒱(R𝑛), under which the space (̂𝐹 2
𝜙)* of

the Laplace transforms of the linear continuous functionals on 𝐹 2
𝜙 can be described as 𝐹 2

𝜙* .

If 𝜙(𝑥) = ‖𝑥‖2
2

, then (̂𝐹 2
𝜙)* = 𝐹 2

𝜙. Indeed, in this case the problem on describing the space

(𝐹 2
𝜙)* in terms of the Laplace transform of the functionals is easily solved thanks to the classical

representation: for each 𝑓 ∈ 𝐹 2
𝜙,

𝑓(𝜆) = 𝜋−𝑛

∫︁
C𝑛

𝑓(𝑧)𝑒⟨𝜆,𝑧⟩−‖𝑧‖2 𝑑𝜇𝑛(𝑧), 𝜆 ∈ C𝑛.

If the function 𝜙 ∈ 𝒱(R𝑛) is radial, the mentioned problem was solved by V.V. Napalkov and
S.V. Popenov [5], [6].

1.2. Notations and definitions. For 𝑢 = (𝑢1, . . . , 𝑢𝑛), 𝑣 = (𝑣1, . . . , 𝑣𝑛) ∈ R𝑛(C𝑛) we let
⟨𝑢, 𝑣⟩ := 𝑢1𝑣1 + · · · + 𝑢𝑛𝑣𝑛, ‖𝑢‖ is the Euclidean norm of 𝑢.

Given 𝛼 = (𝛼1, . . . , 𝛼𝑛) ∈ Z𝑛
+, 𝑧 = (𝑧1, . . . , 𝑧𝑛) ∈ C𝑛, by |𝛼| := 𝛼1 + . . . + 𝛼𝑛 we denote

the length of the multi-index 𝛼, �̃� := (𝛼1 + 1, . . . , 𝛼𝑛 + 1), and we denote 𝑧𝛼 := 𝑧𝛼1
1 · · · 𝑧𝛼𝑛

𝑛 ,

𝐷𝛼
𝑧 := 𝜕|𝛼|

𝜕𝑧
𝛼1
1 ···𝜕𝑧𝛼𝑛

𝑛
.

Given 𝛼 = (𝛼1, . . . , 𝛼𝑛) ∈ Z𝑛
+, 𝜙 ∈ 𝒱(R𝑛), we define

𝑐𝛼(𝜙) :=

∫︁
C𝑛

|𝑧1|2𝛼1 · · · |𝑧𝑛|2𝛼𝑛𝑒−2𝜙(abs 𝑧) 𝑑𝜇𝑛(𝑧).

For a function 𝑢 with a domain containing the set (0,∞)𝑛, we define a function 𝑢[𝑒] in R𝑛

by the rule:

𝑢[𝑒](𝑥) = 𝑢(𝑒𝑥1 , . . . , 𝑒𝑥𝑛), 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ R𝑛.

By ℬ(R𝑛) we denote the set of all continuous functions 𝑢 : R𝑛 → R satisfying the condition

lim
𝑥→∞

𝑢(𝑥)

‖𝑥‖
= +∞.

The Young-Fenchel transform of the function 𝑢 : R𝑛 → [−∞,+∞] is the function
𝑢* : R𝑛 → [−∞,+∞] defined by the formula

𝑢*(𝑥) = sup
𝑦∈R𝑛

(⟨𝑥, 𝑦⟩ − 𝑢(𝑦)), 𝑥 ∈ R𝑛.

If 𝐸 is a convex domain in R𝑛, ℎ is a convex set in 𝐸, �̃� = {𝑦 ∈ R𝑛 : ℎ*(𝑦) < ∞}, 𝑝 > 0,
then

𝐷ℎ
𝑦 (𝑝) := {𝑥 ∈ 𝐸 : ℎ(𝑥) + ℎ*(𝑦) − ⟨𝑥, 𝑦⟩ 6 𝑝}, 𝑦 ∈ �̃�.

By 𝑉 (𝐷) we denote the 𝑛-dimensional volume of a set 𝐷 ⊂ R𝑛.

1.3. Main result.

Theorem. Let 𝜙 ∈ 𝒱(R𝑛) and for some 𝐾 > 0 and each 𝛼 = (𝛼1, . . . , 𝛼𝑛) ∈ N𝑛 the
inequalities

1

𝐾
6 𝑉

(︂
𝐷𝜙[𝑒]

𝛼

(︂
1

2

)︂)︂
𝑉

(︂
𝐷𝜙*[𝑒]

𝛼

(︂
1

2

)︂)︂ 𝑛∏︁
𝑗=1

𝛼𝑗 6 𝐾

hold. Then the mapping ℒ : 𝑆 ∈ (𝐹 2
𝜙)* → 𝑆 makes an isomorphism between the spaces (𝐹 2

𝜙)*

and 𝐹 2
𝜙*.

The proof of Theorem in Subsection 3.2 is based on new properties of Young-Fenchel trans-
form, see Subsection 2.1, and one result on the asymptotics of the multi-dimensional Laplace
integral in work [9], see Subsection 2.2.



ON A HILBERT SPACE OF ENTIRE FUNCTIONS 111

2. Auxiliary data and results

2.1. On some properties of Young-Fenchel transform. It is easy to confirm that the
following statement holds.

Proposition 1. Let 𝑢 ∈ ℬ(R𝑛). Then (𝑢[𝑒])*(𝑥) > −∞ as 𝑥 ∈ R𝑛, (𝑢[𝑒])*(𝑥) = +∞ as
𝑥 /∈ [0,∞)𝑛 and (𝑢[𝑒])*(𝑥) < +∞ as 𝑥 ∈ [0,∞)𝑛.

We note that the last statement of Proposition 1 is implied, for instance, by the fact that for
each 𝑀 > 0 there exists a constant 𝐴 > 0 such that

(𝑢[𝑒])*(𝑥) 6
∑︁

16𝑗6𝑛:𝑥𝑗 ̸=0

(𝑥𝑗 ln
𝑥𝑗

𝑀
− 𝑥𝑗) + 𝐴, 𝑥 ∈ [0,∞)𝑛.

Proposition 2. Let 𝑢 ∈ ℬ(R𝑛). Then

lim
𝑥→∞,

𝑥∈[0,∞)𝑛

(𝑢[𝑒])*(𝑥)

‖𝑥‖
= +∞.

Proof. For each 𝑥 ∈ [0,∞)𝑛 and 𝑡 ∈ R𝑛 we have

(𝑢[𝑒])*(𝑥) > ⟨𝑥, 𝑡⟩ − (𝑢[𝑒])(𝑡).

Employing this inequality, we obtain that for each 𝑀 > 0

(𝑢[𝑒])*(𝑥) > 𝑀‖𝑥‖ − 𝑢[𝑒]

(︂
𝑀𝑥

‖𝑥‖

)︂
, 𝑥 ∈ [0,∞)𝑛 ∖ {0}.

This completes the proof.

The next three statements were proved in work [1], see there Lemma 6, Proposition 3,
Proposition 4.

Proposition 3. Let 𝑢 ∈ ℬ(R𝑛). Then

(𝑢[𝑒])*(𝑥) + (𝑢*[𝑒])*(𝑥) 6
∑︁

16𝑗6𝑛:
𝑥𝑗 ̸=0

(𝑥𝑗 ln𝑥𝑗 − 𝑥𝑗), 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ [0,∞)𝑛 ∖ {0};

(𝑢[𝑒])*(0) + (𝑢*[𝑒])*(0) 6 0.

Proposition 4. Let 𝑢 ∈ ℬ(R𝑛) ∩ 𝐶2(R𝑛) be a convex function. Then

(𝑢[𝑒])*(𝑥) + (𝑢*[𝑒])*(𝑥) =
𝑛∑︁

𝑗=1

(𝑥𝑗 ln𝑥𝑗 − 𝑥𝑗), 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ (0,∞)𝑛.

Proposition 5. Let 𝑢 ∈ 𝒱(R𝑛) ∩ 𝐶2(R𝑛) be a convex function. Then

(𝑢[𝑒])*(𝑥) + (𝑢*[𝑒])*(𝑥) =
∑︁

16𝑗6𝑛:
𝑥𝑗 ̸=0

(𝑥𝑗 ln𝑥𝑗 − 𝑥𝑗), 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ [0,∞)𝑛 ∖ {0};

(𝑢[𝑒])*(0) + (𝑢*[𝑒])*(0) = 0.

Propositions 4 and 5 can be strengthen by employing the results by D. Azagra [2], [3]. He
proved the following theorem.

Theorem A. Let 𝑈 ⊆ R𝑛 be an open convex set. For each convex function 𝑓 : 𝑈 → R and
each 𝜀 > 0 there exists a real analytic convex function 𝑔 : 𝑈 → R such that

𝑓(𝑥) − 𝜀 6 𝑔(𝑥) 6 𝑓(𝑥), 𝑥 ∈ 𝑈.

Thus, the following corollary hold [3].
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Corollary A. Let 𝑈 ⊆ R𝑛 be an open convex set. For each convex function 𝑓 : 𝑈 → R and
each 𝜀 > 0 there exists an infinitely differentiable convex function 𝑔 : 𝑈 → R such that

𝑓(𝑥) − 𝜀 6 𝑔(𝑥) 6 𝑓(𝑥), 𝑥 ∈ 𝑈.

Employing Proposition 4 and Corollary A, we easily confirm the following statement.

Proposition 6. Let 𝑢 ∈ ℬ(R𝑛) be a convex function. Then

(𝑢[𝑒])*(𝑥) + (𝑢*[𝑒])*(𝑥) =
𝑛∑︁

𝑗=1

(𝑥𝑗 ln𝑥𝑗 − 𝑥𝑗), 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ (0,∞)𝑛.

Moreover, the following proposition is true.

Proposition 7. Let 𝑢 ∈ 𝒱(R𝑛) be a convex function. Then

(𝑢[𝑒])*(𝑥) + (𝑢*[𝑒])*(𝑥) =
∑︁

16𝑗6𝑛:
𝑥𝑗 ̸=0

(𝑥𝑗 ln𝑥𝑗 − 𝑥𝑗), 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ [0,∞)𝑛 ∖ {0};

(𝑢[𝑒])*(0) + (𝑢*[𝑒])*(0) = 0.

Proof. According Proposition 6, our statement is true for the points 𝑥 ∈ (0,∞)𝑛. Assume that
𝑥 = (𝑥1, . . . , 𝑥𝑛) belongs to the boundary of [0,∞)𝑛 and 𝑥 ̸= 0. For the sake of simplicity we
consider the case when the first 𝑘 (1 6 𝑘 6 𝑛 − 1) coordinates of 𝑥 are positive and all other
are equal to zero. For each 𝜉 = (𝜉1, . . . , 𝜉𝑛), 𝜇 = (𝜇1, . . . , 𝜇𝑛) ∈ R𝑛 we have

(𝑢[𝑒])*(𝑥) + (𝑢*[𝑒])*(𝑥) >
𝑘∑︁

𝑗=1

𝑥𝑗(𝜉𝑗 + 𝜇𝑗) − (𝑢(𝑒𝜉1 , . . . , 𝑒𝜉𝑛) + 𝑢*(𝑒𝜇1 , . . . , 𝑒𝜇𝑛)).

By this inequality we obtain that

(𝑢[𝑒])*(𝑥) + (𝑢*[𝑒])*(𝑥) >
𝑘∑︁

𝑗=1

𝑥𝑗(𝜉𝑗 + 𝜇𝑗)

−(𝑢(𝑒𝜉1 , . . . , 𝑒𝜉𝑘 , 0, . . . , 0) + 𝑢*(𝑒𝜇1 , . . . , 𝑒𝜇𝑘 , 0, . . . , 0)).

We define a function 𝑢𝑘 on R𝑘 by the rule: (𝜆1, . . . , 𝜆𝑘) ∈ R𝑘 → 𝑢(𝜆1, . . . , 𝜆𝑘, 0, . . . , 0). We
observe that for each 𝑡 = (𝑡1, . . . , 𝑡𝑘) ∈ R𝑘, 𝑡 = (𝑡1, . . . , 𝑡𝑘, 0, . . . , 0) ∈ R𝑛 we have

𝑢*(𝑡) = sup
𝑣∈R𝑛

(⟨𝑡, 𝑣⟩ − 𝑢(𝑣))

6 sup
𝑣1,...,𝑣𝑘∈R

(
𝑘∑︁

𝑗=1

𝑡𝑗𝑣𝑗 − 𝑢(𝑣1, . . . , 𝑣𝑘, 0, . . . , 0)) = sup
𝑣∈R𝑘

(⟨𝑡, 𝑣⟩ − 𝑢𝑘(𝑣)) = 𝑢*
𝑘(𝑡).

Employing this and the above inequality, for �̃� = (𝑥1, . . . , 𝑥𝑘) ∈ R𝑘 and each 𝜉 =
(𝜉1, . . . , 𝜉𝑘), �̃� = (𝜇1, . . . , 𝜇𝑘) ∈ R𝑘 we have

(𝑢[𝑒])*(𝑥) + (𝑢*[𝑒])*(𝑥) > ⟨�̃�, 𝜉⟩ − 𝑢𝑘[𝑒](𝜉) + ⟨�̃�, �̃�⟩ − 𝑢*
𝑘[𝑒](�̃�).

Therefore,

(𝑢[𝑒])*(𝑥) + (𝑢*[𝑒])*(𝑥) > (𝑢𝑘[𝑒])*(�̃�) + (𝑢*
𝑘[𝑒])*(�̃�).

Since by the Proposition 6,

(𝑢𝑘[𝑒])*(�̃�) + (𝑢*
𝑘[𝑒])*(�̃�) =

𝑘∑︁
𝑗=1

(𝑥𝑗 ln𝑥𝑗 − 𝑥𝑗),
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then (𝑢[𝑒])*(𝑥)+(𝑢*[𝑒])*(𝑥) >
𝑘∑︀

𝑗=1

(𝑥𝑗 ln𝑥𝑗−𝑥𝑗). By Proposition 3 this implies the first statement

of the proposition.
If 𝑥 = 0, then

(𝑢[𝑒])*(0) = − inf
𝜉∈R𝑛

𝑢[𝑒](𝜉) = −𝑢(0),

(𝑢*[𝑒])*(0) = − inf
𝜉∈R𝑛

𝑢*[𝑒](𝜉) = −𝑢*(0) = inf
𝜉∈R𝑛

𝑢(𝜉) = 𝑢(0).

Therefore, (𝑢[𝑒])*(0) + (𝑢*[𝑒])*(0) = 0.

2.2. Asymptotics of multi-dimensional Laplace integral. In work [9] there was estab-
lished the following theorem.

Theorem B. Let 𝐸 be a convex domain in R𝑛, ℎ be a convex function in 𝐸, �̃� = {𝑦 ∈ R𝑛 :
ℎ*(𝑦) < ∞} and the interior of �̃� is non-empty. Let

𝐷ℎ = {(𝑥, 𝑦) ∈ R𝑛 ×R𝑛 : ℎ(𝑥) + ℎ*(𝑦) − ⟨𝑥, 𝑦⟩ 6 1},
𝐷ℎ

𝑦 = {𝑥 ∈ R𝑛 : (𝑥, 𝑦) ∈ 𝐷}, 𝑦 ∈ R𝑛.

Then

𝑒−1𝑉 (𝐷ℎ
𝑦 )𝑒ℎ

*(𝑦) 6
∫︁
R𝑛

𝑒⟨𝑥,𝑦⟩−ℎ(𝑥) 𝑑𝑥 6 (1 + 𝑛!)𝑉 (𝐷ℎ
𝑦 )𝑒ℎ

*(𝑦), 𝑦 ∈ �̃�.

Here we assume that ℎ(𝑥) = +∞ as 𝑥 /∈ 𝐸.

3. Description of dual space

3.1. Auxiliary lemmata. In the proof of Theorem the following four lemmata will be useful.

Lemma 1. Let 𝜙 ∈ 𝒱(R𝑛). Then the system {exp⟨𝜆, 𝑧⟩}𝜆∈C𝑛 is complete in 𝐹 2
𝜙.

Proof. Let 𝑆 be a linear continuous functional on the space 𝐹 2
𝜙 such that 𝑆(𝑒⟨𝜆,𝑧⟩) = 0 for each

𝜆 ∈ C𝑛. Since for each multi-index 𝛼 ∈ Z𝑛
+ we have (𝐷𝛼

𝜆𝑆)(𝜆) = 𝑆(𝑧𝛼𝑒⟨𝑧,𝜆⟩), this identity
implies that 𝑆(𝑧𝛼) = 0. Since the function 𝜙(|𝑧1|, . . . , |𝑧𝑛|) is convex in C𝑛, it follows from
the result by B.A. Taylor on the weight approximation of entire functions by polynomials [4,
Thm. 2] that the polynomials are dense in 𝐹 2

𝜙. Hence, 𝑆 is the zero functional. By the known
corollary of Khan-Banach theorem we obtain that the system {exp⟨𝜆, 𝑧⟩}𝜆∈C𝑛 is complete in
𝐹 2
𝜙.

We note that the system {𝑧𝛼}|𝛼|>0 is orthogonal in 𝐹 2
𝜙. Moreover, it is dense in 𝐹 2

𝜙. Therefore,

the system {𝑧𝛼}|𝛼|>0 is a basis in 𝐹 2
𝜙.

Lemma 2. Let 𝜙 ∈ 𝒱(R𝑛). Then

𝑐𝛼(𝜙) >
𝜋𝑛

�̃�1 · · · �̃�𝑛

𝑒2(𝜙[𝑒])
*(�̃�), 𝛼 ∈ Z𝑛

+.

In particular, for each 𝑀 > 0 there exists a constant 𝐶𝑀 > 0 such that 𝑐𝛼(𝜙) > 𝐶𝑀𝑀 |𝛼| for
each 𝛼 ∈ Z𝑛

+
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Proof. For each 𝛼 ∈ Z𝑛
+ and each positive numbers 𝑅1, . . . , 𝑅𝑛 we have

𝑐𝛼(𝜙) =(2𝜋)𝑛
∞∫︁
0

· · ·
∞∫︁
0

𝑟2𝛼1+1
1 · · · 𝑟2𝛼𝑛+1

𝑛 𝑒−2𝜙(𝑟1,··· ,𝑟𝑛) 𝑑𝑟1 · · · 𝑑𝑟𝑛

>(2𝜋)𝑛
𝑅1∫︁
0

· · ·
𝑅𝑛∫︁
0

𝑟2𝛼1+1
1 · · · 𝑟2𝛼𝑛+1

𝑛 𝑒−2𝜙(𝑅1,··· ,𝑅𝑛) 𝑑𝑟1 · · · 𝑑𝑟𝑛

=(2𝜋)𝑛
𝑅2𝛼1+2

1

2𝛼1 + 2
· · · 𝑅

2𝛼𝑛+2
𝑛

2𝛼𝑛 + 2
𝑒−2𝜙(𝑅1,··· ,𝑅𝑛).

This implies that for each 𝑡 ∈ R𝑛

𝑐𝛼(𝜙) >
𝜋𝑛

�̃�1 · · · �̃�𝑛

𝑒⟨2�̃�,𝑡⟩−2𝜙[𝑒](𝑡).

Therefore,

𝑐𝛼(𝜙) >
𝜋𝑛

�̃�1 · · · �̃�𝑛

𝑒2(𝜙[𝑒])
*(�̃�).

Employing now Proposition 2, we obtain easily the second statement of the lemma.

Lemma 3. Assume that an entire in C𝑛 function satisfies 𝑓(𝑧) =
∑︀
|𝛼|>0

𝑎𝛼𝑧
𝛼 ∈ 𝐹 2

𝜙. Then∑︁
|𝛼|>0

|𝑎𝛼|2𝑐𝛼(𝜙) < ∞ and ‖𝑓‖2𝜙 =
∑︁
|𝛼|>0

|𝑎𝛼|2𝑐𝛼(𝜙).

And vice versa, let the sequence (𝑎𝛼)|𝛼|>0 of complex number 𝑎𝛼 is such that the series∑︀
|𝛼|>0

|𝑎𝛼|2𝑐𝛼(𝜙) converges. Then 𝑓(𝑧) =
∑︀
|𝛼|>0

𝑎𝛼𝑧
𝛼 ∈ 𝐻(C𝑛). At that, 𝑓 ∈ 𝐹 2

𝜙.

Proof. Let

𝑓(𝑧) =
∑︁
|𝛼|>0

𝑎𝛼𝑧
𝛼

be an entire function in C𝑛 in the class 𝐹 2
𝜙. Then

‖𝑓‖2𝜙 =

∫︁
C𝑛

|𝑓(𝑧)|2𝑒−2𝜙(abs 𝑧) 𝑑𝜆(𝑧) =

∫︁
C𝑛

∑︁
|𝛼|>0

𝑎𝛼𝑧
𝛼
∑︁
|𝛽|>0

𝑎𝛽𝑧
𝛽𝑒−2𝜙(abs 𝑧) 𝑑𝜇𝑛(𝑧)

=
∑︁
|𝛼|>0

|𝑎𝛼|2
∫︁
C𝑛

|𝑧1|2𝛼1 · · · |𝑧𝑛|2𝛼𝑛𝑒−2𝜙(abs 𝑧) 𝑑𝜇𝑛(𝑧) =
∑︁
|𝛼|>0

|𝑎𝛼|2𝑐𝛼(𝜙).

Vice versa, the convergence of the series
∑︀
|𝛼|>0

|𝑎𝛼|2𝑐𝛼(𝜙) and Lemma 2 implies that for each

𝜀 > 0 there exists a constant 𝑐𝜀 > 0 such that |𝑎𝛼| 6 𝑐𝜀𝜀
|𝛼| for each 𝛼 ∈ Z𝑛

+. This means that
𝑓(𝑧) =

∑︀
|𝛼|>0

𝑎𝛼𝑧
𝛼 is an entire function in C𝑛. It is easy to see that 𝑓 ∈ 𝐹 2

𝜙.

Lemma 4. Let 𝜙 ∈ 𝒱(R𝑛). Then

(2𝜋)𝑛𝑒−1𝑉

(︂
𝐷

𝜙[𝑒]
�̃�

(︂
1

2

)︂)︂
𝑒2(𝜙[𝑒])

*(�̃�) 6 𝑐𝛼(𝜙) 6 (2𝜋)𝑛(1 + 𝑛!)𝑉

(︂
𝐷

𝜙[𝑒]
�̃�

(︂
1

2

)︂)︂
𝑒2(𝜙[𝑒])

*(�̃�)

for each 𝛼 ∈ Z𝑛
+.



ON A HILBERT SPACE OF ENTIRE FUNCTIONS 115

Proof. Let 𝛼 = (𝛼1, . . . , 𝛼𝑛) ∈ Z𝑛
+. Then

𝑐𝛼(𝜙) =(2𝜋)𝑛
∞∫︁
0

· · ·
∞∫︁
0

𝑟2𝛼1+1
1 · · · 𝑟2𝛼𝑛+1

𝑛 𝑒−2𝜙(𝑟1,··· ,𝑟𝑛) 𝑑𝑟1 · · · 𝑑𝑟𝑛

=(2𝜋)𝑛
∞∫︁

−∞

· · ·
∞∫︁

−∞

𝑒(2𝛼1+2)𝑡1+···+(2𝛼𝑛+2)𝑡𝑛−2𝜙[𝑒](𝑡1,...,𝑡𝑛) 𝑑𝑡1 · · · 𝑑𝑡𝑛.

That is,

𝑐𝛼(𝜙) = (2𝜋)𝑛
∫︁
R𝑛

𝑒⟨2�̃�,𝑡⟩−2𝜙[𝑒](𝑡) 𝑑𝑡.

By Theorem B we have

(2𝜋)𝑛𝑒−1𝑉
(︀
𝐷

2𝜙[𝑒]
2�̃�

)︀
𝑒2(𝜙[𝑒])

*(�̃�) 6 𝑐𝛼(𝜙) 6 (2𝜋)𝑛(1 + 𝑛!)𝑉
(︀
𝐷

2𝜙[𝑒]
2�̃�

)︀
𝑒2(𝜙[𝑒])

*(�̃�)

Since 𝐷
2𝜙[𝑒]
2�̃� = 𝐷

𝜙[𝑒]
�̃�

(︀
1
2

)︀
, by the previous inequality this completes the proof.

3.2. Proof of Theorem. Let us prove that the mapping ℒ acts from (𝐹 2
𝜙)* into 𝐹 2

𝜙* . Let

𝑆 ∈ (𝐹 2
𝜙)*. Then there exists a function 𝑔𝑆 ∈ 𝐹 2

𝜙 such that 𝑆(𝑓) = (𝑓, 𝑔𝑆)𝜙, that is,

𝑆(𝑓) =

∫︁
C𝑛

𝑓(𝑧)𝑔𝑆(𝑧)𝑒−2𝜙(abs 𝑧) 𝑑𝜇𝑛(𝑧), 𝑓 ∈ 𝐹 2
𝜙.

At that, ‖𝑆‖ = ‖𝑔𝑆‖𝜙. If 𝑔𝑆(𝑧) =
∑︀
|𝛼|>0

𝑏𝛼𝑧
𝛼, then 𝑆(𝜆) =

∑︀
|𝛼|>0

𝑐𝛼(𝜙)𝑏𝛼
𝛼!

𝜆𝛼, 𝜆 ∈ C𝑛. Therefore,

‖𝑆‖2𝜙* =
∑︁
|𝛼|>0

(︂
𝑐𝛼(𝜙)|𝑏𝛼|

𝛼!

)︂2

𝑐𝛼(𝜙*). (1)

By Lemma 3,

𝑐𝛼(𝜙) 6 (2𝜋)𝑛(1 + 𝑛!)𝑉

(︂
𝐷

𝜙[𝑒]
�̃�

(︂
1

2
)

)︂)︂
𝑒2(𝜙[𝑒])

*(�̃�),

𝑐𝛼(𝜙*) 6 (2𝜋)𝑛(1 + 𝑛!)𝑉

(︂
𝐷

𝜙*[𝑒]
�̃�

(︂
1

2

)︂)︂
𝑒2(𝜙

*[𝑒])*(�̃�)

for each 𝛼 ∈ Z𝑛
+.

Therefore,

𝑐𝛼(𝜙)𝑐𝛼(𝜙*) 6 (2𝜋)2𝑛(1 + 𝑛!)2𝑉

(︂
𝐷

𝜙[𝑒]
�̃�

(︂
1

2

)︂)︂
𝑉

(︂
𝐷

𝜙*[𝑒]
�̃�

(︂
1

2

)︂)︂
𝑒2(𝜙[𝑒])

*(�̃�)+2(𝜙*[𝑒])*(�̃�)

for each 𝛼 ∈ Z𝑛
+.

According Proposition 6, for each 𝛼 = (𝛼1, . . . , 𝛼𝑛) ∈ Z𝑛
+ we have

(𝜙[𝑒])*(�̃�) + (𝜙*[𝑒])*(�̃�) =
𝑛∑︁

𝑗=1

((𝛼𝑗 + 1) ln(𝛼𝑗 + 1) − (𝛼𝑗 + 1)).

Since by the Stirling’s formula [10], for each 𝑚 ∈ Z+ we have

(𝑚 + 1) ln(𝑚 + 1) − (𝑚 + 1) = ln𝛤 (𝑚 + 1) − ln
√

2𝜋 +
1

2
ln(𝑚 + 1) − 𝜃

12(𝑚 + 1)
,

where 𝜃 ∈ (0, 1) depends on 𝑚, then

(𝜙[𝑒])*(�̃�) + (𝜙*[𝑒])*(�̃�) = −𝑛 ln
√

2𝜋 +
𝑛∑︁

𝑗=1

(︂
ln𝛤 (𝛼𝑗 + 1) +

1

2
ln(𝛼𝑗 + 1) − 𝜃𝑗

12(𝛼𝑗 + 1)

)︂
,
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where 𝜃𝑗 ∈ (0, 1) depends on 𝛼𝑗. Then

𝑒2((𝜙[𝑒])
*(�̃�)+(𝜙*[𝑒])*(�̃�))

𝛼!2
=

1

(2𝜋)𝑛

𝑛∏︁
𝑗=1

(𝛼𝑗 + 1)𝑒
−

𝜃𝑗
6(𝛼𝑗+1) . (2)

Thus,

𝑐𝛼(𝜙)𝑐𝛼(𝜙*)

𝛼!2
6 (2𝜋)𝑛(1 + 𝑛!)2𝑉

(︂
𝐷

𝜙[𝑒]
�̃�

(︂
1

2

)︂)︂
𝑉

(︂
𝐷

𝜙*[𝑒]
�̃�

(︂
1

2

)︂)︂ 𝑛∏︁
𝑗=1

�̃�𝑗.

Employing the condition for 𝜙, we obtain that

𝑐𝛼(𝜙)𝑐𝛼(𝜙*)

𝛼!2
6 (2𝜋)𝑛(1 + 𝑛!)2𝐾

for each 𝛼 ∈ Z𝑛
+. Letting 𝑀1 = (2𝜋)𝑛(1 + 𝑛!)2𝐾, by (1) we obtain

‖𝑆‖2𝜙* 6 𝑀1

∑︁
|𝛼|>0

𝑐𝛼(𝜙)|𝑏𝛼|2 = 𝑀1‖𝑔𝑆‖2𝜙 = 𝑀1‖𝑆‖2.

Hence, 𝑆 ∈ 𝐹 2
𝜙* . Moreover, the latter estimate implies that the linear mapping ℒ acts continu-

ously from (𝐹 2
𝜙)* into 𝐹 2

𝜙* .

We observe that the mapping ℒ is injective from (𝐹 2
𝜙)* into 𝐹 2

𝜙* since by Lemma 1 the system

{exp⟨𝜆, 𝑧⟩}𝜆∈C𝑛 is complete in 𝐹 2
𝜙.

Let us show that the mapping ℒ acts from (𝐹 2
𝜙)* onto 𝐹 2

𝜙* . Assume that 𝐺 ∈ 𝐹 2
𝜙* . Employing

the representation of an entire function 𝐺 by the Taylor series

𝐺(𝜆) =
∑︁
|𝛼|>0

𝑑𝛼𝜆
𝛼, 𝜆 ∈ C𝑛,

we get

‖𝐺‖2𝜙* =
∑︁
|𝛼|>0

|𝑑𝛼|2𝑐𝛼(𝜙*).

For each 𝛼 ∈ Z𝑛
+ we define the numbers 𝑔𝛼 = 𝑑𝛼𝛼!

𝑐𝛼(𝜙)
and consider the convergence of the series∑︀

|𝛼|>0

|𝑔𝛼|2𝑐𝛼(𝜙). We have

∑︁
|𝛼|>0

|𝑔𝛼|2𝑐𝛼(𝜙) =
∑︁
|𝛼|>0

⃒⃒⃒⃒
𝑑𝛼𝛼!

𝑐𝛼(𝜙)

⃒⃒⃒⃒2
𝑐𝛼(𝜙) =

∑︁
|𝛼|>0

𝛼!2

𝑐𝛼(𝜙)𝑐𝛼(𝜙*)
|𝑑𝛼|2𝑐𝛼(𝜙*).

By Lemma 4,

𝑐𝛼(𝜙) > 𝑒−1𝑉

(︂
𝐷

𝜙[𝑒]
�̃�

(︂
1

2

)︂)︂
𝑒2(𝜙[𝑒])

*(�̃�), 𝑐𝛼(𝜙*) > 𝑒−1𝑉

(︂
𝐷

𝜙*[𝑒]
�̃�

(︂
1

2

)︂)︂
𝑒2(𝜙

*[𝑒])*(�̃�)

for each 𝛼 ∈ Z𝑛
+. Therefore,

𝑐𝛼(𝜙)𝑐𝛼(𝜙*) > 𝑒−2𝑉

(︂
𝐷

𝜙[𝑒]
�̃�

(︂
1

2

)︂)︂
𝑉

(︂
𝐷

𝜙*[𝑒]
�̃�

(︂
1

2

)︂)︂
𝑒2((𝜙[𝑒])

*(�̃�)+(𝜙*[𝑒])*(�̃�))

for each 𝛼 ∈ Z𝑛
+. By identity (2) this implies

𝛼!2

𝑐𝛼(𝜙)𝑐𝛼(𝜙*)
6

𝑒2(2𝑒𝜋)𝑛

𝑉
(︁
𝐷

𝜙[𝑒]
�̃�

(︀
1
2

)︀)︁
𝑉
(︁
𝐷

𝜙*[𝑒]
�̃�

(︀
1
2

)︀)︁ 𝑛∏︀
𝑗=1

(𝛼𝑗 + 1)

for each 𝛼 = (𝛼1, . . . , 𝛼𝑛) ∈ Z𝑛
+.
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Employing the condition for 𝜙, we obtain that 𝛼!2

𝑐𝛼(𝜙)𝑐𝛼(𝜙*)
6 𝐾𝑒2(2𝑒𝜋)𝑛, ∀𝛼 ∈ Z𝑛

+. Therefore,

for the considered series we have∑︁
|𝛼|>0

|𝑔𝛼|2𝑐𝛼(𝜙) 6 𝐾𝑒2(2𝑒𝜋)𝑛
∑︁
|𝛼|>0

|𝑑𝛼|2𝑐𝛼(𝜙*) = 𝐾𝑒2(2𝑒𝜋)𝑛‖𝐺‖2𝜙* . (3)

Thus, the series
∑︀
|𝛼|>0

|𝑔𝛼|2𝑐𝛼(𝜙) converges. But by Lemma 3 the function

𝑔(𝜆) =
∑︁
|𝛼|>0

𝑔𝛼𝜆
𝛼, 𝜆 ∈ C𝑛,

is entire and by (3), 𝑔 belongs to 𝐹 2
𝜙 and

‖𝑔‖2𝜙 6 𝐾𝑒2(2𝑒𝜋)𝑛‖𝐺‖2𝜙* . (4)

We define a functional 𝑆 on 𝐹 2
𝜙 by the formula

𝑆(𝑓) =

∫︁
C𝑛

𝑓(𝑧)𝑔(𝑧)𝑒−2𝜙(abs𝑧) 𝑑𝜇𝑛(𝑧), 𝑓 ∈ 𝐹 2
𝜙.

It is clear that 𝑆 is a linear continuous functional on 𝐹 2
𝜙. At that, 𝑆 = 𝐺. Since ‖𝑆‖ = ‖𝑔‖𝜙,

estimate (4) shows that the inverse mapping ℒ−1 is continuous. Thus, ℒ makes an isomorphism
between the spaces (𝐹 2

𝜙)* and 𝐹 2
𝜙* . The proof is complete.
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