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Abstract. We employ the integral Laplace transform to invert the generalized Riemann-
Liouville operator in a closed form. We establish that the inverse generalized Riemann-
Liouville operator is a differential or integral-differential operator. We establish a relation
between Riemann-Liouville operator and Temlyakov-Bavrin operator. We provide new
examples of generalized Riemann-Liouville operator.
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1. Introduction

Let 𝑓 (𝑥) ∈ 𝐿1 (0, 1), then the function

𝐽𝛼 [𝑓 ] (𝑥) =
1

Γ (𝛼)

∫︁ 𝑥

0

(𝑥− 𝑡)𝛼−1 𝑓 (𝑡) 𝑑𝑡 ∈ 𝐿1 (0, 1)

is called a fractional integral of order 𝛼, see [8, 11, 15]. The fractional integral can be written
as

𝐽𝛼 [𝑓 ] (𝑥) =
𝑥𝛼

Γ (𝛼)

∫︁ 1

0

(1 − 𝜀)𝛼−1 𝑓 (𝜀𝑥) 𝑑𝜀 ∈ 𝐿1 (0, 1) .

The latter formula allows one to extend the fractional integration for the case of the functions
𝑤 = 𝑓 (𝑧) analytic in the unit circle 𝐵 = {𝑧 : |𝑧| < 1}. As a result, we arrive at the generalized
Riemann-Liouville operator

𝐿𝜔 [𝑓 ] (𝑧) = 𝛼

∫︁ 1

0

(1 − 𝜀)𝛼−1 𝑓 (𝜀𝑧) 𝑑𝜀. (1.1)

The extension of the notion of fractional integral (1.1) was made by M.M. Džrbašjan. In the
work [5], the generalized Riemann-Liouville operator was introduced.

We shall say a function 𝜔 (𝑥) belongs to Ω if it is nonnegative and continuous on [0, 1) and

𝜔 (0) = 1,

∫︁ 1

0

𝜔 (𝑥) 𝑑𝑥 < ∞,

for all 𝑟 ∈ [0, 1) the inequality ∫︁ 1

𝑟

𝜔 (𝑥) 𝑑𝑥 > 0

holds true. Let 𝑤 = 𝑓 (𝑧) be a function analytic in the unit circle 𝐵 = {𝑧 : |𝑧| < 1}.
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Definition 1.1. The generalized Riemann-Liouville operator is the following operator [5]

𝐿𝜔 [𝑓 ] = 𝑓 (0) + 𝑧

∫︁ 1

0

𝜔 (𝜀) 𝑓 ′ (𝜀𝑧) 𝑑𝜀.

We define the sequence of the numbers

∆1 = 1,∆ (𝑘) = 𝑘

∫︁ 1

0

𝑟𝑘−1𝜔 (𝑥) 𝑑𝑥 < ∞, 𝑘 = 1, 2, . . .

M.M. Džrbašjan established the following statements [5]:
i)

𝐿𝜔

[︀
𝑧𝑘
]︀

= ∆𝑘𝑧
𝑘;

ii) Let 𝑤 = 𝑓 (𝑧) be a function analytic in the unit circle and assume that its Taylor series is
of the form

𝑓 (𝑧) =
∞∑︁
𝑘=0

𝑎𝑘𝑧
𝑘.

Then

𝐿𝜔 [𝑓 ] (𝑧) =
∞∑︁
𝑘=0

𝑎𝑘∆𝑘𝑧
𝑘;

iii) The operator 𝐿𝜔 is invertible and

𝐿−1
𝜔 [𝑓 ] (𝑧) =

∞∑︁
𝑘=0

𝑎𝑘
𝑧𝑘

∆𝑘

,

where

𝑓 (𝑧) =
∞∑︁
𝑘=0

𝑎𝑘𝑧
𝑘.

iiii) If a function 𝜔 (𝑥) ∈ Ω is a continuously differentiable in [0, 1) and 𝜔 (1) = 0, then the
generalized Riemann-Liouville operator is of the form

𝐿𝜔 [𝑓 ] = −
∫︁ 1

0

𝜔′ (𝜀) 𝑓 (𝜀𝑧) 𝑑𝜀. (1.2)

The current state-of-art of the fractal analysis and its applications is presented in [15-18].

2. Main result

As it was mentioned, the theory of the generalized Riemann-Liouville operator was con-
structed by M.M. Džrbašjan in work [5]. However, no explicit construction for the inverse
operator was proposed. In order to invert the generalized Riemann-Liouville operator in a
closed form, we propose to employ the integral Laplace transform.

The idea is to continue the scalar sequence

∆ (𝑘) = 𝑘

∫︁ 1

0

𝑟𝑘−1𝜔 (𝑥) 𝑑𝑥 < ∞, 𝑘 = 1, 2, . . .

into the half-plane 𝑝 : Re 𝑝 = 𝜎 > 𝜎0 > 0.
The problem on inverting the generalized Riemann-Liouville operator is solved if the function

∆ (𝑝) is a Laplace image, and the function

1

∆ (𝑝)

has a power growth, i.e.,
1

∆ (𝑝)
= 𝑝𝛼𝐿 (𝑝) , 𝛼 > 0,
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where 𝐿 (𝑝) is a slowly varying function [14].

Lemma 2.1. The function

∆ (𝑝) = 𝑝

∫︁ 1

0

𝜀𝑝−1𝜔 (𝜀) 𝑑𝜀

is well-defined for the values 𝑝 Re 𝑝 = 𝜎 > 𝜎0 > 0 and serves as the Laplace image of the
function

𝜔
(︀
𝑒−𝑡

)︀
, 𝜔

(︀
𝑒−𝑡

)︀
> 0, 𝑡 ∈ [0,∞) .

Proof. It is sufficient to make a change of the variable 𝜀 = 𝑒−𝑡 in the expression for ∆ (𝑝).

Theorem 2.1. Suppose that all roots of the polynomial 𝑄 (𝑝) are located in the left half-plane
and 𝑄 (0) ̸= 0 and let the function

1

𝑄 (𝑝) ∆ (𝑝)

be the image of some original 𝜔* (𝑡). The the inverse operator for 𝐿𝜔 is of the form

𝐿−1
𝜔 [𝑓 ] (𝑧) = 𝑄

(︂
𝑧
𝑑

𝑑𝑧

)︂[︂∫︁ ∞

0

𝜔* (𝜀) 𝑓
(︀
𝑒−𝜀𝑧

)︀
𝑑𝜀

]︂
, (2.1)

where

𝑄

(︂
𝑧
𝑑

𝑑𝑧

)︂
= 𝑎0 + 𝑎1𝑧

𝑑

𝑑𝑧
+ 𝑎2

(︂
𝑧
𝑑

𝑑𝑧

)︂2

+ . . . + 𝑎𝑛

(︂
𝑧
𝑑

𝑑𝑧

)︂𝑛

,

numbers 𝑎𝑘 are the coefficients of the polynomial 𝑄 (𝑝).

Proof. The integral component of the operator 𝐿−1
𝜔 that is, the operator of the form∫︁ ∞

0

𝜔* (𝜀) 𝑓
(︀
𝑒−𝜀𝑧

)︀
𝑑𝜀,

is continuous in the space of the functions 𝐻 (𝐵) ∪ 𝐶
(︀
�̄�
)︀
, and this is why

𝐿−1
𝜔 [𝑓 ] (𝑧) = 𝑄

(︂
𝑧
𝑑

𝑑𝑧

)︂ ∞∑︁
𝑘=0

𝑎𝑘𝑧
𝑘 1

𝑄 (𝑘) ∆ (𝑘)
=

∞∑︁
𝑘=0

𝑎𝑘𝑧
𝑘 𝑄 (𝑘)

𝑄 (𝑘) ∆ (𝑘)
=

∞∑︁
𝑘=0

𝑎𝑘𝑧
𝑘 1

∆ (𝑘)
.

This completes the proof.

Corollary 2.1. The inverse for the Riemann-Liouville operator is either differential or
integral-differential.

Theorem 2.2. Let the functions 1
Δ(𝑝)

= 𝑄 (𝑧) be a polynomial, then the inverse operator for

𝐿𝜔 is a differential operator of the form

𝐿−1
𝜔 [𝑓 ] (𝑧) = 𝑄

(︂
𝑧
𝑑

𝑑𝑧

)︂
[𝑓 (𝑧)] . (2.2)

Proof. We have the following identities

𝑄

(︂
𝑧
𝑑

𝑑𝑧

)︂ ∞∑︁
𝑘=0

𝑎𝑘𝑧
𝑘 =

∞∑︁
𝑘=0

𝑎𝑘𝑧
𝑘𝑄 (𝑘) =

∞∑︁
𝑘=0

𝑎𝑘𝑧
𝑘 1

∆ (𝑘)
≡ 𝐿−1

𝜔 [𝑓 ] (𝑧) .
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3. Various cases of generalized Riemann-Liouville operators

3.1. Let 𝜔 (𝑥) = 1 − 𝑥ℎ, ℎ > 0, then

𝐿𝜔 [𝑓 ] = 𝑓 (0) + 𝑧

∫︁ 1

0

(︀
1 − 𝜀ℎ

)︀
𝑓 ′ (𝜀𝑧) 𝑑𝜀 = ℎ

∫︁ 1

0

𝜀ℎ−1𝑓 (𝜀𝑧) 𝑑𝜀,

and we obtain the operator which differs by a factor from the operator

𝐿−1
ℎ [𝑓 ] =

∫︁ 1

0

𝜀ℎ−1𝑓 (𝜀𝑧) 𝑑𝜀

studied in the works by I.I. Bavrin [1, 2]. In order to find the inverse operator we note that

∆ (𝑝) = 𝑝

∫︁ 1

0

𝜀𝑝−1
(︀
1 − 𝜀ℎ

)︀
𝑑𝜀 =

ℎ

ℎ + 𝑝
.

Then, taking into consideration that the expression

1

∆ (𝑝)
=

ℎ + 𝑝

ℎ

is a polynomial, by Theorem 2.1 we obtain

𝐿−1
𝜔 [𝑓 ] =

ℎ𝑓 + 𝑧𝑓 ′ (𝑧)

ℎ
=

𝐿ℎ [𝑓 (𝑧)]

ℎ
. (3.1)

3.2. Let ∆ (𝑝) =
∏︀𝑚

𝑗=1
ℎ𝑗

ℎ𝑗+𝑝
, ℎ𝑗 > 0. The original of the function ∆ (𝑝) is of the form

𝑚∑︁
𝑘=1

𝑒−ℎ𝑘𝑡
∏︁
𝑗 ̸=𝑘

ℎ𝑗

ℎ𝑗 − ℎ𝑘

→ ∆ (𝑝) .

By formula (1.2) we establish the following expression for the operator 𝐿𝜔

𝐿𝜔 [𝑓 ] (𝑧) =
∏︁
𝑗 ̸=𝑘

ℎ𝑗

ℎ𝑗 − ℎ𝑘

∫︁ 1

0

𝜀ℎ𝑘−1𝑓 (𝜀𝑧) 𝑑𝜀.

At that, the inverse operator 𝐿−1
𝜔 is a differential operator of the form

𝐿−1
𝜔 [𝑓 ] (𝑧) =

𝑚∏︁
𝑗=1

ℎ𝑗 + 𝐿0

ℎ𝑗

.

The theory of such operators was exposed in the monographs by I.I. Bavrin [1, 2].
3.3. Let us discuss a fractional power of the operator ℎ+ 𝑧 𝑑

𝑑𝑧
. We choose the function ∆ (𝑝) as

∆ (𝑝) =
ℎ𝛼

(ℎ + 𝑝)𝛼
.

Taking into consideration the formula

ℎ𝛼

Γ (𝛼)
𝑒−ℎ𝑡𝑡𝛼−1 → ℎ𝛼

(ℎ + 𝑝)𝛼

in the table of Laplace transformations, according to formula (1.2), we establish the expression
for the operator 𝐿𝜔:

𝐿𝜔 [𝑓 ] (𝑧) =
ℎ𝛼

Γ (𝛼)

∫︁ ∞

0

𝑒−ℎ𝜀𝜀𝛼−1𝑓
(︀
𝑒−𝜀𝑧

)︀
𝑑𝜀.

After the change of the variable 𝑒−𝜀 = 𝜏 , we arrive at the following expression for the operator
𝐿𝜔:

𝐿𝜔 [𝑓 ] (𝑧) =
ℎ𝛼

Γ (𝛼)

∫︁ 1

0

𝜀ℎ−1

(︂
ln

1

𝜀

)︂𝛼−1

𝑓 (𝜀𝑧) 𝑑𝜀, ℎ > 0, 𝛼 > 0.
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Thus, in the definition of the generalized Riemann-Liouville operator we should let

𝜔 (𝑥) =
ℎ𝛼

Γ (𝛼)

∫︁ 1

𝑥

𝜀ℎ−1

(︂
ln

1

𝜀

)︂𝛼−1

𝑑𝜀.

a) If 𝛼 = 𝑛 ∈ 𝑁 , then the inverse operator 𝐿−1
𝜔 is calculated by the formula

𝐿−1
𝜔 =

(︂
ℎ + 𝑧

𝑑

𝑑𝑧

)︂𝑛

,

i.e., is differential.
b) If 𝛼 /∈ 𝑁 , the inverse operator 𝐿−1

𝜔 is of the form:

𝐿−1
𝜔 [𝑓 ] (𝑧) ≡

(︂
ℎ + 𝑧

𝑑

𝑑𝑧

)︂𝛼

[𝑓 ] (𝑧)

=
1

Γ (𝑛 + 1 − 𝛼)

(︂
ℎ + 𝑧

𝑑

𝑑𝑧

)︂𝑛+1 ∫︁ 1

0

𝜀ℎ−1

(︂
ln

1

𝜀

)︂𝑛−𝛼

𝑓 (𝜀𝑧) 𝑑𝜀.

For instance, as 𝛼 = 1
2
, we obtain the following expression:(︂

ℎ + 𝑧
𝑑

𝑑𝑧

)︂ 1
2

[𝑓 ] (𝑧) =
1√
𝜋

(︂
ℎ + 𝑧

𝑑

𝑑𝑧

)︂∫︁ 1

0

𝜀ℎ−1

(︂
ln

1

𝜀

)︂− 1
2

[𝑓 ] (𝜀𝑧) 𝑑𝜀.

3.4. Hadamard operator. We consider the class of functions 𝑤 = 𝑓 (𝑧) analytic in the unit
circle 𝐵 = {𝑧 : |𝑧| < 1} such that 𝑓 (0) = 0. We choose the function ∆ (𝑝) as

∆ (𝑝) =
1

𝑝𝛼
.

Taking into consideration the formula

𝑡𝛼−1

Γ (𝛼)
→ 1

𝑝𝛼

from the table of the Laplace transformations, according to formula (2.1), we get the expression
for the operator 𝐿𝜔

𝐿𝜔 [𝑓 ] (𝑧) =
1

Γ (𝛼)

∫︁ ∞

0

𝜀𝛼−1𝑓
(︀
𝑒−𝜀𝑧

)︀
𝑑𝜀, 𝛼 > 0.

After the change of the variable 𝑒−𝜀 = 𝜏 , we arrive at the following expression for operator 𝐿𝜔

𝐿𝜔 [𝑓 ] (𝑧) =
1

Γ (𝛼)

∫︁ 1

0

(︂
ln

1

𝜀

)︂𝛼−1
𝑓 (𝜀𝑧)

𝜀
𝑑𝜀. (3.2)

The right hand side of formula (3.2) defines Hadamard operator [12].
a) If 𝛼 = 𝑛 ∈ 𝑁 , the inverse operator 𝐿−1

𝜔 is calculated by the formula

𝐿−1
𝜔 = 𝐿𝑛

0 ,

i.e., is differential.
b) If 𝛼 /∈ 𝑁 , then inverse operator 𝐿−1

𝜔 is of the form:

𝐿−1
𝜔 [𝑓 ] (𝑧) ≡ 𝐿𝛼 [𝑓 ] (𝑧) =

1

Γ (𝑛 + 1 − 𝛼)
𝐿𝑛+1

[︃∫︁ 1

0

(︂
ln

1

𝜀

)︂𝑛−𝛼
𝑓 (𝜀𝑧)

𝜀
𝑑𝜀

]︃
.

For instance, as 𝛼 = 1
2
, we obtain the following expression:

𝐿
1
2 [𝑓 ] (𝑧) =

1√
𝜋
𝐿

[︃∫︁ 1

0

(︂
ln

1

𝜀

)︂− 1
2 𝑓 (𝜀𝑧)

𝜀
𝑑𝜀

]︃
.
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3.5. If ∆ (𝑝) = ℎ2

ℎ2+𝑝2
, we obtain 𝑄 (𝑧) = ℎ2+𝑧2

ℎ2 , and, hence, the inverse operator is a differential

operator of the form

𝐿−1
𝜔 =

ℎ2 + 𝐿2
0

ℎ2
, 𝐿0 = 𝑧

𝑑

𝑑𝑧
.

Let us find the direct operator 𝐿𝜔. By a formula in the table of the Laplace transformations,

ℎ sinℎ𝑡 → ℎ2

ℎ2 + 𝑝2
.

According to Theorem 2.1, let us find the expression for the operator 𝐿𝜔 in formula (2.1)

𝐿𝜔 [𝑓 ] (𝑧) =

∫︁ ∞

0

ℎ sin (ℎ𝜀) 𝑓
(︀
𝑒−𝜀𝑧

)︀
𝑑𝜀.

As a result, after a change of the variable, we have

𝐿𝜔 [𝑓 ] (𝑧) =

∫︁ 1

0

ℎ

𝜀
sin

(︂
ℎ ln

1

𝜀

)︂
𝑓 (𝜀𝑧) 𝑑𝜀.

Remark 1. Here we have 𝜔′ (𝑥) = −ℎ
𝑥

sin
(︀
ℎ ln 1

𝑥

)︀
and hence, 𝜔 (𝑥) /∈ Ω.

3.6. Fractional power of the operator ℎ2 + 𝐿2
0.

We let

∆ (𝑝) =
(ℎ2 + 𝑝2)

𝛼

ℎ2𝛼
, ℎ ̸= 0, 𝛼 > 0.

By a formula in the table of the Laplace transformations,
√
𝜋 · ℎ

Γ (𝛼)

(︂
𝑡ℎ

2

)︂𝛼− 1
2

𝐽𝛼− 1
2

(ℎ𝑡) → ℎ2𝛼

(ℎ2 + 𝑝2)𝛼
,

where 𝐽𝛼− 1
2

(𝑧) is the Bessel function of order 𝛼− 1
2
. By Theorem 2.1 and formula (2.1) we find

the expression for operator 𝐿𝜔

𝐿𝜔 [𝑓 ] (𝑧) =

√
𝜋

Γ (𝛼)

∫︁ 1

0

ℎ

𝜀

(︂
ℎ ln 1

𝜀

2

)︂𝛼− 1
2

𝐽𝛼− 1
2

(︂
ℎ ln

1

𝜀

)︂
𝑓 (𝜀𝑧) 𝑑𝜀.

a) If 𝛼 = 𝑛 ∈ 𝑁 , then the inverse Riemann-Liouville operator is a differential operator of the
form

𝐿−1
𝜔 =

(ℎ2 + 𝐿2
0)

𝑛

ℎ2𝑛
.

b) If 𝛼 /∈ 𝑁 , then the inverse operator 𝐿−1
𝜔 is of the form:

𝐿−1
𝜔 [𝑓 ] (𝑧) ≡

(︀
ℎ2 + 𝐿2

0

)︀𝛼
[𝑓 ] (𝑧) /ℎ2𝛼

=

√
𝜋ℎ−2𝛼

Γ (𝑛 + 1 − 𝛼)

∫︁ 1

0

𝜀−1

(︂
ln 1

𝜀

2ℎ

)︂𝑛−𝛼+ 1
2

𝐽𝑛−𝛼+ 1
2

(︂
ℎ ln

1

𝜀

)︂(︀
ℎ2 + 𝐿2

0

)︀𝑛+1
[𝑓 ] (𝜀𝑧) 𝑑𝜀,

i.e., is an integral-differential operator.
3.7. We let

∆ (𝑝) =
√︀
ℎ + 𝑝𝑒

𝑘
ℎ+𝑝 ; 𝑘, ℎ > 0.

In the table of the Laplace transformations we choose the formula

𝑒−ℎ𝑡 1√
𝜋𝑡

cos 2
√
𝑘𝑡 → 1

√
ℎ + 𝑥𝑒

𝑘
ℎ+𝑥

.

Due to Theorem 2.1 and formula (2.1) we find the expression for the operator 𝐿𝜔:

𝐿𝜔 [𝑓 ] =
1√
𝜋

∫︁ 1

0

𝜀ℎ−1√︁
ln 1

𝜀

cos 2

√︂
𝑘 ln

1

𝜀
𝑓 (𝜀𝑧) 𝑑𝜀.
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Taking into consideration the formula

𝑒−ℎ𝑡 1√
𝜋𝑡

𝑐ℎ2
√
𝑘𝑡 → 1√

ℎ + 𝑥
𝑒

𝑘
ℎ+𝑥 ,

we find the inverse operator 𝐿−1
𝜔 :

𝐿−1
𝜔 [𝑓 ] =

1√
𝜋

(ℎ + 𝐿0)

∫︁ 1

0

𝜀ℎ−1√︁
ln 1

𝜀

𝑐ℎ2

√︂
𝑘 ln

1

𝜀
· 𝑓 (𝜀𝑧) 𝑑𝜀.

4. Conclusion

In the work we presented the technique of applying integral Laplace transform in the theory
of the generalized Riemann-Liouville operators. We found the closed formulae for the inverse
of the generalized Riemann-Liouville operators. The main result of the work is the extension
of the scalar sequence

∆ (𝑘) = 𝑘

∫︁ 1

0

𝑟𝑘−1𝜔 (𝑥) 𝑑𝑥 < ∞, 𝑘 = 1, 2, . . .

in the half-plane 𝑝 : Re 𝑝 = 𝜎 > 𝜎0 > 0. The problem on inversion of the generalized
Riemann-Liouville operator is solved in the case when the function ∆ (𝑝) is the Laplace image,
while the function ∆−1 (𝑝) has a power growth, i.e.,

1

∆ (𝑝)
= 𝑝𝛼𝐿 (𝑝) , 𝛼 > 0,

where 𝐿 (𝑝) is a slowly varying function [14].
In particular, in the work we presented the theory of fractional powers of the Hadamard

operator; in our notations, this is the operator 𝐿0. We considered the theory of the fractional
powers of the generalized Hadamard operators such as the operator ℎ + 𝐿0, ℎ > 0, and the
operator ℎ2 + 𝐿2

0, ℎ > 0.
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