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1. Introduction

A function f on C∗ = C\{0} is said to be multiplicatively periodic if there exists q,
0 < |q| 6= 1 such that

∀z ∈ C∗ f(qz) = f(z). (1)

Such a q is called multiplicator of f.
The theory of meromorphic functions satisfying (1) is dual to the theory of elliptic functions,

which are double periodic meromorphic functions on C ([1]-[3]).
Holomorphic functions, harmonic functions, subharmonic functions satisfying (1) are

constant.
In this connection we try to answer the questions:

(i) do multiplicatively periodic non-constant harmonic functions of several variables exist?
(ii) do double periodic non-constant harmonic functions of three variables exist?
(iii) if yes, what are their representations?

Note that C∗ is a nonlinear homogeneous space on which multiplicative group C∗ acts and
that (1) implies

∀n ∈ Z ∀z ∈ C∗ f(qnz) = f(z).

We will say that f is stationary with respect to the cyclic group {qn}, n ∈ Z, generated by q.
Note also that each multiplicatively periodic harmonic functions of multiplicator q, 0 < q 6= 1,

in the punctured Euclidean space
◦
Rm = Rm\{0}, m ≥ 3, is constant due to the extremum

principle and the counterpart of the Liouville theorem. Hence, in order to solve problems (i)-(iii)
we should consider more general homogeneous spaces.

2. Homogeneous spaces

Definition 1. Let X be a topological space, G be a group of homeomorphic mappings of X
onto X. A couple (X,G) is called homogeneous space.
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If G is transitive, that is

∀x1, x2 ∈ X ∃τ ∈ G (x2 = τx1),

then (X,G) is said to be the Klein space (see [4]).

Example 1. Let G be a group of the linear transformations of Euclidean space Rn. It is
transitive. Then (Rn, G) is the linear homogeneous space. It is the Klein space.

Example 2. Let X = Rn\{0}, G = SO(n). X is invariant with respect to homothetic
transformations, G is intransitive. Thus, instead of G the compositions of rotations and
homothetic transformations G1 can be taken.Then G1 is transitive and (Rn\{0}, G1) is the
nonlinear homogeneous space. It is the Klein space, too.

3. Invariant functional spaces on (X,G). Stationary elements with respect
to subgroups

Definition 2. Let (X,G) be a homogeneous space. A set (family) of functions F is said to
be invariant if it satisfies the following condition

∀f ∈ F ∀τ ∈ G (f ◦ τ ∈ F).

Definition 3. Let (X,G) be a homogeneous space, F be an invariant family, H be a subgroup
of group G. An element f ∈ F is called stationary with respect to H if

∀τ ∈ H (f ◦ τ = f).

The set of such elements is denoted by FH .

4. Stationary harmonic functions on homogeneous spaces

The space
→
R 3 = {(x1, x2, x3) = x : x21 + x22 > 0} is called pierced Euclidean

space. It is nonlinear, invariant with respect to the rotations around axis x3 and
homothetic transformations. The composition of the rotations around axis x3 and homothetic
transformations forms a group, which we denote by G. Hence, we obtain nonlinear homogeneous
space (

→
R 3, G). It is the Klein space.

One of the functional spaces invariant with respect to group G is the linear space of harmonic
in
→
R 3 functions (see, for example, [5]). We denote it by H.
The rotation by an angle α around axis x3 is given by the following matrix

A =

 cosα − sinα 0
sinα cosα 0

0 0 1

 .

Fix q, 0 < q < 1. Let H be a composition of some A and the cyclic group {qn}, n ∈ Z.
It is an open problem to describe stationary elements from HH which are harmonic in

→
R 3

functions satisfying the condition

∀x ∈
→
R 3 h(qnAx) = h(x).

However, we can show that class HH is non-trivial, i.e., it contains non-constant harmonic
functions.

We consider the series
+∞∑
n=0

( 1

|a|
− 1

|qnx− a|

)
−

+∞∑
n=1

1

|q−nx− a|
(2)
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introduced in ([6]). It was proved there that for any fixed a ∈
◦
R 3, q < |a| 6 1, the remainder

of series (2) converges uniformly on the compact subsets from
◦
R 3 and that the sum K(x, a) of

(2) is subharmonic in
◦
R 3.

Denote X3 = {(0, 0, x3) : x3 6= 0}. If a ∈ X3, then each term of (2) is a harmonic function
in
→
R 3. Indeed, the fundamental solution of the Laplace equation in R3 is 1

|x| . Since q
kx 6= a,

k ∈ Z, the function 1
|qkx−a| is harmonic in

→
R 3. Therefore, the function K(x, a) is harmonic in

→
R 3 if a = (0, 0, a3) ∈ X3, q < |a| 6 1.

Note that the function K(x, a) is independent of α, namely,

∀A K(Ax, a) = K(x, a). (3)

Let y = Ax, that is y1 = x1 cosα − x2 sinα, y2 = x1 sinα + x2 cosα, y3 = x3. Consider the
absolute value |qky − a|, k ∈ Z. We have

|qky − a| = |(qkx1 cosα− qkx2 sinα, qkx1 sinα + qkx2 cosα, qkx3 − a3)| =

=
√
q2kx21 + q2kx22 + (qkx3 − a3)2 = |qkx− a|.

Thus, identity (3) is valid.
It is easy to check that

K(qx, a) = K(x, a)− 1

|a|
. (4)

Let a = (0, 0, 1) and b = (0, 0,−1).
The function

h(x) = K(x, a)−K(x, b)

is harmonic in
→
R 3.

Using identities (3) and (4), we obtain

h(qAx) = K(x, a)− 1

|a|
−K(x, b) +

1

|b|
.

Since |a| = |b|, we get

∀x ∈
→
R 3 h(qAx) = h(x).

Thus, h ∈ HH .

5. A class of functions in HH

We denote by B the class of bounded Borel sets in
◦
R 3 whose closures belong to

◦
R 3. For

B ∈ B we let
qB = {qx : x ∈ B}, 0 < q < 1.

Theorem A ([7]). A measure µ in
◦
R 3 is the Riesz measure of a multiplicatively periodic

δ-subharmonic functions of multiplicator q if and only if
(i) µ(qB) = qµ(B) for each B ∈ B;
(ii)

∫
qr<|x|6r

dµ
|x| = 0 for all r > 0.

Theorem B ([7]). Each multiplicatively periodic δ-subharmonic in
◦
R 3 function u of

multiplicator q satisfies the representation

u(x) = C +

∫
q<|a|61

K(x, a)dµu(a),
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where C is a constant.
The following theorem describes a class of harmonic functions from HH .

Theorem 1. If a Borel measure µ on
◦
R 3 satisfies the conditions

1) µ(qB) = qµ(B) for each B ∈ B;
2)

∫
q<|a|61

dµ
|a| = 0;

3) µ(B) = µ(B
⋂
X3), µ(∅) = 0;

then the function

h(x) =

∫
q<|a|61

K(x, a)dµ(a) (5)

belongs to HH and vice versa each h ∈ HH which admits a δ-subharmonic continuation on
◦
R 3

satisfies the representation

h(x) = C +

∫
q<|a|61

K(x, a)dµ(a), (6)

where C is a constant and µ satisfies 1)-3).

Proof. Let µ satisfy Conditions 1), 2). According to Theorem B, function h defined by (5) is

multiplicatively periodic δ-subharmonic in
◦
R 3 of multiplicator q. In virtue of condition 3) h is

harmonic in
→
R 3. Taking into account that K(x, a) is independent of A we have h ∈ HH .

Now let h be a function from HH admitting a δ-subharmonic continuation on
◦
R 3. According

to Theorems A and B it has representation (6), where µ satisfies Conditions 1), 2). Since4h = 0

in
→
R 3, µ satisfies also Condition 3). This completes the proof.

6. Double periodic harmonic functions in a layer

Let h(x) be a multiplicatively periodic harmonic in
→
R 3 function of multiplicator q, 0 < q 6= 1.

Consider the mapping

x1 = eξ cos η, x2 = eξ sin η, x3 = eξ cot ζ,

where ξ, η ∈ R, 0 < ζ < π. We have x21 + x22 = e2ξ > 0. Hence, it maps the layer {(ξ, η, ζ) :

ξ, η ∈ R, 0 < ζ < π} onto
→
R 3 with the Jacobians J = −e3ξ

sin2 ζ
. Laplacian 4 becomes

4 = e−2ξ
(
∂2

∂ξ2
+

∂2

∂η2
+ sin2 ζ

∂2

∂ζ2
+ sin 2ζ

(
1

2

∂

∂ζ
+

∂2

∂ξ∂ζ

))
.

Denote
g(ξ, η, ζ) = h

(
eξ cos η, eξ sin η, eξ cot ζ

)
.

The function g is defined in the layer {(ξ, η, ζ) : ξ, η ∈ R, 0 < ζ < π}.
Since h(qx) = h(x), we have

g(ξ + log q, η + 2π, ζ) = g(ξ, η, ζ).

Indeed,

g(ξ + log q, η + 2π, ζ) = h
(
eξ+log q cos(η + 2π), eξ+log q sin(η + 2π), eξ+log q cot ζ

)
=

= h
(
qeξ cos η, qeξ sin η, qeξ cot ζ

)
= h

(
eξ cos η, eξ sin η, eξ cot ζ

)
= g(ξ, η, ζ).

Denoting ω1 = log q, ω2 = 2π, we obtain double periodic harmonic function g of period
Λ = (Zω1,Zω2, ζ) . That is, such a function is stationary with respect to a group of the
translations indicated above.
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Remark. The connection between the local spherical coordinates and the new substitution is
as follows

eξ = r sin θ, η = φ, ζ = θ.
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