УДК 517.572

STATIONARY HARMONIC FUNCTIONS ON HOMOGENEOUS SPACES

V.S. KHOROSHCHAK, A.A. KONDRATYUK

Abstract. Stationary harmonic functions on homogeneous spaces are considered. A relation to double periodic harmonic functions of three variables is showed.

Keywords: harmonic function, multiplicatively periodic function, double periodic function, homogeneous space, Klein space, invariant family, stationary element with respect to a subgroup, punctured Euclidean space.

Mathematics Subject Classification: 31B05

1. INTRODUCTION

A function f on $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$ is said to be **multiplicatively periodic** if there exists q, $0 < |q| \neq 1$ such that

$$
\forall z \in \mathbb{C}^* \quad f(qz) = f(z). \tag{1}
$$

Such a q is called multiplicator of f .

The theory of meromorphic functions satisfying (1) is dual to the theory of elliptic functions, which are double periodic meromorphic functions on \mathbb{C} ([1]-[3]).

Holomorphic functions, harmonic functions, subharmonic functions satisfying (1) are constant.

In this connection we try to answer the questions:

 (i) do multiplicatively periodic non-constant harmonic functions of several variables exist?

 (ii) do double periodic non-constant harmonic functions of three variables exist?

 (iii) if yes, what are their representations?

Note that \mathbb{C}^* is a nonlinear homogeneous space on which multiplicative group \mathbb{C}^* acts and that (1) implies

$$
\forall n \in \mathbb{Z} \quad \forall z \in \mathbb{C}^* \quad f(q^n z) = f(z).
$$

We will say that f is stationary with respect to the cyclic group $\{q^n\}, n \in \mathbb{Z}$, generated by q.

Note also that each multiplicatively periodic harmonic functions of multiplicator $q, 0 < q \neq 1$, in the punctured Euclidean space $\mathbb{R}^m = \mathbb{R}^m \setminus \{0\}$, $m \geq 3$, is constant due to the extremum principle and the counterpart of the Liouville theorem. Hence, in order to solve problems (i) - (iii) we should consider more general homogeneous spaces.

2. Homogeneous spaces

Definition 1. Let X be a topological space, G be a group of homeomorphic mappings of X onto X. A couple (X, G) is called **homogeneous space.**

c Khoroshchak V.S., Kondratyuk A.A. 2015.

V.S. Khoroshchak, A. A. Kondratyuk, Stationary harmonic functions on homogeneous spaces.

If G is transitive, that is

$$
\forall x_1, x_2 \in X \quad \exists \tau \in G \quad (x_2 = \tau x_1),
$$

then (X, G) is said to be the Klein space (see [4]).

Example 1. Let G be a group of the linear transformations of Euclidean space \mathbb{R}^n . It is transitive. Then (\mathbb{R}^n, G) is the linear homogeneous space. It is the Klein space.

Example 2. Let $X = \mathbb{R}^n \setminus \{0\}$, $G = SO(n)$. X is invariant with respect to homothetic transformations, G is intransitive. Thus, instead of G the compositions of rotations and homothetic transformations G_1 can be taken. Then G_1 is transitive and $(\mathbb{R}^n \setminus \{0\}, G_1)$ is the nonlinear homogeneous space. It is the Klein space, too.

3. INVARIANT FUNCTIONAL SPACES ON (X, G) . STATIONARY ELEMENTS WITH RESPECT to subgroups

Definition 2. Let (X, G) be a homogeneous space. A set (family) of functions F is said to be **invariant** if it satisfies the following condition

$$
\forall f \in \mathcal{F} \quad \forall \tau \in G \quad (f \circ \tau \in \mathcal{F}).
$$

Definition 3. Let (X, G) be a homogeneous space, F be an invariant family, H be a subgroup of group G. An element $f \in \mathcal{F}$ is called **stationary with respect to** H if

$$
\forall \tau \in H \quad (f \circ \tau = f).
$$

The set of such elements is denoted by \mathcal{F}_H .

4. Stationary harmonic functions on homogeneous spaces

The space \vec{R}^3 = { (x_1, x_2, x_3) = x : $x_1^2 + x_2^2 > 0$ } is called *pierced Euclidean* space. It is nonlinear, invariant with respect to the rotations around axis x_3 and homothetic transformations. The composition of the rotations around axis x_3 and homothetic transformations forms a group, which we denote by G. Hence, we obtain nonlinear homogeneous space (\mathbb{R}^3, G) . It is the Klein space.

One of the functional spaces invariant with respect to group G is the linear space of harmonic in \vec{R}^3 functions (see, for example, [5]). We denote it by \mathcal{H} .

The rotation by an angle α around axis x_3 is given by the following matrix

$$
A = \begin{pmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{pmatrix}.
$$

Fix q, $0 < q < 1$. Let H be a composition of some A and the cyclic group $\{q^n\}, n \in \mathbb{Z}$.

It is an open problem to describe stationary elements from \mathcal{H}_H which are harmonic in \mathbb{R}^3 functions satisfying the condition

$$
\forall x \in \mathbb{R}^3 \qquad h(q^n A x) = h(x).
$$

However, we can show that class \mathcal{H}_H is non-trivial, i.e., it contains non-constant harmonic functions.

We consider the series

$$
\sum_{n=0}^{+\infty} \left(\frac{1}{|a|} - \frac{1}{|q^n x - a|} \right) - \sum_{n=1}^{+\infty} \frac{1}{|q^{-n} x - a|} \tag{2}
$$

introduced in ([6]). It was proved there that for any fixed $a \in \mathbb{R}^3$, $q < |a| \leq 1$, the remainder of series (2) converges uniformly on the compact subsets from \mathbb{R}^3 and that the sum $K(x, a)$ of (2) is subharmonic in \mathbb{R}^3 .

Denote $X_3 = \{(0, 0, x_3): x_3 \neq 0\}$. If $a \in X_3$, then each term of (2) is a harmonic function in \vec{R}^3 . Indeed, the fundamental solution of the Laplace equation in \vec{R}^3 is $\frac{1}{|x|}$. Since $q^k x \neq a$, $k \in \mathbb{Z}$, the function $\frac{1}{|q^kx-a|}$ is harmonic in \mathbb{R}^3 . Therefore, the function $K(x, a)$ is harmonic in \mathbb{R}^3 if $a = (0, 0, a_3) \in X_3$, $q < |a| \leq 1$.

Note that the function $K(x, a)$ is independent of α , namely,

$$
\forall A \quad K(Ax, a) = K(x, a). \tag{3}
$$

Let $y = Ax$, that is $y_1 = x_1 \cos \alpha - x_2 \sin \alpha$, $y_2 = x_1 \sin \alpha + x_2 \cos \alpha$, $y_3 = x_3$. Consider the absolute value $|q^k y - a|, k \in \mathbb{Z}$. We have

$$
|q^k y - a| = |(q^k x_1 \cos \alpha - q^k x_2 \sin \alpha, q^k x_1 \sin \alpha + q^k x_2 \cos \alpha, q^k x_3 - a_3)| =
$$

= $\sqrt{q^{2k} x_1^2 + q^{2k} x_2^2 + (q^k x_3 - a_3)^2} = |q^k x - a|.$

Thus, identity (3) is valid.

It is easy to check that

$$
K(qx, a) = K(x, a) - \frac{1}{|a|}.
$$
\n(4)

Let $a = (0, 0, 1)$ and $b = (0, 0, -1)$. The function

$$
h(x) = K(x, a) - K(x, b)
$$

is harmonic in \overrightarrow{R}^3 .

Using identities (3) and (4), we obtain

$$
h(qAx) = K(x, a) - \frac{1}{|a|} - K(x, b) + \frac{1}{|b|}.
$$

Since $|a|=|b|$, we get

$$
\forall x \in \mathbb{R}^3 \quad h(qAx) = h(x).
$$

Thus, $h \in \mathcal{H}_H$.

5. A CLASS OF FUNCTIONS IN \mathcal{H}_H

We denote by $\mathcal B$ the class of bounded Borel sets in $\mathbb R^3$ whose closures belong to $\mathbb R^3$. For $B \in \mathcal{B}$ we let

$$
qB = \{qx : x \in B\}, \quad 0 < q < 1.
$$

Theorem A ([7]). A measure μ in \mathbb{R}^3 is the Riesz measure of a multiplicatively periodic δ -subharmonic functions of multiplicator q if and only if

(i) $\mu(qB) = q\mu(B)$ for each $B \in \mathcal{B}$; (ii) $qr<|x|\leqslant r$ $\frac{d\mu}{|x|} = 0$ for all $r > 0$.

Theorem B ([7]). Each multiplicatively periodic δ -subharmonic in $\hat{\mathbb{R}}^3$ function u of multiplicator q satisfies the representation

$$
u(x) = C + \int_{\substack{q < |a| \leqslant 1}} K(x, a) d\mu_u(a),
$$

where C is a constant.

The following theorem describes a class of harmonic functions from \mathcal{H}_H .

Theorem 1. If a Borel measure μ on \mathbb{R}^3 satisfies the conditions 1) $\mu(qB) = q\mu(B)$ for each $B \in \mathcal{B}$; $2)$ \int $q<|a|\leqslant1$ $\frac{d\mu}{|a|}=0;$ 3) $\mu(B) = \mu(B \cap X_3), \quad \mu(\emptyset) = 0;$ then the function $h(x) =$ $K(x, a)d\mu(a)$ (5)

belongs to
$$
\mathcal{H}_H
$$
 and vice versa each $h \in \mathcal{H}_H$ which admits a δ -subharmonic continuation on $\overset{\circ}{\mathbb{R}}^3$ satisfies the representation

 $q<|a|\leqslant1$

$$
h(x) = C + \int\limits_{q < |a| \leqslant 1} K(x, a) d\mu(a),\tag{6}
$$

where C is a constant and μ satisfies 1)-3).

Proof. Let μ satisfy Conditions 1), 2). According to Theorem B, function h defined by (5) is multiplicatively periodic δ -subharmonic in \mathbb{R}^3 of multiplicator q. In virtue of condition 3) h is harmonic in \overrightarrow{R}^3 . Taking into account that $K(x, a)$ is independent of A we have $h \in \mathcal{H}_H$.

Now let h be a function from \mathcal{H}_H admitting a δ -subharmonic continuation on \mathbb{R}^3 . According to Theorems A and B it has representation (6), where μ satisfies Conditions 1), 2). Since $\triangle h = 0$ in \vec{R}^3 , μ satisfies also Condition 3). This completes the proof. \Box

6. Double periodic harmonic functions in a layer

Let $h(x)$ be a multiplicatively periodic harmonic in $\vec{\mathbb{R}}^3$ function of multiplicator $q, 0 < q \neq 1$. Consider the mapping

$$
x_1 = e^{\xi} \cos \eta
$$
, $x_2 = e^{\xi} \sin \eta$, $x_3 = e^{\xi} \cot \zeta$,

where $\xi, \eta \in \mathbb{R}$, $0 < \zeta < \pi$. We have $x_1^2 + x_2^2 = e^{2\xi} > 0$. Hence, it maps the layer $\{(\xi, \eta, \zeta)$: $\xi, \eta \in \mathbb{R}, 0 < \zeta < \pi$ onto $\vec{\mathbb{R}}^3$ with the Jacobians $\mathcal{J} = \frac{-e^{3\xi}}{\sin^2 \xi}$ $\frac{-e^{3\xi}}{\sin^2 \zeta}$. Laplacian \triangle becomes

$$
\Delta = e^{-2\xi} \left(\frac{\partial^2}{\partial \xi^2} + \frac{\partial^2}{\partial \eta^2} + \sin^2 \zeta \frac{\partial^2}{\partial \zeta^2} + \sin 2\zeta \left(\frac{1}{2} \frac{\partial}{\partial \zeta} + \frac{\partial^2}{\partial \xi \partial \zeta} \right) \right).
$$

Denote

 $g(\xi, \eta, \zeta) = h(e^{\xi} \cos \eta, e^{\xi} \sin \eta, e^{\xi} \cot \zeta).$

The function g is defined in the layer $\{(\xi, \eta, \zeta) : \xi, \eta \in \mathbb{R}, 0 < \zeta < \pi\}.$ Since $h(qx) = h(x)$, we have

$$
g(\xi + \log q, \eta + 2\pi, \zeta) = g(\xi, \eta, \zeta).
$$

Indeed,

$$
g(\xi + \log q, \eta + 2\pi, \zeta) = h(e^{\xi + \log q} \cos(\eta + 2\pi), e^{\xi + \log q} \sin(\eta + 2\pi), e^{\xi + \log q} \cot \zeta) =
$$

= $h(qe^{\xi} \cos \eta, qe^{\xi} \sin \eta, qe^{\xi} \cot \zeta) = h(e^{\xi} \cos \eta, e^{\xi} \sin \eta, e^{\xi} \cot \zeta) = g(\xi, \eta, \zeta).$

Denoting $\omega_1 = \log q$, $\omega_2 = 2\pi$, we obtain double periodic harmonic function g of period $\Lambda = (\mathbb{Z}\omega_1, \mathbb{Z}\omega_2, \zeta)$. That is, such a function is stationary with respect to a group of the translations indicated above.

Remark. The connection between the local spherical coordinates and the new substitution is as follows

$$
e^{\xi} = r \sin \theta, \quad \eta = \phi, \quad \zeta = \theta.
$$

REFERENCES

- 1. O. Rausenberger Lehrbuch der Theorie der Periodischen Functionen Einer variabeln. Leipzig, Druck und Ferlag von B.G.Teubner, 1884, 470p.
- 2. G. Valiron Cours d'Analyse Mathematique, Theorie des fonctions, 3nd Edition. Masson et. Cie., Paris, 1966, 522 pp.
- 3. Y. Hellegouarch Invitation to the Mathematics of Fermat-Wiles. Academic Press, 2002, 381 pp.
- 4. B.A. Rozenfeld Noneuclidean spaces. Nauka, Moscow, 1969, 548p.(in Russian)
- 5. E.M. Stein, G. Weiss Introduction to Fourier analysis on Euclidean spaces. Princeton, New Jersey, Princeton University Press, 1974, 332p. (in Russian)
- 6. A.A. Kondratyuk, V.S. Zaborovska Multiplicatively periodic subharmonic functions in the punctured Euclidean space // Mat. Stud. 40 (2013). P. 159–164.
- 7. V.S. Khoroshchak, A.A. Kondratyuk The Riesz measures and a representation of multiplicatively periodic δ -subharmonic functions in a punctured Euclidean space $//$ Mat. Stud., 43 (2015). P. 61–65.

Vasylyna Stepanivna Khoroshchak, Ivan Franko National University of Lviv, 1, Universytetska St., 79000, Lviv, Ukraine E-mail: vasylyna1992@rambler.ru

Andriy Andriyovych Kondratyuk, Ivan Franko National University of Lviv, 1, Universytetska St., 79000, Lviv, Ukraine E-mail: kond@franko.lviv.ua