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Abstract. Asymptotics of the orthogonal polynomial constitute a classic analytic problem.

In the paper, we find a distribution of zeroes to generalized Hermite polynomials 𝐻𝑚,𝑛(𝑧) as

𝑚 = 𝑛, 𝑛 → ∞, 𝑧 = 𝑂(
√
𝑛). These polynomials defined as the Wronskians of classic Her-

mite polynomials appear in a number of mathematical physics problems as well as in the the-

ory of random matrices. Calculation of asymptotics is based on Riemann-Hilbert problem

for Painlevé IV equation which has the solutions 𝑢(𝑧) = −2𝑧+𝜕𝑧 ln𝐻𝑚,𝑛+1(𝑧)/𝐻𝑚+1,𝑛(𝑧).

In this scaling limit the Riemann-Hilbert problem is solved in elementary functions. As

a result, we come to analogues of Plancherel-Rotach formulae for asymptotics of classical

Hermite polynomials.
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0. Introduction

Generalized Hermite polynomials 𝐻𝑚,𝑛(𝑧) are defined by the formulae [17], [4]

𝐻𝑚,𝑛(𝑧) = det (𝑃𝑛−𝑖+𝑗(𝑧))𝑚𝑖,𝑗=1 , (1)

where

𝑃𝑠(𝑧) =
∑︁

𝑖+2𝑗=𝑠

1

6𝑗𝑖!𝑗!
𝑧𝑖

or, equivalently, as Wronskians of classical Hermite polynomials

𝐻𝑚,𝑛(𝑧) = 𝑐𝑚,𝑛𝒲 (𝐻𝑚(𝑧), 𝐻𝑚+1(𝑧), . . . , 𝐻𝑚+𝑛(𝑧)) ,

where 𝐻𝑛(𝑧) = (−1)𝑛𝑒𝑧
2 𝑑𝑛

𝑑𝑧𝑛
𝑒−𝑧2 , 𝑐𝑚,𝑛 are normalization constants.

Like classical orthogonal polynomials, they possess many remarkable properties. For instance,
polynomials 𝑝𝑛(𝑥) orthogonal on the real axis with the weight 𝑤(𝑥, 𝑧,𝑚) = (𝑥− 𝑧)𝑚 exp(−𝑥2)
satisfy the identity [3]

𝑥𝑝𝑛(𝑥) = 𝑝𝑛+1(𝑥) + 𝑎𝑛(𝑧,𝑚)𝑝𝑛(𝑥) + 𝑏𝑛(𝑧,𝑚)𝑝𝑛−1(𝑥),
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where

𝑎𝑛(𝑧,𝑚) = −1

2

𝑑

𝑑𝑧
ln

𝐻𝑛+1,𝑚

𝐻𝑛,𝑚

, 𝑏𝑛(𝑧,𝑚) =
𝑛𝐻𝑛+1,𝑚𝐻𝑛−1,𝑚

2𝐻2
𝑛,𝑚

.

Another property which will be used in what follows is that the logarithmic derivatives

𝑢(𝑧) = −2𝑧 +
𝑑

𝑑𝑧
ln

𝐻𝑚,𝑛+1(𝑧)

𝐻𝑚+1,𝑛(𝑧)
(2)

are rational solutions to the fourth Painlevé equation (PIV)

𝑢′′ =
(𝑢′)2

2𝑢
+

3

2
𝑢3 + 4𝑧𝑢2 + 2(𝑧2 − 𝛼)𝑢 +

𝛽

2𝑢
(3)

with the coefficients

𝛼 = 𝑛−𝑚, 𝛽 = −2(𝑚 + 𝑛 + 1)2.

We also mention a recently found application related to matrix models in the statistical
physics. The distribution function for eigenvalues in Gaussian unitary ensemble [10] under
fixing 𝑛 eigenvalues 𝜆𝑘 and 𝑚-fold degeneration of (𝑛 + 1)-th eigenvalue 𝜆𝑛+1 = 𝑧 reads as

𝐷𝑛(𝑧) =
1

𝑛!

∫︁ ∞

∞
. . .

∫︁ ∞

∞

∏︁
16𝑖<𝑗6𝑛

(𝜆𝑖 − 𝜆𝑗)
2

𝑛∏︁
𝑘=1

(𝜆𝑘 − 𝑧)𝑚𝑒−𝜆2
𝑘𝑑𝜆𝑘. (4)

On other hand, statistical sum (4) can be considered as the energy of the ground state of the
wave function for 𝑛 + 1 Coulomb particles with 1/𝑟2 repulsion in an external quadratic field
[10]. At that, it happens [3] that

𝐷𝑛(𝑧) = 𝐴𝑚,𝑛𝐻𝑚,𝑛(𝑐𝑧), 𝑐 = 𝑖

√︂
2

3
, 𝐴𝑚,𝑛 = const.

Thus, the zeroes of generalized Hermite polynomials correspond to the coordinates of Coulomb
particles in equilibrium state hold by the external quadratic field.

The calculation of asymptotic distribution of orthogonal polynomials go back to the works of
classics in analysis in the end of XIX century, like Darboux, Chebyshev, Steklov and Stiltjes. In
particular, for Hermite polynomials, this distribution is implied by Plancherel-Rotach formulae,
[14], [16, Ch. 8],

𝑒−𝑧2/2𝐻𝑛(𝑧) =
2

𝑛
2
+ 1

4

√
𝑛!

(𝜋𝑛)1/4
√

sin𝜙

{︂
sin

[︂(︂
𝑛

2
+

1

4

)︂
(sin 2𝜙− 2𝜙) +

3𝜋

4

]︂
+ 𝑂(𝑛−1)

}︂
,

where 𝑧 =
√

2𝑛 + 1 cos𝜙, 𝜀 6 𝜙 6 𝜋 − 𝜀, 𝑛 → ∞ and

𝑒−𝑧2/2𝐻𝑛(𝑧) =
2

𝑛
2
− 3

4

√
𝑛!

(𝜋𝑛)1/4
√

sh𝜙

{︂
exp

[︂(︂
𝑛

2
+

1

4

)︂
(sh 2𝜙− 2𝜙) +

3𝜋

4

]︂
+ 𝑂(𝑛−1)

}︂
,

where 𝑧 =
√

2𝑛 + 1 ch𝜙, 𝜀 6 𝜙 6 𝜔, 𝑛 → ∞, 𝜔 is an arbitrary constant.
It follows that zeroes of 𝐻𝑛(𝑧) are real and are located in the domain of the characteristic

scale 𝑂(
√

2𝑛).
In what follows we calculate the distribution of zeroes of polynomials 𝐻𝑚,𝑛(𝑧) as

𝑚 = 𝑛, 𝑛 → ∞, 𝑧 = 𝑂(
√
𝑛). (5)

In order to do it, after the example of recent works [1], [2] and [13], we employ rational solu-
tions (2) to equation (3). It is easy to show that the poles of this solution with residues +1
correspond to the zeroes of polynomials 𝐻𝑚,𝑛+1, with the poles with residues −1 coincide with
the zeroes of polynomial 𝐻𝑚+1,𝑛. Then, using the complete integrability of PIV equation, we
can formulate Riemann-Hilbert problem corresponding to given rational solutions. In order
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Figure 1. Zeroes of generalized Hermite polynomials 𝐻𝑚,𝑛(𝑧) for 𝑚 = 𝑛 = 10
(left) and for 𝑚 = 15 and 𝑛 = 10 (right)

to do it, in Section 1 we calculate monodromy data and a chain of Bäcklund transformation
leading to solutions (2). This matrix problem happens to be very similar to the corresponding
Riemann-Hilbert problem applied for the family of orthogonal polynomials with an exponential
weight (Section 2). The method of asymptotic solving such problems consists in providing
a special parametrix regularizing a power growth at infinity with replacing it by a standard
normalization by the unit matrix. In the present case, this method going back to works by P.
Deift and others [5], is similar to a procedure serving classical Hermite polynomials. We show
in Section 3 that the parametrix is constructed in terms of elementary functions as opposed to
the case of Vorobiev-Yablonski polynomials in PII equation leading to the parametrix in terms
of theta functions [1], [2]. As a result, in Section 4 we recover the lattice of zeroes of generalized
Hermite polynomials in the limit (5) be resolving a system of trigonometric equations.

1. Bäcklund transformation and calculation of monodromy data

The first integrals of PIV equation are monodromy data defined as follows [8, Ch. 5]. We
consider a linear matrix equation w.r.t. an additional parameter 𝜆

Ψ𝜆 = 𝐴(𝜆, 𝑧)Ψ, (6)

where Ψ = Ψ(𝜆, 𝑧) is 2 × 2-matrix function, and 𝐴(𝜆, 𝑧) is rational in 𝜆

𝐴 =𝜆

(︂
1 0
0 −1

)︂
+

(︂
𝑧 𝑦

2(𝑢𝑤 + 𝜃0 − 𝜃∞)𝑦−1 −𝑧

)︂
+

1

𝜆

(︂
−𝑢𝑤 + 𝜃0 −𝑦𝑤/2

2(𝑢𝑤 − 2𝜃0)𝑦
−1 𝑢𝑤 − 𝜃0

)︂
.

Here 𝑢,𝑤 and 𝑦 functions of 𝑧 satisfying nonlinear equations

𝑑

𝑑𝑧
log 𝑦 = −𝑢− 2𝑧,⎧⎪⎨⎪⎩

𝑑𝑢

𝑑𝑧
= −4𝑢𝑤 + 𝑢2 + 2𝑧𝑢 + 4𝜃0,

𝑑𝑤

𝑑𝑧
= 2𝑤2 − 2𝑢𝑤 − 2𝑧𝑤 + 𝜃0 + 𝜃∞.

(7)

Equations (7) are equivalent to PIV equation (3) for function 𝑢 = 𝑢(𝑧) with the coefficients

𝛼 = 2𝜃∞ − 1, 𝛽 = −8𝜃20.
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The monodromy data are defined by Stokes matrix for solutions Ψ to equation (6)

Ψ𝑗+1(𝜆, 𝑧) = Ψ𝑗(𝜆, 𝑧)𝑆𝑗, 𝑗 = 1, 2, 3, 4. (8)

Here four fundamental solutions Ψ𝑗 to equation (6) are chosen by the condition of analyticity
in 𝜆 in sector Ω𝑗,

Ω𝑗 = {𝜆 | − 𝜋/4 + 𝜋𝑗/2 < arg 𝜆 < 𝜋/4 + 𝜋𝑗/2, 𝑗 = 1, 2, 3, 4} ,
and the normalization at infinity

Ψ𝑗(𝜆, 𝑧) =
(︀
𝐼 + 𝑂(𝜆−1)

)︀
exp

{︂(︂
𝜆2

2
+ 𝑧𝜆

)︂
𝜎3

}︂
𝜆−𝜃∞𝜎3 , (9)

𝜆 → ∞, 𝜆 ∈ Ω𝑗, 𝜎3 =

(︂
1 0
0 −1

)︂
.

The main feature of Stokes matrices 𝑆𝑗 (8) is that they are independent of 𝑧 if and only if 𝑢,𝑤,
and 𝑦 satisfy system (7) or, equivalently, 𝑢 = 𝑢(𝑧) solves PIV equation (3) ([8], [11]). Thus,
scalar entries of these matrices 𝑠1, 𝑠2, 𝑠3 and 𝑠4

𝑆2𝑘 =

(︂
1 𝑠2𝑘
0 1

)︂
, 𝑆2𝑘−1 =

(︂
1 0

𝑠2𝑘−1 1

)︂
, 𝑘 = 1, 2,

become motion integrals (first integrals) of PIV equation (3). It is obvious that they are
independent since a second order equation has just two independent first integrals. Indeed, the
monodromy data satisfy the relation [8, Ch. 5],

(1 + 𝑠2𝑠3)𝑒
2𝜋𝑖𝜃∞ + (𝑠1𝑠4 + (1 + 𝑠3𝑠4)(1 + 𝑠1𝑠2)) 𝑒

2𝜋𝑖𝜃∞ = 2 cos(2𝜋𝜃0) (10)

implied by the cyclicity condition in the iteration of monodromy equations (8)

𝑆1𝑆2𝑆3𝑆4 𝑒
2𝜋𝑖𝜃∞𝜎3 = 𝑇𝑒2𝜋𝑖𝜃0𝜎3𝑇−1, det𝑇 = 1.

The inverse problem of monodromy theory for equation PIV is to find Ψ𝑗 satisfying conditions
(8) and (9) with given monodromy data 𝑠1, 𝑠2, 𝑠3, 𝑠4 under condition (10). If such functions
exist, the solution to PIV equation (3) is found by formula ([8, Ch. 5])

𝑢(𝑧) = −2𝑧 − lim
𝜆→∞

(︂
𝜆 𝜕𝑧Ψ1(𝜆, 𝑧) exp

{︂
−
(︂
𝜆2

2
+ 𝑧𝜆

)︂
𝜎3

}︂
𝜆−𝜃∞𝜎3

)︂
12

, (11)

where the subscript 12 denotes the element (1, 2) of matrix Ψ1.
Proceeding to solving this problem as 𝑧 → ∞, we first calculate 𝑠𝑗 for rational solutions (2).

In order to od it, we employ recurrent relations for generalized Hermite polynomials. All 𝐻𝑚,𝑛

are related by the identities [4]{︃
2𝑚𝐻𝑚+1,𝑛𝐻𝑚−1,𝑛 = 𝐻𝑚,𝑛𝐻

′′
𝑚,𝑛 −

(︀
𝐻 ′

𝑚,𝑛

)︀2
+ 2𝑚𝐻2

𝑚,𝑛,

2𝑛𝐻𝑚,𝑛+1𝐻𝑚,𝑛−1 = −𝐻𝑚,𝑛𝐻
′′
𝑚,𝑛 +

(︀
𝐻 ′

𝑚,𝑛

)︀2
+ 2𝑛𝐻2

𝑚,𝑛,
(12)

with “initial conditions”

𝐻0,0 = 𝐻0,1 = 𝐻1,0 = 1, 𝐻1,1 = 2𝑧. (13)

The correpoding solutions to PIV equations (2) a

𝑢𝑚,𝑛(𝑧) = −2𝑧 +
𝑑

𝑑𝑧
ln

𝐻𝑚,𝑛+1(𝑧)

𝐻𝑚+1,𝑛(𝑧)
(14)

also satisfy recurrences called Bäcklund transformations. These are nonlinear transformations̃︀𝑢(𝑧) = ℛ (𝑢′(𝑧), 𝑢(𝑧), 𝑧) mapping solution 𝑢(𝑧) into solution 𝑢̃(𝑧) of PIV equation with possible
other coefficients 𝛼, 𝛽.
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We consider a pair of Bäcklund transformations [4]

ℛ2 : 𝑢̃ =
(𝑢′ −

√
−2𝛽)2 + (4𝛼− 4 − 2

√
−2𝛽)𝑢2 − 𝑢2(𝑢 + 2𝑧)2

2𝑢(𝑢2 + 2𝑧𝑢 + 𝑢′ −
√
−2𝛽)

,

ℛ3 : 𝑢̃ =
(𝑢′ −

√
−2𝛽)2 − (4𝛼 + 4 + 2

√
−2𝛽)𝑢2 − 𝑢2(𝑢 + 2𝑧)2

2𝑢(𝑢2 + 2𝑧𝑢− 𝑢′ +
√
−2𝛽)

.

(15)

The composition of transformations ℛ6 = ℛ2ℛ3 happens to map the coefficients (𝛼, 𝛽) into(︀
𝛼, −1

2
(4 +

√
−2𝛽)2

)︀
, and parameters (𝜃0, 𝜃∞) are mapped into (𝜃0 + 2, 𝜃∞), respectively. It is

easy to check that for rational solutions (14) with coefficients 𝛼 = 𝑛−𝑚, 𝛽 = −2(𝑚 + 𝑛 + 1)2

we finally get the solutions

𝑢̃(𝑧) = ℛ6

(︀
𝑢′
𝑚,𝑛(𝑧), 𝑢𝑚,𝑛(𝑧), 𝑧

)︀
= 𝑢𝑚+1,𝑛+1(𝑧).

In terms of Ψ-functions and “equation in 𝜆” (6), Bäcklund transformation correspond to the

left multiplication by matrices rational in
√
𝜆 (“dressing” of Lax pair [8, Ch. 6])

Ψ̃ = R6(𝜆)Ψ.

For transformations (15) these matrices read as

R2(𝜆) =

(︂
1 0
0 0

)︂
𝜆1/2 +

(︂
𝑦 𝑦

2
2𝑦
𝑢

1

)︂
𝜆−1/2,

R3(𝜆) =

(︂
0 0
0 1

)︂
𝜆1/2 +

(︃
1 𝑢

2𝑦

−𝑦𝑤−𝜃0−𝜃∞
𝑦

−𝑤𝑦−𝜃0−𝜃∞
2𝑦

)︃
𝜆−1/2,

R6(𝜆) = R2(𝜆)R3(𝜆) (16)

where quantities 𝑦, 𝑢 and 𝑤 are constant in 𝜆 and satisfy system (7). The straightforward
checking by means of “equation in 𝜆” (6) shows the equivalence of (16) and (15).

It is sufficient to calculate 𝑠𝑗 for the case (13). We choose 𝑚 = 𝑛 = 0, then by equations
(14) and (13) we fins 𝑢0,0(𝑧) = 𝑢(𝑧) = −2𝑧. Resolving other equations (7), we have

𝑦(𝑧) = 𝑤(𝑧) = 1, 𝑢(𝑧) = −2𝑧. (17)

Substituting quantities (17) and 𝑧 = 0 into “equation in 𝜆” (6), we obtain a triangular matrix

𝐴 =

(︂
𝜆 + 1

2𝜆
1

0 −𝜆− 1
2𝜆

)︂
.

Hence, equation (6) is solved explicitly

Ψ𝑗(𝜆, 0) =

⎛⎜⎝𝜆1/2𝑒
𝜆2

2 𝜆1/2𝑒
𝜆2

2

∞∫︀
𝜆

𝑒
−𝜉2

2

𝜉
𝑑𝜉

0 𝜆−1/2𝑒
−𝜆2

2

⎞⎟⎠ , 𝜆 ∈ Ω𝑗, (18)

and the integration is made over the rays arg 𝜆 = 𝜋
4

+ 𝜋
2
𝑗, 𝑗 = 1, 2, 3, 4.

Theorem 1. Monodromy data 𝑠𝑗 for “equation in 𝜆” (6) with coefficients (17) corresponding
to the solution 𝑢(𝑧) = 𝑢0,0 = −2𝑧 read as

𝑠1 = 𝑠3 = 0, 𝑠2 = 2𝜋𝑖, 𝑠4 = −2𝜋𝑖. (19)
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Proof. Since matrices Ψ𝑗 (18) are upper-triangular, jump equation (8) has also upper-triangular
solutions. It yields 𝑆1 = 𝑆3 = 𝐼 so that for odd 𝑗 = 1, 3 the monodromy data is zero. To
calculate 𝑆2 and 𝑆4, we observe that

Ψ3 = Ψ2𝑆2 = Ψ1𝑆1𝑆2 = Ψ1𝑆2.

Then

𝑠2 =
(︀
Ψ3Ψ

−1
1

)︀
12

=

∞𝑒𝜋/4𝑖∫︁
∞𝑒5𝜋/4𝑖

𝑒−
𝜉2

2

𝜉
𝑑𝜉,

where the integration contour passes the origin from above. Thus, the contour for the integral
exponent function in this formula is deformed into the passage of the origin in the negative
direction. It gives 𝑠2 = −2𝜋𝑖. In the same way we calculate 𝑠4.

Let us formulate Riemann-Hilbert problem which will be employed below for calculating the
solutions to PIV equation (14). We observe first that by Theorem 1 Ψ1 = Ψ2 and Ψ3 = Ψ4

since there are no jumps on the rays arg 𝜆 = 3𝜋/4 and arg 𝜆 = 7𝜋/4. Moreover, conjugation
condition (8) can be moved from the rays arg 𝜆 = 𝜋/4 and arg 𝜆 = 5𝜋/4 on the real axis that
does not contradict to normalization (9).

First we make the change of variables taking into consideration large parameters 𝑧 = 𝑂(
√
𝑛),

𝑛 = 𝑚 → ∞ (5)

𝑧 = 𝑥
√
𝑛, 𝜆 = (𝜉 − 𝑥)

√
𝑛, Θ =

1

2
(𝜉2 − 𝑥2). (20)

We introduce new matrix functions

𝑌+(𝜆, 𝑧) = Ψ4(𝜆, 𝑧) exp

{︂
−
(︂
𝜆2

2
+ 𝑧𝜆

)︂
𝜎3

}︂
𝜆−𝜃∞𝜎3 ,

𝑌−(𝜆, 𝑧) = Ψ2(𝜆, 𝑧) exp

{︂
−
(︂
𝜆2

2
+ 𝑧𝜆

)︂
𝜎3

}︂
𝜆−𝜃∞𝜎3 .

Functions 𝑌+ and 𝑌− satisfy the following conditions

1 Matrix function 𝑌+(𝜉, 𝑥) is analytic in 𝜉 in the upper half-plane Im 𝜉 > 0,
and 𝑌−(𝜉, 𝑥) is analytic in the lower half-plane Im 𝜉 < 0

2

𝑌+(𝜉, 𝑥) = 𝑌−(𝜉, 𝑥)

(︂
1 2𝜋𝑖𝑒−2𝑛Θ(𝜉,𝑥)

0 1

)︂
, 𝜉 ∈ R (21)

3

𝑌±(𝜉, 𝑥) =
(︀
𝐼 + 𝑂(𝜉−1)

)︀(︂𝜉2𝑛 0
0 𝜉−2𝑛

)︂
, 𝜉 → ∞

𝑌 (𝜉, 𝑥)

Here we have shifted the contour of conjugation R ↦→ R + 𝑥 since the conjugation matrix is
analytic in the strip |Im 𝜉| 6 |𝑥|, 𝑥 = 𝑂(1). We also observe that normalization condition 3
appears due to 𝑛-multiple application of Bäcklund transformation (16) to matrices Ψ𝑗 (18).
Indeed, by the structure of matrices R2(𝜆) and R3(𝜆), their product multplies (Ψ)11 by 𝜆 and
(Ψ)22 by 𝜆−1.

Now the inversion formula for solutions to PIV equation becomes simpler.

Theorem 2. Suppose that matrices 𝑌± solve Riemann-Hilbert problem (21). Then the func-
tion

𝑢𝑛,𝑛(𝑧) = −2𝑥
√
𝑛− lim

𝜉→∞
(𝜉 𝜕𝑥𝑌+(𝜉, 𝑥))12 , 𝑧 = 𝑥

√
𝑛, (22)

solve PIV equation (3) corresponding to monodromy data (19).
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Proof. By matrices 𝑌± we recover matrices Ψ𝑗 satisfying conditions (8) and (9) with monodromy
data (19). Then “equation in 𝜆” (6) holds true and inversion formula (11) is valid; the latter
formula coincides with (22).

2. Orthogonal polynomials with exponential weight

Before proceeding to asymptotic study of Riemann-Hilbert problem (21), let us show its
connection with orthogonal polynomials. Let {ℋ𝑘(𝜉)}∞𝑘=1 be the set of polynomials ℋ𝑘(𝜉) =
𝜉𝑘 + . . . orthogonal on the real axis with the measure 𝑒−𝑛𝑉 (𝜉)𝑑𝜉∫︁

R

ℋ𝑗(𝜉)ℋ𝑘(𝜉)𝑒−𝑛𝑉 (𝜉)𝑑𝜉 = 0, 𝑗 ̸= 𝑘,

where 𝑉 (𝜉) = 𝜉2𝑙 + . . . is a polynomial of even degree. We define the matrices

𝑌 (𝑞)(𝜉) =

⎛⎜⎜⎜⎜⎝
ℋ𝑞(𝜉)

1

2𝜋𝑖

∫︁
R

ℋ𝑞(𝑠)𝑒
−𝑛𝑉 (𝑠)

𝑠− 𝜉
𝑑𝑠

𝛾𝑞−1ℋ𝑞−1(𝜉)
𝛾𝑞−1

2𝜋𝑖

∫︁
R

ℋ𝑞−1(𝑠)𝑒
−𝑛𝑉 (𝑠)

𝑠− 𝜉
𝑑𝑠

⎞⎟⎟⎟⎟⎠ , Im 𝜉 ̸= 0, (23)

where constants 𝛾𝑞−1 are the normalization ones in the orthogonality condition

𝛾𝑞−1 = −2𝜋𝑖

(︂∫︁
R

ℋ2
𝑞−1(𝑠)𝑒

−𝑛𝑉 (𝑠)𝑑𝑠

)︂−1

.

Matrices (23) happen to solve the following Riemann-Hilbert problem ([9], [5, Ch. 3.2])

∙ 𝑌
(𝑞)
+ (𝜉) analytic as Im 𝜉 > 0, and 𝑌

(𝑞)
− (𝜉) analytic as Im 𝜉 < 0

∙ 𝑌
(𝑞)
+ (𝜉) = 𝑌

(𝑞)
− (𝜉)

(︂
1 𝑒−𝑛𝑉 (𝜉)

0 1

)︂
, 𝜉 ∈ R

∙ 𝑌
(𝑞)
± (𝜉, 𝑥) = (𝐼 + 𝑂(𝜉−1))

(︂
𝜉𝑞 0
0 𝜉−𝑞

)︂
, 𝜉 → ∞

𝑌 (𝑞)(𝜉)

In the case 𝑉 (𝜉) = 𝜉2 polynomials ℋ𝑞(𝜉) coincide with Hermite polynomials 𝐻𝑞(𝜉) =

(−1)𝑞𝑒𝜉
2 𝑑𝑞

𝑑𝜉𝑞
𝑒−𝜉2 and the Riemann-Hilbert problem can be employed for calculating the asymp-

totics of Hermite polynomials as 𝑞 = 𝑛, 𝑛 → ∞ [5, Sect. 7.4]. At that, normalization constants
𝛾𝑞 read as

𝛾𝑞−1 =
(︁
𝑌

(𝑞)
1

)︁
21

= −𝑖
2𝑞
√
𝜋𝑛(𝑞−1)/2

(𝑞 − 1)!
, (24)

where 𝑌 (𝑞)(𝜉) =
(︁
𝐼 + 𝑌

(𝑞)
1 𝜉−1 + . . .

)︁
𝜉(𝑞−1)𝜎3 .

In the same way one can reproduce Plancherel-Rotach formulae mentioned in Introduction
[5], [12]. Since Hermite polynomials have zeroes only in the real axis, the rows of matrix 𝑌 (𝑛)

do not vanish in the upper (lower) half-plane, i.e., the matrices are everywhere non-degenerate
and Riemann-Hilbert problem is uniquely solvable.

The situation becomes much more complicated once the exponential weight becomes de-
pending on a parameter. Indeed, replacing 𝑉 (𝜉) by Θ(𝜉, 𝑥) = 𝜉2 + 2𝜉𝑥, let us consider Cauchy
integrals in the second column of matrix 𝑌 (𝑛)

1

2𝜋𝑖

∫︁
R

ℋ𝑛(𝑠, 𝑥)𝑒−𝑛(𝑠2+2𝑠𝑥)

𝑠− 𝜉
𝑑𝑠 =

ℋ𝑛(−𝑥, 𝑥)𝑒−𝑛𝑥2

2𝑖𝜋5/4
√

2𝑥𝑛(−𝑥− 𝜉)

(︀
1 + 𝑂(𝑛−1)

)︀
, 𝑛 → ∞.
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Here we have employed the saddle point method having deformed integration contour to make it
passing through the point 𝑠 = −𝑥, Im 𝑥 ̸= 0 so that the saddle point condition 𝜕𝑠(𝑠

2 +2𝑠𝑥) = 0
is satisfied. Let ℋ𝑛(−𝑥, 𝑥) = 0, then the first row of matrix (23) vanishes as 𝜉 = −𝑥. Thus,

matrices 𝑌
(𝑛)
± become degenerate at this point and do not solve the Riemann-Hilbert problem.

The described situation is the implication of Birkhoff-Grothendieck theorem on factorization
of a matrix holomorphically depending on a parameter [8, App. B].

3. Asymptotic “undressing” of Riemann-Hilbert problem

In this section we find solution to Riemann-Hilbert problem (21) as 𝑛 → ∞. Despite this
Riemann-Hilbert problem involves upper-triangular matrices only, its solution is not reduced
to a sequence of scalar conjugate problems for analytic functions. The reason is normalization
condition 3. Indeed, we can get rid of the power growth at infinity by introducing the matrices
𝑌± = 𝑌± diag (𝑧−2𝑛, 𝑧2𝑛). Then matrices 𝑌± get the standard normalization by the unit matrix
𝑌± → 𝐼 as 𝜉 → ∞. However, a pole on 2𝑛-th order appear at zero. This fact prevents applying
of Cauchy integral to conjugation problem (21).

To regularize matrices 𝑌± at infinity, we employ another approach created by Percy Deift
and others in [5], [6], [7]. It consists in applying a special parametrix called 𝑔-function. In our
case it is an analytic function satisfying the conditions

∙ 𝑔(𝜉) =

𝑎∫︁
−𝑎

ln(𝜉 − 𝑠)𝜌(𝑠)𝑑𝑠, 𝑎 ∈ R, 𝑎 = 𝑂(1)

∙ 𝑔±(𝜉) =

𝑎∫︁
−𝑎

ln |𝜉−𝑠|𝜌(𝑠)𝑑𝑠±𝜋𝑖𝜒𝜉6𝑎

𝑎∫︁
𝜉

𝜌(𝑠)𝑑𝑠 as 𝜉 ∈ (−𝑎, 𝑎), 𝜒𝜉6𝑎 is the

characteristic function of [𝜉, 𝑎]

∙ 𝑔(𝜉) = ln 𝜉 + 𝑂(𝜉−1), 𝜉 → ∞

∙ 𝑒𝑛𝑔(𝜉) is analytic in C ∖ [−𝑎, 𝑎]

∙ 𝑒𝑛𝑔(𝜉) = 𝜉𝑛 (1 + 𝑂(𝜉−1)) , 𝜉 → ∞

𝑔(𝜉) (25)

Function 𝜌(𝑠) is interpreted as the probability measure 𝑑𝜇 = 𝜌(𝑠)𝑑𝑠 minimizing the functional

ℱ =

∫︁
R

𝜉2𝑑𝜇(𝜉) +

∫︁
R2

ln |𝜉 − 𝑠|−1𝑑𝜇(𝜉)𝑑𝜇(𝑠), 𝑥 = const.

Theorem 3. [15, Ch. 5] As 𝜕2
𝜉Θ(𝜉, 𝑥) > 0, the support of measure 𝑑𝜇 = 𝜌(𝑠)𝑑𝑠 is located in

the segment supp 𝜌 ∈ [−𝑎, 𝑎]. The relations

2Θ(𝜉, 𝑥) + 2

∫︁
R

ln |𝜉 − 𝑠|−1𝜌(𝑠)𝑑𝑠 + ℓ + 𝑥2 > 0, 𝜉 ∈ R,

2Θ(𝜉, 𝑥) + 2

∫︁
R

ln |𝜉 − 𝑠|−1𝜌(𝑠)𝑑𝑠 + ℓ𝑥2 ≡ 0, 𝜉 ∈ [−𝑎, 𝑎],

hold true, where

ℓ = −2

𝑎∫︁
−𝑎

ln |𝜉 − 𝑠|−1𝜌(𝑠)𝑑𝑠− 𝜉2, −𝑎 < 𝜉 < 𝑎. (26)
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Define the function

𝜙(𝜉) ≡ 𝜉2 − 2𝑔(𝜉) + ℓ, (27)

and a new piece-wise analytic matrix

𝑊 (𝜉, 𝑥) ≡ 𝑒𝑛ℓ𝜎3𝑌 (𝜉, 𝑥)𝑒−𝑛𝑔(𝜉)𝜎3𝑒−𝑛ℓ𝜎3 , 𝜉 ∈ C/R. (28)

Then matrix 𝑊 solves the following Riemann-Hilbert problem

∙ 𝑊 (𝜉, 𝑥) is analytic w.r.t. 𝜉 in C ∖R

∙ 𝑊+(𝜉, 𝑥) = 𝑊+(𝜉, 𝑥)

(︂
𝑒𝑛(𝜙+−𝜙−) 𝑒−𝑛(𝜙++𝜙−)

0 𝑒−𝑛(𝜙+−𝜙−)

)︂
, 𝜉 ∈ R

∙ 𝑊±(𝜉, 𝑥) = 𝐼 + 𝑂(𝜉−1), as 𝜉 → ∞

𝑊 (𝜉, 𝑥) (29)

Thus, the problem is reduced to the Riemann-Hilbert problem with the standard unit normal-
ization at infinity. As usually, here 𝜙+ and 𝜙− are the boundary values on the real axis from
the upper and lower half-plane, respectively. Let us list the properties of these boundary values
as a theorem by P. Deift.

Theorem 4. [5, Ch. 7.5] Boundary values of function 𝜙 (27) have the properties:

1)
−𝜙+ + 𝜙−

2
= 𝑔+(𝜉) − 𝑔−(𝜉) = 2𝜋𝑖

∞∫︁
𝜉

𝜌(𝑠)𝑑𝑠 as 𝜉 ∈ R

2) −1

2
Im𝜙+ = Im 𝑔+(𝜉) = 𝜋

𝜉∫︁
−∞

𝜌(𝑠)𝑑𝑠− 𝜋 as 𝜉 ∈ [−𝑎, 𝑎]

3)
𝜙+ + 𝜙−

2
= Re𝜙 = 𝜉2 − 𝑔+ − 𝑔− + ℓ ≡ 0 as 𝜉 ∈ [−𝑎, 𝑎]

4)
𝜙+ + 𝜙−

2
= Re𝜙 = 𝜉2 − 𝑔+ − 𝑔− + ℓ > 0 as 𝜉 ̸∈ [−𝑎, 𝑎]

We note that property 2 means that Re𝜙+ decays as Im 𝜉 → +∞ by Cauchy-Riemann
equation 𝑢𝑦 = −𝑣𝑥, 𝜙 = 𝑢 + 𝑖𝑣. In the same way, Re𝜙− decays as Im 𝜉 → −∞ since Im𝜙− =
−Im𝜙+.

Conjugation matrix involved in (29) can be factorized [5, Ch. 7.6]:(︂
𝑒𝑛(𝜙+−𝜙−) 𝑒−𝑛(𝜙++𝜙−)

0 𝑒−𝑛(𝜙+−𝜙−)

)︂
=

(︂
1 0

𝑒2𝑛𝜙− 1

)︂(︂
0 𝑒−𝑛(𝜙++𝜙−)

−𝑒𝑛(𝜙++𝜙−) 0

)︂(︂
1 0

𝑒2𝑛𝜙+ 1

)︂
. (30)

Thus, problem (29) can be rewritten as

Φ+ = Φ−

(︂
0 𝑒−𝑛(𝜙++𝜙−)

−𝑒𝑛(𝜙++𝜙−) 0

)︂
, 𝜉 ∈ R,

Φ±(𝜉, 𝑥) → 𝐼, 𝜉 → ∞,

where

Φ±(𝜉, 𝑥) ≡ 𝑊±(𝜉, 𝑥)

(︂
1 0

∓𝑒2𝑛𝜙 1

)︂
, Im 𝜉 ≷ 0. (31)

By Theorem 4, 𝜙+ +𝜙− ≡ 0 as 𝜉 ∈ [−𝑎, 𝑎], while 𝜙+ +𝜙− is non-negative for 𝜉 ∈ R∖ [−𝑎, 𝑎].
This is why Riemann-Hilbert problem for matrices Φ and 𝑊 is introduced as it is shown in
Fig. 2. It is easy to check that all the conjugation matrices beyond the “lens” Re𝜙 < 0 marked
by the thick line are exponentially close to the unit one since their off-diagonal elements are of
order 𝑂(𝑒−𝑛|𝜙|). The neighbourhoods of boundary points 𝜉 = 𝑎 and 𝜉 = −𝑎 deserve a separate
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Figure 2. Regularization of Riemann-Hilbert problem (21) by Deift-Zhou. The
jump matrices are associated with Stokes lines.

consideration. However, it happens that the values of Φ can be analytically continued into
solutions Φ for the interior of the “lens” [5, Ch. 7.6].

Thus, the leading term in 𝑛, the solution to Riemann-Hilbert problem (31) is provided by
matrix Φ satisfying the model problem

Φ+ = Φ−

(︂
0 1
−1 0

)︂
, 𝜉 ∈ [−𝑎, 𝑎],

Φ±(𝜉) → 𝐼, 𝜉 → ∞.

(32)

The solution to problem (32) is given by explicit formula [6]

Φ(𝜉) =
1

2

(︂
1 −𝑖
𝑖 −1

)︂(︂
𝜉 − 𝑎

𝜉 + 𝑎

)︂ 1
4
𝜎3
(︂

1 −𝑖
𝑖 −1

)︂
. (33)

To find the leading term of the asymptotics for 𝑌 (𝜆, 𝑧), it remains to calculated quantities
𝑔(𝜉), 𝜌(𝑠) and 𝑎 involved in problems (25), (29) and Theorems 3), 4. These quantities are also
given by explicit formula via the approach of [5, Sect. 7.3]. Omitting details, we provide the
result:

𝜌(𝜉) =
1

𝜋

√︀
𝑎2 − 𝜉2 +

𝑥

𝜋

√︃
𝑎− 𝜉

𝑎 + 𝜉
, (34)

𝑔(𝜉) = − ln
(︁
𝜉 −

√︀
𝜉2 − 𝑎2

)︁
+

1

4

(︁
𝜉 −

√︀
𝜉2 − 𝑎2

)︁2
, (35)

𝑎 =
√

2. (36)

Calculation of quantities 𝜌(𝜉), 𝑔(𝜉) and 𝑎 are based on the explicit solution to scalar Riemann-
Hilbert problem (25) and on the inversion formula implied by (22). Indeed, the assumptions of
problem (25) can be easily checked by explicit formulae (34) and (35).

Combining the formulae obtained above in this section, asymptotics for the solution to
Riemann-Hilbert problems (29), (31) and (32), we arrive at the following theorem.

Theorem 5. ([6]) The solution to Riemann-Hilbert problem (21) has the following asymp-
totics
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1) Outside the “lens” Re𝜙 < 0:

𝑌 (𝜆, 𝑧) = 𝑒𝑛ℓ𝜎3Φ(𝜉)𝑒𝑛(2𝑔−ℓ)𝜎3
(︀
𝐼 + 𝑂(𝑛−1

)︀
, 𝑛 → ∞,

2) Inside the “lens” Re𝜙 > 0:

𝑌 (𝜆, 𝑧) = 𝑒𝑛ℓ𝜎3Φ(𝜉)

(︂
1 0

𝑒2𝑛𝜙 1

)︂
𝑒𝑛(2𝑔−ℓ)𝜎3

(︀
𝐼 + 𝑂(𝑛−1

)︀
, 𝑛 → ∞,

where Φ(𝜉) is defined by formula (33), and 𝜙 and ℓ are introduced by formulae (26) and (27).

4. Inversion formula and asymptotics for zeroes

The leading term of the asymptotics for the solution to Riemann-Hilbert problem given in
Theorem 5 allows us to calculate the asymptotics for polynomials 𝐻𝑛,𝑛(𝜆) with the exponential

weight corresponding to this problem. We begin with case 1), where |𝜉| >
√

2, i.e., |𝑧| >
√

2𝑛.
In accordance with explicit representation (23) for matrix 𝑌 and expression (35) for function
𝑔 we have

𝐻𝑛,𝑛(𝑧) = (𝑌 )11(𝑧, 𝑥) = Φ11(𝜉)𝑒2𝑛𝑔(𝜉)
(︀
𝐼 + 𝑂(𝑛−1

)︀
, 𝜉 = 𝑥, 𝑧 = 𝑥

√
𝑛,

that gives finally as 𝑛 → ∞ and |𝑥| >
√

2

𝐻𝑛,𝑛(𝑥
√
𝑛) ≈ 1

2

⎡⎣(︃𝑥−
√

2

𝑥 +
√

2

)︃ 1
4

+

(︃
𝑥 +

√
2

𝑥−
√

2

)︃ 1
4

⎤⎦ 𝑒
𝑛
4
(𝑥−

√
𝑥2−2)2

(𝑥−
√
𝑥2 − 2)𝑛

. (37)

In case 2) as |𝜉| <
√

2, the additional matrix factor in Theorem 5 gives

𝐻𝑛,𝑛(𝑧) = (𝑌 )11(𝑧, 𝑥) = (Φ11,+(𝜉) + Φ12,+(𝜉)𝑒𝑛𝜙+) 𝑒2𝑛𝑔+(𝜉)
(︀
𝐼 + 𝑂(𝑛−1

)︀
,

𝜉 = 𝑥, 𝑧 = 𝑥
√
𝑛.

Taking into consideration that Φ11,+ = Φ12,+, by formula (33) and 𝑔+(𝜉) = 𝑖𝜋
∫︀ √

2

𝑥
𝜌(𝑠)𝑑𝑠 we

obtain

𝐻𝑛,𝑛(𝑥
√
𝑛) ≈1

2

⎡⎢⎣(︃𝑥−
√

2

𝑥 +
√

2

)︃ 1
4

cos

⎛⎜⎝𝑛𝜋

√
2∫︁

𝑥

𝜌(𝑠)𝑑𝑠 +
𝜋

4

⎞⎟⎠
+

(︃
𝑥 +

√
2

𝑥−
√

2

)︃ 1
4

cos

⎛⎜⎝𝑛𝜋

√
2∫︁

𝑥

𝜌(𝑠)𝑑𝑠− 𝜋

4

⎞⎟⎠
⎤⎥⎦ exp

⎧⎪⎨⎪⎩𝑛

√
2∫︁

−
√
2

ln |𝑥− 𝑠|𝜌(𝑠)𝑑𝑠

⎫⎪⎬⎪⎭ .

(38)

It follows from asymptotics (37) and (38) that the zeroes of polynomials 𝐻𝑛,𝑛(𝑧) are located

in the domain |𝑧| <
√

2𝑛. Their location is determined by vanishing of the square brackets in
formula (38):

tan

⎛⎜⎝𝑛𝜋

√
2∫︁

𝑥

𝜌(𝑠)𝑑𝑠 +
𝜋

4

⎞⎟⎠ = −

(︃
𝑥−

√
2

𝑥 +
√

2

)︃ 1
2

. (39)

Calculating the integral in the argument of tangent, by the expression for 𝜌(𝜉) (34) we obtain

𝜋

√
2∫︁

𝑥

𝜌(𝑠)𝑑𝑠 =
3

2
𝑥
√

2 − 𝑥2 + (𝑥
√

2 − 1)Arctan
𝑥√

2 − 𝑥2
. (40)
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Equalling real and imaginary parts in (39), we finally get:

Re

(︂
3

2
𝑥
√

2 − 𝑥2 + (𝑥
√

2 − 1) arctan
𝑥√

2 − 𝑥2

)︂
=

1

𝑛

(︃
Re arctan

𝑥−
√

2

𝑥 +
√

2
+ 𝜋𝑗

)︃
,

Im

(︂
3

2
𝑥
√

2 − 𝑥2 + (𝑥
√

2 − 1) arctan
𝑥√

2 − 𝑥2

)︂
=

1

𝑛

(︃
Im arctan

𝑥−
√

2

𝑥 +
√

2
+ 𝜋𝑘

)︃
,

(41)

where 𝑗, 𝑘 ∈ Z.

Figure 3. Numerical example of calculating zeroes in the first quadrant 𝑥 =
𝑧/
√
𝑛 by formulae (41) as 𝑛 = 30, 21 6 𝑗, 𝑘 6 30

Remark 1. It is easy to check that formulae (37) and (38) are generalizations of Plancherel-
Rotach asymptotics [14] mentioned in the Introduction. Indeed, for real 𝑧 and 𝑚 = 0 by (12)
we have 𝐻𝑛,0(𝑧) = 𝐻𝑛(𝑧), where 𝐻𝑛(𝑧) are classical Hermite polynomials. A comparison of
Plancherel-Rotach formulae with (37) was made in the monograph by P. Deift [5]. Calculation
of asymptotics for the zeroes of polynomials 𝐻𝑚,𝑛(𝑧) for arbitrary 𝑚,𝑛 → ∞ and 𝑚−𝑛 = 𝑂(1)
can be likely done by a method similar to one presented above.
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and asymptotics of the Okamoto polynomials // In “Advances in the Mathematical Sciences”.

AMS Transl. 233, 199-210 (2014).

14. M. Plancherel, W. Rotach. Sur les valeurs asymptotiques des polynomes d’Hermite 𝐻𝑛(𝑥) =

(−𝐼)𝑛𝑒
𝑥2

2
𝑑𝑛

𝑑𝑥𝑛 (𝑒
−𝑥2

2 ) // Commentarii Math. Helvetici. 1:1, 227–254 (1929).

15. E.B. Saff, V. Totik. Logarithmic potentials with external fields. “Grundlehren der mathematischen

Wissenschaften”, 317. Springer, Berlin (1997).
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