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REGULARIZATION OF SEQUENCES

IN SENSE OF E.M. DYN’KIN

R.A. GAISIN

Abstract. We introduce the notion of strong regularization of positive sequences. We
prove an existence criterion of regular in the sense of E.M. Dyn’kin non-quasi-analiticity
minorant. The criterion is given in terms on the smallest concave majorant of the logarithm
of its trace function. The proof is based on the properties of the Legendre transformation.
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1. Introduction

In studying Carleman classes 𝐶𝛾(𝑀𝑛) on arbitrary continuums 𝛾 of the complex plane, a
special role is played by regular in some sense sequences {𝑀𝑛}; many statements are proven
exactly for such sequences. It is happened that if 𝛾 is an arc of a bounded slope, as in the case
of the segment a 𝐼 = [0, 1], in the Bang type theorems, sequence of numbers 𝑀𝑛 > 0 can be
arbitrary [1].

Let {𝑀𝑛}∞𝑛=0 be a sequence of positive numbers. Some of numbers 𝑀𝑛 can be equal to +∞
but we assume that there exist infinitely many finite 𝑀𝑛. A Carleman class on an arc 𝛾 ⊂ C

is the set

𝐶𝛾(𝑀𝑛) = {𝑓 ∈ 𝐶∞(𝛾) : sup
𝑧∈𝛾

⃒⃒
𝑓 (𝑛)(𝑧)

⃒⃒
6 𝐾𝑛

𝑓𝑀𝑛, 𝑛 = 0, 1, 2, . . .}.

Here for 𝑎 ∈ 𝛾, derivative 𝑓 ′(𝑎) is understood as the limit

𝑓 ′(𝑎) = lim
𝑧∈𝛾,𝑧→𝑎

𝑓(𝑧) − 𝑓(𝑎)

𝑧 − 𝑎
.

The higher derivatives 𝑓 (𝑛)(𝑎) (𝑛 = 2, 3, . . .) are determined by induction.

Definition 1. Class 𝐶𝛾(𝑀𝑛) is called quasi-analytic, if 𝑓 ∈ 𝐶𝛾(𝑀𝑛) and 𝑓 (𝑛)(𝑐) = 0 for each
𝑛 > 0 at some point 𝑐 of arc 𝛾 implies 𝑓(𝑧) ≡ 0.

Necessary and sufficient conditions for the quasi-analiticity of (Carleman, Ostrovsky and
Mandelbrojt-Bang) class 𝐶𝐼(𝑀𝑛) are provided in Denjoy-Carleman theorem [2, Ch. IV, 1.III].

This theorem implies that if lim
𝑛→∞

𝑀
1
𝑛
𝑛 <∞, class 𝐶𝐼(𝑀𝑛) is quasi-analytic. This is why in such

statements one usually assumes 𝑀
1
𝑛
𝑛 → ∞ as 𝑛→ ∞.

Ostrovsky quasi-analyticity criterion is formulate in terms of trace function
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𝑇 (𝑟) = sup
𝑛>0

𝑟𝑛

𝑀𝑛

, 𝑟 > 0.

The trace function is defined and finite on the positive semi-axis R+, while the function ln𝑇 (𝑒𝑥),
as the upper envelope of linear functions, is a convex function on R. Hence, trace function 𝑇 (𝑟)
is continuous on R+. Sequence

𝑀 𝑐
𝑛 = sup

𝑟>0

𝑟𝑛

𝑇 (𝑟)

is called a convex regularization of sequence {𝑀𝑛}∞𝑛=0 by means of logarithms. It possesses the
properties [2]:

1) 𝑀 𝑐
𝑛 6𝑀𝑛 (𝑛 > 0); 2) (𝑀 𝑐

𝑛)
1
𝑛 → ∞, 𝑛→ ∞; 3) 𝑀 𝑐

𝑛 6
√︀
𝑀 𝑐

𝑛−1𝑀
𝑐
𝑛+1 (𝑛 > 1).

Moreover, trace functions 𝑇 (𝑟), 𝑇𝑐(𝑟) of sequences {𝑀𝑛}∞𝑛=0, {𝑀 𝑐
𝑛}∞𝑛=0 coincides and

𝑀 𝑐
𝑛 = sup

𝑟>0

𝑟𝑛

𝑇𝑐(𝑟)
.

Sequence {𝑀𝑛} is called regular in the sense of E.M. Dyn’kin if the numbers 𝑚𝑛 = 𝑀𝑛

𝑛!
possess

the properties [3]:
a) 𝑚2

𝑛 6 𝑚𝑛−1𝑚𝑛+1 (𝑛 > 1);

b) sup
𝑛>1

(︁
𝑚𝑛+1

𝑚𝑛

)︁ 1
𝑛
<∞;

c) 𝑚
1
𝑛
𝑛 → ∞ as 𝑛→ ∞.

In accordance with Denjoy-Carleman, class 𝐶𝐼(𝑀𝑛) is quasi-analytic if and only if at least
of the following equivalent conditions holds true [2], [4]:

d)

∞∫︁
1

ln𝑇 (𝑟)

𝑟2
𝑑𝑟 = ∞; e)

∞∑︁
𝑛=0

𝑀 𝑐
𝑛

𝑀 𝑐
𝑛+1

= ∞.

As E.M. Dyn’kin showed [3], for a regular sequence {𝑀𝑛}, Condition e) (and thus, Condi-
tion d)) is equivalent to Levinson bi-logarithmic condition

𝑑∫︁
0

ln lnℎ(𝑟)𝑑𝑟 = +∞, (1)

where

ℎ(𝑟) = sup
𝑛>0

1

𝑚𝑛𝑟𝑛
(𝑟 > 0), (2)

and quantity 𝑑 > 0 is chosen so that ℎ(𝑑) > 𝑒. It is clear ℎ(𝑟) is a decreasing function
lim
𝑟→0

ℎ(𝑟) = ∞ and

𝑚𝑛 = sup
𝑟>0

1

𝑟𝑛ℎ(𝑟)
(𝑛 > 0).

We observe that introducing of regularized sequences is motivated by the fact “there is no
analog of regularization theory for general sets not being a segment ensuring that each Carleman
class coincides with a regularized class” [3].

Let 𝛾 be an arc described by the equation 𝑦 = 𝑔(𝑥) (|𝑥| 6 𝑎) and satisfying Lipschitz
condition

sup
𝑥1 ̸=𝑥2

⃒⃒⃒⃒
𝑔(𝑥2) − 𝑔(𝑥1)

𝑥2 − 𝑥1

⃒⃒⃒⃒
= 𝑞𝛾 <∞,

i.e., 𝛾 is an arc of a bounded slope [5].
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It was shown in [5] that if {𝑀𝑛} is a regular sequence, then class 𝐶𝛾(𝑀𝑛) is quasi-analytic
if and only if the associated weight ℎ introduced by (2) satisfies condition (1). Thus, in the
present case, Denjoy-Carleman theorem remains true for 𝐶𝛾(𝑀𝑛).

In the general situation, Carleman class 𝐶𝛾(𝑀𝑛) (𝛾 is a continuum in C) can be non-regular
(i.e., sequence {𝑀𝑛} is not regular). Since in the approximation theory non-quasi-analytic
Carleman classes are of special interest, in view of said above [3], it is important to find out
under which conditions for 𝑀𝑛 there exists a regular sequence {𝑀*

𝑛} such that 1) 𝑀*
𝑛 6𝑀𝑛; 2)

{𝑀*
𝑛} satisfies non-quasi-analyticity condition for the corresponding Carleman classes. In the

present paper we prove a criterion for existence of such sequence {𝑀*
𝑛}.

2. Criterion for existence of a regular non-quasi-analyticity minorant

A sequence {𝑀𝑛} (𝑀𝑛 > 0) is called weakly regular if numbers 𝑚𝑛 = 𝑀𝑛

𝑛!
satisfy Condi-

tions a), c) of the definition of the regular sequence [6]. Each its regular minorant (if it exists)

will be called regularization in the E.M. Dyn’kin sense. It is obvious that as 𝑚
1
𝑛
𝑛 → ∞, there

exists a weakly regular sequence {𝑀*
𝑛} such that 𝑀*

𝑛 6 𝑀𝑛 (𝑛 > 0), at that, 𝑀*
𝑛𝑖

= 𝑀𝑛𝑖

for some sequence of indices 𝑛𝑖, 𝑛𝑖 → ∞ (𝑛𝑖 are main indices obtained in weak regularization
of sequence {𝑚𝑛} by means of logarithms). If sequence {𝑀*

𝑛} is regular, we call it a strong
regularization of sequence {𝑀𝑛}.

The following theorem was proven in [6].

Theorem 1. Let 𝑀𝑛 > 0,
(︀
𝑀𝑛

𝑛!

)︀ 1
𝑛 → ∞ as 𝑛 → ∞. There exists a regular sequence {𝑀*

𝑛},
such that

𝑀*
𝑛 6𝑀𝑛,

∞∑︁
𝑛=1

𝑀*
𝑛

𝑀*
𝑛+1

<∞

if and only if there exists a positive continuous on R+ function 𝑟 = 𝑟(𝑡), 𝑡𝑟(𝑡) ↓ 0, 𝑡2𝑟(𝑡) ↑ as
𝑡→ ∞, such that

1)
1

𝑀
1
𝑛
𝑛

6 𝑟(𝑛) (𝑛 > 1); 2)

∞∫︁
1

𝑟(𝑡)𝑑𝑡 <∞.

Theorem 1 happens to be possible to reformulate in another way, namely, in terms of trace
function of sequence {𝑀𝑛}.

The following theorem is true.

Theorem 2. Let 𝑀𝑛 > 0,
(︀
𝑀𝑛

𝑛!

)︀ 1
𝑛 → ∞ as 𝑛 → ∞. There exists a regular sequence {𝑀*

𝑛}
such that

𝑀*
𝑛 6𝑀𝑛,

∞∑︁
𝑛=1

𝑀*
𝑛

𝑀*
𝑛+1

<∞

if and only if
∞∫︁
1

𝜔𝑇 (𝑟)

𝑟2
𝑑𝑟 <∞.

Here 𝜔𝑇 = 𝜔𝑇 (𝑟) is the smallest concave majorant of function ln𝑇 (𝑟), where

𝑇 (𝑟) = max
𝑛>0

𝑟𝑛

𝑀𝑛

.
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The proof of the theorem is based on properties of Legendre transformation. This is why we
briefly dwell on them.

Let 𝑀(𝑥) be a continuous increasing on [0,∞) function, 𝑀(𝑥) = 𝑜(𝑥) as 𝑥 → ∞. Then
function

𝑚(𝑦) = sup
𝑥>0

(𝑀(𝑥) − 𝑥𝑦)

defined for 𝑦 > 0 is called Legendre transformation of function 𝑀(𝑥). If 𝑀(𝑥) → ∞ as 𝑥→ ∞,
then 𝑚(𝑦) → ∞ as 𝑦 → 0. As the upper envelope of decreasing in 𝑦 > 0 functions, function
𝑚(𝑦) decreases, too. We let

𝑀*(𝑥) = inf
𝑦>0

(𝑚(𝑦) + 𝑦𝑥).

It is clear that 𝑀* is the smallest concave increasing majorant of function 𝑀 : 𝑀(𝑥) 6𝑀*(𝑥).
We note that if function 𝑀 is concave, then 𝑀(𝑥)/𝑥 ↓ as 𝑥 > 𝑎. On the other hand, if
0 < 𝑀(𝑥) ↑, 𝑀(𝑥)/𝑥 ↓ as 𝑥 > 0, then 𝑀*(𝑥) < 2𝑀(𝑥), as 𝑀* is the smallest concave
majorant 𝑀 [7; Ch. VII, Sect. D].

Theorem 3 (7; Ch. VII, Sect. D). Let 𝑀(𝑥) be an increasing concave on [0,∞) function,
𝑚(𝑦) be the Legendre transformation of function 𝑀(𝑥), 𝑎 > 0 be such that 𝑚(𝑎) = 1. Then the
integrals

𝑎∫︁
0

ln𝑚(𝑦)𝑑𝑦,

∞∫︁
1

𝑀(𝑥)

𝑥2
𝑑𝑥

converge or diverge simultaneously.

We proceed to the proof of Theorem 2.

Proof. Necessity. The identities

𝑧𝑛

𝑀𝑛

=
𝑛!

𝑀𝑛

1

2𝜋𝑖

∫︁
|𝑡|=𝛿

𝑒𝑧𝑡

𝑡𝑛+1
𝑑𝑡 (𝛿 > 0)

and conditions 𝑀*
𝑛 6𝑀𝑛,

(︁
𝑀*

𝑛

𝑛!

)︁ 1
𝑛 → ∞ as 𝑛→ ∞ imply

𝑟𝑛

𝑀𝑛

6
𝑛!

𝑀*
𝑛𝛿

𝑛
𝑒𝛿𝑟 6 𝐻*(𝛿) 𝑒𝛿𝑟 (|𝑧| = 𝑟), (3)

where

𝐻*(𝛿) = sup
𝑛>0

𝑛!

𝑀*
𝑛𝛿

𝑛
.

It follows from (3) that

𝑇 (𝑟) 6 exp

[︂
inf
𝛿>0

(ln𝐻*(𝛿) + 𝛿𝑟)

]︂
= exp(𝜔*(𝑟)).

It is clear that 𝜔* is non-negative, unboundedly increasing and concave on [0,∞) function. It
is obvious that ln𝐻*(𝛿) + 𝛿𝑟 > 𝜔*(𝑟). Therefore,

ln𝐻*(𝛿) > sup
𝑟>0

(𝜔*(𝑟) − 𝛿𝑟) ≡ 𝑚(𝛿).

Since
∞∑︁
𝑛=1

𝑀*
𝑛

𝑀*
𝑛+1

<∞,
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then [3]
𝑑∫︁

0

ln ln𝐻*(𝛿)𝑑𝛿 <∞,

and moreover,
𝑑∫︁

0

ln𝑚(𝛿)𝑑𝛿 <∞,

where 𝑑 > 0 is such that 𝑚(𝑑) = 1. Then by Theorem 3, increasing function 𝜔* belongs to
convergence class Ω, i.e.,

𝜔*(𝑟)
𝑟

↓ 0 as 𝑟 → ∞,
∞∫︀
1

𝜔*(𝑟)
𝑟2

𝑑𝑟 <∞.

Since 𝜔𝑇 (𝑟) 6 𝜔*(𝑟), function 𝜔𝑇 belongs to Ω as well.
Sufficiency. Let

∞∫︁
1

𝜔𝑇 (𝑟)

𝑟2
𝑑𝑟 <∞.

Then

𝐼(𝛿) = 𝛿

∞∫︁
0

𝑇 (𝑟)𝑒−𝛿𝑟𝑑𝑟 6 𝛿

∞∫︁
0

exp(𝜔𝑇 (𝑟) − 𝛿𝑟)𝑑𝑟 = 𝛿𝑀(𝛿) = 𝐻(𝛿).

Since
𝑟𝑛

𝑀𝑛

6 𝑇 (𝑟) (𝑛 > 0),

then

𝛿
1

𝑀𝑛

∞∫︁
0

𝑟𝑛𝑒−𝛿𝑟𝑑𝑟 6 𝐼(𝛿) 6 𝐻(𝛿).

It implies that for each 𝑛 > 0

𝑛!

𝑀𝑛𝛿𝑛
6 𝐻(𝛿) (𝛿 > 0), (4)

in particular, 𝑀 ′
𝑛 6𝑀𝑛, where

𝑀 ′
𝑛 = sup

𝛿>0

𝑛!

𝐻(𝛿)𝛿𝑛
(𝑛 > 0).

Since estimates (4) are valid for each 𝑛 > 0, as 𝛿 → 0 we have

lim
𝛿→0

ln 1
𝛿

ln𝐻(𝛿)
= 0.

Therefore, ln𝐻(𝑒−𝑥)
𝑥

→ +∞ as 𝑥→ +∞ and hence 𝑀 ′
𝑛 = 𝑛! 𝑒𝑐𝑛 , where

𝑐𝑛 = sup
𝑥>0

(𝑛𝑥− ln𝐻(𝑒−𝑥)).

Let us employ the properties of Yonug-Fenchel-Legendre transformation [8, P. II, Ch. 1, Sect.

5, Prop. 1]: if function 𝜙 is continuous on R+ and 𝜙(𝑦)
𝑦

→ +∞ as 𝑦 → +∞, then function

𝜓(𝑥) = sup
𝑦>0

(𝑥𝑦 − 𝜙(𝑦))
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adjoint to 𝜙 in the Young sense is convex on R+ and satisfies the condition

𝜓(𝑥)

𝑥
→ +∞ as 𝑥→ +∞.

Thus, we see that sequence {𝑐𝑛} is convex and 𝑐𝑛
𝑛

→ ∞ as 𝑛 → ∞. It means that 𝑐𝑛
𝑛

↑ as
𝑛→ ∞. Hence, (︂

𝑀 ′
𝑛

𝑛!

)︂ 1
𝑛

↑ ∞

as 𝑛→ ∞ and sequence {𝑀 ′
𝑛}, 𝑀 ′

𝑛 6𝑀𝑛 is weakly regular.
Since 𝐻(𝛿) = 𝛿𝑀(𝛿), then

𝑀 ′
𝑛 >

𝑛!

𝑀(𝛿)𝛿𝑛+1
(𝑛 > 0).

It implies

ℎ(𝛿) = sup
𝑛>0

𝑛!

𝑀 ′
𝑛𝛿

𝑛+1
6𝑀(𝛿). (5)

Recalling the definition of function 𝑀 , we have

𝑀(𝛿) 6 exp

(︂
sup
𝑟>0

(𝜔𝑇 (𝑟) − 𝛿

2
𝑟)

)︂ ∞∫︁
0

𝑒−
𝛿
2
𝑟𝑑𝑟 =

2

𝛿
𝑒𝑚( 𝛿

2
),

where 𝑚(𝛿) is the Legendre tranform of function 𝜔𝑇 (𝑟).
Let 𝑐 > 0 be such that ℎ(𝑐) = 𝑒. Since ℎ(𝛿) 6 𝑀(𝛿), then 𝑀(𝛿) > 𝑒 as 0 < 𝛿 6 𝑐. We have

ln𝑀(𝛿) 6 ln 2
𝛿

+𝑚( 𝛿
2
) (0 < 𝛿 6 𝑐). Using estimate

ln+(𝑎+ 𝑏) 6 ln+ 𝑎+ ln+ 𝑏+ ln 2,

where ln+ 𝑥 = max(0, ln𝑥), we obtain that for 0 < 𝛿 6 𝑞 6 𝑐

0 6 ln ln𝑀(𝛿) < ln𝑚(
𝛿

2
) + ln ln

2

𝛿
+ ln 2.

But by Theorem 3, integral
𝑞∫︀
0

ln𝑚(𝛿)𝑑𝛿 converges simultaneously with the integral
∞∫︀
1

𝜔𝑇 (𝑟)
𝑟2

𝑑𝑟.

And since
𝑞∫︀
0

ln ln 2
𝛿
𝑑𝛿 <∞, then

𝑞∫︁
0

ln lnℎ(𝛿)𝑑𝛿 6

𝑞∫︁
0

ln ln𝑀(𝛿)𝑑𝛿 <∞.

Therefore,
∞∑︁
𝑛=1

𝑀 ′
𝑛

𝑀 ′
𝑛+1

<∞. (6)

Indeed, since sequence
{︁

𝑀 ′
𝑛

𝑛!

}︁
i logarithmically convex, by (5) we conclude that

sup
𝛿>0

𝑛!

ℎ(𝛿)𝛿𝑛+1
= 𝑀 ′

𝑛 <∞ (𝑛 > 0).
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Now convergence of series (6) follows from Theorem 7 in work [5]. Then there exists a function
𝑅 = 𝑅(𝑡), 0 < 𝑅(𝑡) ↓ 0, 𝑡𝑅(𝑡) ↓ 0, 𝑡2𝑅(𝑡) ↑ as 𝑡→ ∞ such that [6]

1)
1

(𝑀 ′
𝑛)

1
𝑛

< 𝑅(𝑛); 2)

∞∫︁
1

𝑅(𝑡)𝑑𝑡 <∞.

Therefore, in accordance with Theorem 1, there exists a regular sequence {𝑀*
𝑛}, 𝑀*

𝑛 6𝑀 ′
𝑛,

∞∑︁
𝑛=1

𝑀*
𝑛

𝑀*
𝑛+1

<∞.

The proof is complete.
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