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ON A PROBLEM ASSOCIATED WITH
APPROXIMATION BY EXPONENTIAL FUNCTIONS

R.A. SHARIPOV

Abstract. While formalizing a certain problem of numeric signal processing there arises
a mathematical problem on approximating a square integrable function defined on some
finite interval of the real line by linear combinations of exponential functions. This problem
is solved as an optimization problem by means of minimizing the root-mean-square deviation
with respect to the coefficients of the linear combination and with respect to the exponents
of the exponential functions. In some cases, minimizing with respect to the exponents,
a computational singularity occurs due to small denominators. In the present paper this
singularity is shown to be removable and a mechanism of its removal is described.
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1. Introduction

Signals being a mixture of damped and non-damped sine oscillations with several frequencies
appear in various measurements. The frequencies of particular components in the mixture form
the signal spectrum, while the procedure of measuring consists in enhancing one or several
components from the mixture and to determining their amplitudes. In the most cases the
enhancing of the signals is performed by circuit solutions, specifically by resonant filters. But
sometimes it is impossible to use such filters, for instance, in the case of very low frequencies,
where the periods of sinusoidal components exceed the time of signal measuring. In this case
the signal is digitized and the problem of splitting separating it into components by means
of digital algorithms arises. In such formulation the problem was proposed to the author by
A.S. Vishnevskii, the chief executive officer of the group of companies “PhysTech”.

A measured and digitized signal can be regarded as a function 𝑓(𝑥) defined by its values at a
finite set of points on the real axis. However, the discreteness of the argument is not an essential
simplification in the mathematical formulation of the problem. This is why in what follows we
regard the downstream signal 𝑓(𝑥) as a function defined in some interval 𝑥 ∈ [𝑎, 𝑏] ⊂ R. We
denote by 𝜑(𝑥) an approximating function for 𝑓(𝑥) and we choose it as the linear combination

𝜑(𝑥) = 𝑎1 𝜑1(𝑥) + . . . 𝑎𝑛 𝜑𝑛(𝑥), (1.1)

where functions 𝜑1(𝑥), . . . , 𝜑𝑛(𝑥) are the exponential functions with pairwise distinct complex
exponents 𝜆1, . . . , 𝜆𝑛:

𝜑1(𝑥) = 𝑒𝜆𝑖𝑥, 𝑖 = 1, . . . , 𝑛. (1.2)
Exponential functions with complex exponents (1.2) in (1.1) simulate damped sinusoidal signals.
They are complex-valued function and this is why coefficients 𝑎1, . . . , 𝑎𝑛 in (1.1) are to be
regarded as complex numbers.
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In practice signal 𝑓(𝑥) is real-valued. But its realness does not lead to an essential
simplification. Because of this reason and for more generality, in what follows function 𝑓(𝑥)
is assumed to be complex-valued.

The approximation of function 𝑓(𝑥) by function 𝜑(𝑥) in (1.1) means that their difference
𝑓 − 𝜑 is to be small in some sense. One of the options of understanding the smallness for the
root-mean-square deviation 𝑓 − 𝜑 is in the sense of ‖𝑓 − 𝜑‖. In our case ‖𝑓 − 𝜑‖ is calculated
by the formula

‖𝑓 − 𝜑‖2 =
1

𝑏− 𝑎

𝑏∫︁
𝑎

|𝑓(𝑥) − 𝜑(𝑥)|2 𝑑𝑥. (1.3)

The minimization of root-mean-square deviation ‖𝑓 −𝜑‖ is the base of the least square method
[1] often employed in signal processing for checking various dependencies.

In practice signal 𝑓(𝑥) is a continuous function. But on the theoretical level we can decline
this condition. As the only condition ensuring the well-definiteness of integral (1.3), we choose
the square integrability of function 𝑓(𝑥). Without loss of generality we can assume that 𝑎 = −𝜋
and 𝑏 = +𝜋. Then formula (1.3) becomes

‖𝑓 − 𝜑‖2 =
1

2 𝜋

+𝜋∫︁
−𝜋

|𝑓(𝑥) − 𝜑(𝑥) |2 𝑑𝑥, (1.4)

that makes sums (1.1) more similar to partial sums for series of exponential functions [2], whose
particular cases are Fourier series.

As a result of the above formalization of signal processing, the following mathematical
problem arises.

Problem 1.1. Given a function 𝑓(𝑥) in the Hilbert space of square integrable functions
𝐿2([−𝜋, +𝜋]), for each fixed 𝑛 find sum 𝜑(𝑥) defined by (1.1) providing the best approximation
of function 𝑓(𝑥) in the sense of 𝐿2-norm ‖𝑓 − 𝜑‖ introduced in (1.4).

Root-mean-square deviation ‖𝑓 − 𝜑‖ in (1.4) depends on 2𝑛 complex variables 𝑎1, . . . , 𝑎𝑛
and 𝜆1, . . . , 𝜆𝑛. We introduce the notation

𝐹 (𝑎1, . . . , 𝑎𝑛, 𝜆1, . . . , 𝜆𝑛) = ‖𝑓 − 𝜑‖2. (1.5)

Then problem 1.1 is formulated as the problem of finding the global minimum of function (1.5).
It is split into two problems. The first of them is to find the minimum for function (1.5) w.r.t.
variables 𝑎1, . . . , 𝑎𝑛 under fixed variables 𝜆1, . . . , 𝜆𝑛:

Φ(𝜆1, . . . , 𝜆𝑛) = min
𝑎1,...,𝑎𝑛

𝐹 (𝑎1, . . . , 𝑎𝑛, 𝜆1, . . . , 𝜆𝑛). (1.6)

The second problem is to find the minimum for function (1.6) w.r.t. 𝜆1, . . . , 𝜆𝑛:

𝐹min = min
𝜆1 ̸=... ̸=𝜆𝑛

Φ(𝜆1, . . . , 𝜆𝑛). (1.7)

The problem of finding the minimum in (1.6) appears to be linear and solvable by standard
technique of linear algebra. Its solution is provided below, cf. Section 2. Problem of finding the
minimum in (1.7) is nonlinear. This is why problem 1.1 is not always solvable in its original
form. In the present work we study one of such cases, where the minimum (1.7) does not exist,
while the infimum

𝐹min = inf
𝜆1 ̸=... ̸=𝜆𝑛

Φ(𝜆1, . . . , 𝜆𝑛)

is formed in the vicinity of a singular point, where at least one of non-coinciding condition
𝜆𝑖 ̸= 𝜆𝑗 for 𝑖 ̸= 𝑗 fails. Work [3], where problem 1.1 was studied for function 𝑓(𝑥) = sign(𝑥) as
𝑛 = 1 and 𝑛 = 2, shows that it is indeed sometimes the case in numerical practice.
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The main result of the present paper is the proof that singular points violating the condition
𝜆𝑖 ̸= 𝜆𝑗 for 𝑖 ̸= 𝑗 are removable. Despite of a small denominator in the formula for Φ(𝜆1, . . . , 𝜆𝑛),
function Φ(𝜆1, . . . , 𝜆𝑛) has a finite limit at these points. This limit can be calculated explicitly
and then we can formulate a generalized formulation for problem (1.1) admitting the repeated
numbers in the sequence 𝜆1, . . . 𝜆𝑛 with arbitrary multiplicities.

2. Solution to linear problem

The linear part of problem 1.1 is to find the minimum in (1.6). By (1.5) and (1.1) we get
easily the formula

𝐹 = ‖𝑓‖2 −
𝑛∑︁

𝑗=1

𝑎𝑗
⟨︀
𝑓
⃒⃒
𝜑𝑗

⟩︀
−

𝑛∑︁
𝑖=1

𝑎𝑖
⟨︀
𝜑𝑖

⃒⃒
𝑓
⟩︀

+
𝑛∑︁

𝑖=1

𝑛∑︁
𝑗=1

𝑔𝑖𝑗 𝑎𝑖 𝑎
𝑗. (2.1)

By means of the angle brackets in (2.1) we denote the scalar product in 𝐿2:

⟨︀
𝑎
⃒⃒
𝑏
⟩︀

=
1

2 𝜋

+𝜋∫︁
−𝜋

𝑎(𝑥) 𝑏(𝑥) 𝑑𝑥. (2.2)

The overline in (2.1) and (2.2) stands for the complex conjugation. By 𝑔𝑖𝑗 in (2.1) we denote
the entries of Gram matrix 𝐺:

𝑔𝑖𝑗 =
⟨︀
𝜑𝑖

⃒⃒
𝜑𝑗

⟩︀
. (2.3)

By (2.2) we obtain the following property of the 𝐿2-scalar product:⟨︀
𝑎
⃒⃒
𝑏
⟩︀

=
⟨︀
𝑏
⃒⃒
𝑎
⟩︀
. (2.4)

Then by (2.4) we get the identities

𝑔𝑖𝑗 = 𝑔𝑗 𝑖,
⟨︀
𝑓
⃒⃒
𝜑𝑖

⟩︀
=
⟨︀
𝜑𝑖

⃒⃒
𝑓
⟩︀
. (2.5)

The minimum of function (1.5) w.r.t. the variables 𝑎1, . . . , 𝑎𝑛 is determined by the vanishing
of its derivatives w.r.t. these variables:

𝜕𝐹

𝜕𝑎𝑖
= 0,

𝜕𝐹

𝜕𝑎𝑖
= 0 where 𝑖 = 1, . . . , 𝑛. (2.6)

Calculating derivatives (2.6) for function (2.1), we obtain the equations
𝑛∑︁

𝑖=1

𝑔𝑖𝑗 𝑎𝑖 =
⟨︀
𝑓
⃒⃒
𝜑𝑗

⟩︀
,

𝑛∑︁
𝑗=1

𝑔𝑖𝑗 𝑎
𝑗 =

⟨︀
𝜑𝑖

⃒⃒
𝑓
⟩︀
, (2.7)

where 𝑖 = 1, . . . , 𝑛. Equations (2.7) are linear w.r.t. variables 𝑎1, . . . , 𝑎𝑛. Because of this fact,
the problem of finding the minimum (1.6) is called the linear problem.

Due to (2.5), two systems of equations (2.7) are distinguished just by the complex conjugation.
This means that it is sufficient to solve only one of these systems of equations.

We shall solve the second system of equations in (2.7). It is solved by means of the inverse
Gram matrix 𝐺−1. We denote by 𝑔𝑖𝑗 the entries of the matrix transpose to the inverse of Gram
matrix: (𝐺−1)⊤. Then quantities 𝑔𝑖𝑗 and 𝑔𝑖𝑗 related as follows:

𝑛∑︁
𝑘=1

𝑔𝑖𝑘 𝑔
𝑗𝑘 = 𝛿𝑗𝑖 ,

𝑛∑︁
𝑘=1

𝑔𝑘𝑗 𝑔𝑘𝑖 = 𝛿𝑗𝑖 . (2.8)

Here 𝛿𝑗𝑖 are the entries of the unit matrix. In linear algebra and in tensor calculus it is called
the Kronecker delta.
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Applying the second relation in (2.8) to the second system of equations (2.7), we find its
solution. It is given by the formula

𝑎𝑗 =
𝑛∑︁

𝑖=1

𝑔𝑖𝑗
⟨︀
𝜑𝑖

⃒⃒
𝑓
⟩︀

where 𝑗 = 1, . . . , 𝑛. (2.9)

Substituting (2.9) into (2.1), we obtain

Φ(𝜆1, . . . , 𝜆𝑛) = ‖𝑓‖2 −
𝑛∑︁

𝑖=1

𝑛∑︁
𝑗=1

𝑔𝑖𝑗
⟨︀
𝜑𝑖

⃒⃒
𝑓
⟩︀ ⟨︀

𝑓
⃒⃒
𝜑𝑗

⟩︀
. (2.10)

Formulae (2.9) and (2.10) give the solution to the linear problem of finding minimum (1.6).

3. Convergence of subspaces in Hilbert spaces

Geometrically, the value of function Φ(𝜆1, . . . , 𝜆𝑛) calculated by formula (2.10) is interpreted
as the 𝐿2-distance from function 𝑓(𝑥) ∈ 𝐿2([−𝜋, +𝜋]) to 𝑛-dimensional subspace

𝐿 =
⟨︀
𝜑1(𝑥), . . . , 𝜑𝑛(𝑥)

⟩︀
(3.1)

generated by the exponential functions (1.2) in Hilbert space 𝐿2([−𝜋, +𝜋]). Subspace (3.1)
depends on 𝜆1, . . . , 𝜆𝑛. To describe such a dependence, we shall make use of the following
definition.

Definition 3.1. We say that a sequence 𝐿𝑞 of 𝑛-dimensional subspaces in Hilbert space ℋ
converges to an 𝑛-dimensional subspace 𝑀 in this space, if in each subspace 𝐿𝑞 there exists a
basis e1𝑞, . . . , e𝑛𝑞 and in 𝑀 there exists a basis e1, . . . , e𝑛 such that

e𝑖𝑞 → e𝑖 𝑎𝑠 𝑞 → ∞

in the sense of the norm of Hilbert space ℋ.

The definition of convergence of subspaces in a finite-dimensional complex space can be found
in [4]. Definition 3.1 agrees with the definition in [4] and is its natural generalization for Hilbert
spaces (see Corollary 1.5.5 of Proposition 1.5.4 in [4]).

Each of exponential functions 𝜑𝑖 = 𝑒𝜆𝑖𝑥 depends continuously on parameter 𝜆𝑖 in the sense
of norm in space 𝐿2([−𝜋, +𝜋]). It implies the continuous dependence of scalar products

⟨︀
𝜑𝑖

⃒⃒
𝑓
⟩︀

and
⟨︀
𝑓
⃒⃒
𝜑𝑗

⟩︀
, as well as of the entries of Gram matrix 𝑔𝑖𝑗 in (2.3) on parameters 𝜆1, . . . 𝜆𝑛. But

apart from the mentioned ingredients, formula (2.10) involves also entries 𝑔𝑖𝑗 of matrix (𝐺−1)⊤.
At singular points, where the condition 𝜆𝑖 ̸= 𝜆𝑗 for 𝑖 ̸= 𝑗 is violated, exponential functions (1.2)
become linearly dependent and the associated Gram matrix 𝐺 degenerates. Hence,

det𝐺 → 0 (3.2)

while approaching singular points. Calculating of the entries for the inverse matrix 𝐺−1 via
minor determinants and cofactors (algebraic adjuncts) of the original matrix 𝐺 involves the
division by det𝐺 [5]. Thus, relation (3.2) implies the following result.

Theorem 3.1. The entries 𝑔𝑖𝑗 of matrix (𝐺−1)⊤ in formula (2.10) calculated by exponential
functions (1.2) depend continuously on parameters 𝜆1, . . . , 𝜆𝑛 everywhere except singular points
at which the condition 𝜆𝑖 ̸= 𝜆𝑗 for 𝑖 ̸= 𝑗 is violated.

The calculation of the entries of matrix (𝐺−1)⊤ for particular 𝑛 shows that the explicit
formulae for 𝑔𝑖𝑗 involve small denominators vanishing at the singular points, where the condition
𝜆𝑖 ̸= 𝜆𝑗 for 𝑖 ̸= 𝑗 is violated.
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4. Clustering of exponents in the vicinity of singular points

We consider a singular point at which the condition 𝜆𝑖 ̸= 𝜆𝑗 for 𝑖 ̸= 𝑗 is violated. It
means that there are repetitions in sequence 𝜆1, . . . , 𝜆𝑛. Excluding the repetitions, we obtain
a smaller sequence Λ1, . . . , Λ𝑚 with no repetitions. In a small neighbourhood of the singular
point, numbers 𝜆1, . . . , 𝜆𝑛 are pairwise distinct but they are grouped into clusters attracted by
numbers Λ1, . . . , Λ𝑚. In this situation it is reasonable to renumber 𝜆1, . . . , 𝜆𝑛 writing

𝜆𝑖𝑗 where 𝑖 = 1, . . . ,𝑚 and 𝑗 = 1, . . . , 𝑘𝑖. (4.1)

Here 𝑖 is the number of a cluster, and 𝑗 is an index of the number within the cluster. Numbers
𝑘1, . . . , 𝑘𝑚 in (4.1) are called the multiplicities of clusters. The identity

𝑘1 + . . . + 𝑘𝑚 = 𝑛 (4.2)

holds true. Identity (4.2) expresses the preserving of the total amount of exponents under
clustering (4.1). Due to (4.1) and (4.2), identity (3.1) can be rewritten as

𝐿 =
⟨︀
{𝑒𝜆𝑖𝑗𝑥}𝑖=1, ...,𝑚

𝑗=1, ..., 𝑘𝑖

⟩︀
(4.3)

or as 𝐿 =
⟨︀
{𝑒𝜆𝑖𝑗𝑥}

⟩︀
for the sake of brevity. The passage to a singular point from the surrounding

regular ones is expressed as the passage to the limit:

𝜆𝑖𝑗 → Λ𝑖. (4.4)

Considering limit (4.4), it is convenient to introduce the small parameter

𝜀 = max{|𝜆𝑖𝑗 − Λ𝑖|}𝑖=1, ...,𝑚
𝑗=1, ..., 𝑘𝑖

. (4.5)

In view of (4.5), formula (4.4) becomes

𝜆𝑖𝑗 → Λ𝑖 as 𝜀 → 0. (4.6)

As it was mentioned above, under the passage to the limit (4.6) the exponential functions
𝑒𝜆𝑖𝑗𝑥 forming the basis of subspace 𝐿 in (4.3) become linearly dependent and do not form a
basis anymore. They do not fit Definition 3.1. Our further efforts are focused on proving the
existence of another basis in 𝐿 satisfying Definition 3.1.

5. Taylor expansions for exponential functions

This section is preliminary. Suppose for a while that we have just one cluster (i.e., 𝑚 = 1)
with Λ1 = 0. Then we can employ the original notaitions 𝜆1, . . . , 𝜆𝑛 for the exponents and we
can write formula (4.4) as 𝜆 𝑖 → 0. Exponential functions in (1.2) have the following Taylor
expansions at zero:

𝑒𝜆1𝑥 = 1 + 𝜆1 𝑥 + . . . +
𝜆𝑛−1
1 𝑥𝑛−1

(𝑛− 1)!
+ . . . =

∞∑︁
𝑞=0

𝜆𝑞
1 𝑥

𝑞

𝑞!
,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

𝑒𝜆𝑛𝑥 = 1 + 𝜆𝑛 𝑥 + . . . +
𝜆𝑛−1
𝑛 𝑥𝑛−1

(𝑛− 1)!
+ . . . =

∞∑︁
𝑞=0

𝜆𝑞
𝑛𝑥

𝑞

𝑞!
.

(5.1)

Partial sums of power series (5.1) define the polynomials

𝑝𝑖(𝑥) = 1 + 𝜆 𝑖 𝑥 + . . . +
𝜆𝑛−1
𝑖 𝑥𝑛−1

(𝑛− 1)!
where 𝑖 = 1, . . . , 𝑛. (5.2)

Employing polynomials (5.2), we introduce the following equations for variables 𝛼1, . . . , 𝛼𝑛

involved in these polynomials:

𝛼1 𝑝1(𝑥) + . . . + 𝛼𝑛 𝑝𝑛(𝑥) =
𝑥𝑛−1

(𝑛− 1)!
. (5.3)
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Polynomial equation (5.3) is equivalent to the matrix equation⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦

1 1 . . . 1
𝜆1 𝜆2 . . . 𝜆𝑛

𝜆2
1 𝜆2

2 . . . 𝜆2
𝑛

...
... . . . ...

𝜆𝑛−1
1 𝜆𝑛−1

2 . . . 𝜆𝑛−1
𝑛

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦ ·
⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦
𝛼1

𝛼2

𝛼3
...
𝛼𝑛

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦ =

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦

0
0
0
...
1

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦ . (5.4)

Matrix (5.4) is obtained by transposing the Vandermonde matrix [6]:

𝑊 =

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦⃦⃦

1 𝜆1 𝜆2
1 . . . 𝜆𝑛−1

1

1 𝜆2 𝜆2
2 . . . 𝜆𝑛−1

2

1 𝜆3 𝜆2
3 . . . 𝜆𝑛−1

3
...

...
... . . . ...

1 𝜆𝑛 𝜆2
𝑛 . . . 𝜆𝑛−1

𝑛

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦⃦⃦ . (5.5)

Vandermmonde matrix (5.5) is non-degenerate for distinct 𝜆𝑖, i.e., if 𝜆 𝑖 ̸= 𝜆𝑗 as 𝑖 ̸= 𝑗. In this
case the inverse matrix 𝑈 = 𝑊−1 is well-defined [7]. In order to write matrix 𝑈 explicitly, we
shall make use the following polynomials in 𝜆:

𝑃𝑞(𝜆) =

𝑛∏︁
𝑠 ̸=𝑞

(𝜆− 𝜆𝑠)

𝑛∏︁
𝑠 ̸=𝑞

(𝜆𝑞 − 𝜆𝑠)

where 𝑞 = 1, . . . , 𝑛. (5.6)

It is easy to see that polynomials (5.6) satisfy the relation

𝑃𝑞(𝜆 𝑖) =

{︃
1 as 𝑞 = 𝑖,

0 as 𝑞 ̸= 𝑖.
(5.7)

If we represent polynomials (5.6) as sums of monomials

𝑃𝑞(𝜆) =
𝑛∑︁

𝑟=1

𝑈𝑟𝑞 𝜆
𝑟−1 = 𝑈1𝑞 + 𝑈2𝑞 𝜆 + . . . + 𝑈𝑛𝑞 𝜆

𝑛−1, (5.8)

then relation (5.7) is written as
𝑛∑︁

𝑟=1

𝜆𝑟−1
𝑖 𝑈𝑟𝑞 =

{︃
1 for 𝑞 = 𝑖,

0 for 𝑞 ̸= 𝑖.
(5.9)

In view of the structure of matrix (5.5) one can see that relation (5.9) is equivalent to the
matrix identity 𝑊 · 𝑈 = 1, where 𝑈 is the matrix formed by the coefficients of polynomials
(5.8):

𝑈 =

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦
𝑈11 𝑈12 𝑈13 . . . 𝑈1𝑛

𝑈21 𝑈22 𝑈23 . . . 𝑈2𝑛

𝑈31 𝑈32 𝑈33 . . . 𝑈3𝑛
...

...
... . . . ...

𝑈𝑛1 𝑈𝑛2 𝑈𝑛3 . . . 𝑈𝑛𝑛

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦ . (5.10)

The explicit formula for matrix (5.10) follows from (5.6):

𝑈𝑟𝑞 =
1

(𝑟 − 1)!

𝑑𝑟−1𝑃𝑞(𝜆)

𝑑𝜆𝑟−1 𝜆=0
. (5.11)
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The identity 𝑊 ·𝑈 = 1 implied by (5.9) means that matrix (5.10) with entries (5.11) is inverse
for the Vandermonde matrix.

Since (𝑊⊤)−1 = 𝑈⊤, we can make use of the transposed matrix 𝑈⊤ to solve matrix equation
(5.4):

𝛼𝑞 = 𝑈𝑛𝑞 =
1

(𝑛− 1)!

𝑑𝑛−1𝑃𝑞(𝜆)

𝑑𝜆𝑛−1 𝜆=0
=

1
𝑛∏︁

𝑠 ̸=𝑞

(𝜆𝑞 − 𝜆𝑠)

. (5.12)

Along with solving matrix equation (5.4), quantities (5.12) solve also polynomial equation (5.3).
Employing quantities (5.12) determined as coefficients, we introduce the following linear

combination of exponential functions (1.2):

𝑓𝑛(𝑥) = 𝛼1 𝑒
𝜆1𝑥 + . . . + 𝛼𝑛 𝑒

𝜆𝑛𝑥. (5.13)

If we take into consideration (5.1), (5.2), and (5.3), function 𝑓𝑛(𝑥) in (5.13) can be represented
as the power series

𝑓𝑛(𝑥) =
𝑥𝑛−1

(𝑛− 1)!
+

∞∑︁
𝑞=1

𝐵𝑛 𝑞 𝑥
𝑛−1+𝑞

(𝑛− 1 + 𝑞)!
. (5.14)

Coefficients 𝐵𝑛 𝑞 in (5.14) are determined by the formulae

𝐵𝑛 𝑞 =
𝑛∑︁

𝑖=1

𝛼𝑖 𝜆
𝑛−1+𝑞
𝑖 =

𝑛∑︁
𝑖=1

𝜆𝑛−1+𝑞
𝑖

𝑛∏︁
𝑠 ̸=𝑖

(𝜆𝑖 − 𝜆𝑠)

. (5.15)

Formally speaking, power series (5.14) involves quantities (5.15) with 𝑞 > 1. But formula (5.15)
can be extended for the case 𝑞 = 0. In this case, substituting 𝑞 = 0 into (5.15) and using matrix
identity (5.4) for quantities 𝛼1, . . . , 𝛼𝑛, we obtain the identity

𝐵𝑛 0 = 1 for each 𝑛 > 1. (5.16)

Lemma 5.1. For arbitrarily many 𝜆1, . . . , 𝜆𝑛, 𝜆𝑛+1, . . . , pairwise distinct numbers 𝜆 𝑖 ̸= 𝜆𝑗

and 𝑞 > 1, quantities 𝐵𝑛 𝑞 in (5.15) satisfy the recurrent identity

𝐵𝑛+1 𝑞 = 𝐵𝑛 𝑞 + 𝜆𝑛+1𝐵𝑛+1 𝑞−1. (5.17)

Lemma 5.1 can be easily proved by straightforward calculations based on formula (5.15). As
𝑛 = 1, formula (5.12) becomes 𝑎1 = 1. Then (5.15) yields

𝐵1 𝑞 = 𝜆𝑞
1 for each 𝑞 > 0. (5.18)

Formulae (5.16) and (5.18) and recurrent identities (5.17) are sufficient to determine all 𝐵𝑛 𝑞

by induction w.r.t. two parameters 𝑛 and 𝑞.

Lemma 5.2. Quantities 𝐵𝑛 𝑞 determined by pairwise distinct numbers 𝜆 𝑖 ̸= 𝜆𝑗 via formula
(5.15) are calculated explicitly:

𝐵𝑛 𝑞 =
∑︁

...

∑︁
16𝑖16 ...6𝑖𝑞6𝑛

𝜆𝑖1 · . . . · 𝜆𝑖𝑞 where 𝑛 > 1 and 𝑞 > 1. (5.19)

In order to prove Lemma 5.2 it is sufficient to make sure that identities (5.17) and (5.18)
are fulfilled once we substitute (5.19). After that formulae (5.19) and (5.16) determine all 𝐵𝑛 𝑞

explicitly.
We denote by 𝑁𝑛 𝑞 the number of terms in formula (5.19) for 𝐵𝑛 𝑞. This number is estimated

by the following inequality:
𝑁𝑛 𝑞 6 𝑛𝑞. (5.20)
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Note that in this section we consider the special case, where the number of clusters is 𝑚 = 1,
the multiplicity is 𝑘1 = 𝑛, and Λ1 = 0. In view of this, we let

𝜀 = max(|𝜆1|, . . . , |𝜆𝑛|). (5.21)

Notation (5.21) is a version of notation (4.5) applied to the special case. We apply (5.20) and
(5.21) to estimate the terms in power series (5.14). For 𝑞 > 1 we obtain⃒⃒⃒⃒

𝐵𝑛 𝑞 𝑥
𝑛−1+𝑞

(𝑛− 1 + 𝑞)!

⃒⃒⃒⃒
6

𝑛𝑞 𝜀𝑞 |𝑥|𝑛−1+𝑞

(𝑛− 1)!𝑛 (𝑛 + 1) · . . . · (𝑛 + 𝑞 − 1)
. (5.22)

For our purposes it is sufficient to have a weaker estimate. It follows from (5.22) that⃒⃒⃒⃒
𝐵𝑛 𝑞 𝑥

𝑛−1+𝑞

(𝑛− 1 + 𝑞)!

⃒⃒⃒⃒
6

𝜀𝑞 |𝑥|𝑛−1+𝑞

(𝑛− 1)!
where 𝑞 > 1. (5.23)

It implies easily the estimate in the norm of 𝐿2([−𝜋, +𝜋]):⃦⃦⃦⃦
𝐵𝑛 𝑞 𝑥

𝑛−1+𝑞

(𝑛− 1 + 𝑞)!

⃦⃦⃦⃦
6

√︂
2𝜋

2𝑛 + 2 𝑞 − 1

𝜋𝑛−1

(𝑛− 1)!
(𝜋 𝜀)𝑞. (5.24)

Since 𝑛 = const in (5.1), (5.14), and (5.24), estimate (5.24) can be simplified. In order to do it,
we introduce the following constant independent of 𝑞 > 1:

𝐶𝑛 =

√︂
2𝜋

2𝑛 + 1

𝜋𝑛−1

(𝑛− 1)!
. (5.25)

Employing constant (5.25), estimate (5.24) can be rewritten as⃦⃦⃦⃦
𝐵𝑛 𝑞 𝑥

𝑛−1+𝑞

(𝑛− 1 + 𝑞)!

⃦⃦⃦⃦
‖ 6 𝐶𝑛 (𝜋 𝜀)𝑞 where 𝑞 > 1. (5.26)

For 𝜋 𝜀 < 1/2, estimate (5.26) produces an estimate for function 𝑓𝑛(𝑥) defined by formula (5.13)
and represented by series (5.14):⃦⃦⃦⃦

𝑓𝑛(𝑥) − 𝑥𝑛−1

(𝑛− 1)!

⃦⃦⃦⃦
6

𝐶𝑛 𝜋 𝜀

1 − 𝜋 𝜀
6 2𝐶𝑛 𝜋 𝜀. (5.27)

Due to formula (5.13), function 𝑓𝑛(𝑥) is a linear combination of exponential functions
𝑒𝜆1𝑥, . . . , 𝑒𝜆𝑛𝑥, i.e., it belongs to subspace 𝐿 in (3.1). Hence, we can formulate the following
theorem.

Theorem 5.1. For any 𝑛 pairwise distinct complex quantities 𝜆1, . . . , 𝜆𝑛 tending to zero
we can construct a complex-valued function 𝑓(𝑥) belonging to subspace 𝐿 generated by the
exponential functions 𝑒𝜆1𝑥, . . . , 𝑒𝜆𝑛𝑥 in Hilbert space 𝐻 = 𝐿2([−𝜋,+𝜋]) of square integrable
functions such that

‖𝑓(𝑥) − 𝑥𝑛−1‖ → 0, (5.28)

as 𝜆1, . . . , 𝜆𝑛 tend to zero.

Theorem 5.1 follows immediately from inequality (5.27). It is important to stress that the
norm convergence in (5.28) depends neither on any relations for 𝜆1, . . . , 𝜆𝑛 no on individual
convergence rates for particular 𝜆 𝑖 → 0.

Given 𝑛 pairwise distinct complex parameters 𝜆1, . . . , 𝜆𝑛 tending to zero, we can select part
of them 𝜆1, . . . , 𝜆𝑠, where 1 6 𝑠 6 𝑛. Applying Theorem 5.1 to each such sample, we obtain
the following result.



ON A PROBLEM ASSOCIATED WITH APPROXIMATION . . . 91

Theorem 5.2. For any 𝑛 pairwise distinct complex 𝜆1, . . . , 𝜆𝑛 tending to zero, we can
construct 𝑛 complex-valued functions 𝑓1(𝑥), . . . , 𝑓𝑛(𝑥) belonging to subspace 𝐿 generated by
the exponential functions 𝑒𝜆1𝑥, . . . , 𝑒𝜆𝑛𝑥 in Hilbert space of square integrable functions 𝐻 =
𝐿2([−𝜋,+𝜋]) such that

‖𝑓𝑠(𝑥) − 𝑥𝑠−1‖ → 0, 𝑠 = 1, . . . , 𝑛, (5.29)
as 𝜆1, . . . , 𝜆𝑛 tend to zero.

Again, it is important to stress that the norm convergence (5.29) depends neither on relations
between 𝜆1, . . . , 𝜆𝑛 nor on individual rate of convergence for particular 𝜆 𝑖 → 0.

Comparing Theorem 5.2 with Definition 3.1 of the convergence of subspace, we arrive
immediately at the following result.

Theorem 5.3. For any 𝑛 pairwise distinct complex quantities 𝜆1, . . . , 𝜆𝑛 tending to zero,
the linear span of exponential functions

𝐿 =
⟨︀
𝑒𝜆1𝑥, . . . , 𝑒𝜆𝑛𝑥

⟩︀
in Hilbert space 𝐻 = 𝐿2([−𝜋,+𝜋]) of square integrable functions converges to the linear span
of polynomials

𝑀 =
⟨︀
1, 𝑥, . . . , 𝑥𝑛−1

⟩︀
as 𝜆1, . . . , 𝜆𝑛 tend to zero.

6. Case of several clusters

We proceed to studying general singular points in the vicinity of which the exponents
𝜆1, . . . , 𝜆𝑛 are grouped into 𝑚 clusters with multiplicities 𝑘1, . . . , 𝑘𝑚 (see (4.1)). They converge
to 𝑚 pairwise distinct complex numbers Λ1, . . . , Λ𝑚 in accordance with (4.4) and (4.6). This
is why we introduce small deflections

𝜃𝑖𝑗 = 𝜆𝑖𝑗 − Λ𝑖

tending to zero and instead of (5.1) we write

𝑒𝜆𝑖1𝑥 = 𝑒Λ𝑖𝑥

(︂
1 + 𝜃𝑖1 𝑥 + . . . +

𝜃𝑛−1
𝑖1 𝑥𝑛−1

(𝑛− 1)!

)︂
+ . . . =

∞∑︁
𝑞=1

𝜃𝑞𝑖1 𝑥
𝑞 𝑒Λ𝑖𝑥

𝑞!
,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

𝑒𝜆𝑖𝑘𝑖
𝑥 = 𝑒Λ𝑖𝑥

(︃
1 + 𝜃𝑖𝑘𝑖 𝑥 + . . . +

𝜃𝑛−1
𝑖𝑘𝑖

𝑥𝑛−1

(𝑛− 1)!

)︃
+ . . . =

∞∑︁
𝑞=1

𝜃𝑞𝑖𝑘𝑖 𝑥
𝑞 𝑒Λ𝑖𝑥

𝑞!
.

As a result, instead of Theorem 5.1 we obtain the following theorem.

Theorem 6.1. For a set of pairwise distinct complex ingredients 𝜆𝑖𝑗, 𝑖 = 1, . . . ,𝑚, 𝑗 =
1, . . . , 𝑘𝑖, tending to 𝑚 pairwise distinct complex numbers Λ1, . . . , Λ𝑚 there exists a function
𝑓𝑠(𝑥) belonging to subspace 𝐿 =

⟨︀
{𝑒𝜆𝑖𝑗𝑥}𝑖=1, ...,𝑚

𝑗=1, ..., 𝑘𝑖

⟩︀
in Hilbert space of square integrable functions

ℋ = 𝐿2([−𝜋,+𝜋]) such that

‖𝑓𝑠(𝑥) − 𝑥𝑘𝑠−1 𝑒Λ𝑠𝑥‖ → 0 as 𝜆𝑖𝑗 → Λ𝑖.

The proof of Theorem 6.1 follows the same lines as the proof of Theorem5.1. The only
difference is that instead of polynomial 𝑥𝑛−1 here we deal with an exponential polynomial1. The
exponential polynomial 𝑥𝑘𝑠−1 𝑒Λ𝑠𝑥 is not unique in Theorem 6.1. Reproducing the arguments in
deriving Theorem 5.2 from Theorem 5.1, we can get as many exponential polynomials as many
exponential functions we initially have.
1In Russian mathematical literature the “квазиполином” is widely used for exponential polynomial, which is
translated literally as “quasipolynomial”. It denotes expressions 𝑐 𝑥𝑞 𝑒𝜆𝑥 with positive integer exponent 𝑞 and
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Theorem 6.2. For a set of pairwise distinct complex parameters 𝜆𝑖𝑗, 𝑖 = 1, . . . ,𝑚, and 𝑗 =
1, . . . , 𝑘𝑖, tending to 𝑚 pairwise distinct complex numbers Λ1, . . . , Λ𝑚, there exist the set of
functions 𝑓𝑖𝑗(𝑥), 𝑖 = 1, . . . ,𝑚, 𝑗 = 1, . . . , 𝑘𝑖, belonging to subspace 𝐿 =

⟨︀
{𝑒𝜆𝑖𝑗𝑥}𝑖=1, ...,𝑚

𝑗=1, ..., 𝑘𝑖

⟩︀
in

Hilbert space ℋ = 𝐿2([−𝜋,+𝜋]) such that

‖𝑓𝑖𝑗(𝑥) − 𝑥𝑗−1 𝑒Λ𝑖𝑥‖ → 0 𝑎𝑠 𝜆𝑖𝑗 → Λ𝑖.

An analogue of Theorem 5.3 reads as follows.

Theorem 6.3. For a set of pairwise distinct complex parameters 𝜆𝑖𝑗, 𝑖 = 1, . . . ,𝑚, 𝑗 =
1, . . . , 𝑘𝑖, tending to 𝑚 pairwise distinct complex numbers Λ1, . . . , Λ𝑚, the linear span of
exponential functions

𝐿 =
⟨︀
{𝑒𝜆𝑖𝑗𝑥}𝑖=1, ...,𝑚

𝑗=1, ..., 𝑘𝑖

⟩︀
in Hilbert space 𝐻 = 𝐿2([−𝜋,+𝜋]) of square integrable functions, as 𝜆𝑖𝑗 → Λ𝑖, converges to the
linear span of exponential polynomials

𝑀 =
⟨︀
{𝑥𝑗−1 𝑒Λ𝑖𝑥}𝑖=1, ...,𝑚

𝑗=1, ..., 𝑘𝑖

⟩︀
. (6.1)

7. Removing singularities

We return back to the solution of linear approximation problem (1.6) represented by formula
(2.10). As it was mentioned above in Section 3, the geometric interpretation of function
Φ(𝜆1, . . . , 𝜆𝑛) is the 𝐿2-distance from function 𝑓(𝑥) ∈ 𝐿2([−𝜋, +𝜋]) to 𝑛-dimensional subspace
𝐿 in (3.1). It means that Φ(𝜆1, . . . , 𝜆𝑛) depends on 𝐿 but is independent of a particular basis
in subspace 𝐿 employed in formula (2.10). On the other hand, due to formula (2.10), quantity
Φ(𝜆1, . . . , 𝜆𝑛) depends continuously on the basis provided this basis changes together with
subspace 𝐿 not stopping to be a basis. It implies the following result.

Theorem 7.1. Function Φ(𝜆1, . . . , 𝜆𝑛) being a solution to linear approximation problem
(1.6) is continuous in regular points, where the condition 𝜆 𝑖 ̸= 𝜆𝑗 as 𝑖 ̸= 𝑗 holds true, and
has a finite limit if this condition is violated.

To prove Theorem 7.1, it is sufficient to replace basis of exponential functions (1.2) in 𝐿
by the basis of functions 𝑓𝑖𝑗(𝑥) whose existence is ensured by Theorem 6.2. To calculate the
limiting value of function Φ(𝜆1, . . . , 𝜆𝑛) at a singular point determined by numbers Λ1, . . . , Λ𝑚

and multiplicities 𝑘1, . . . , 𝑘𝑚, we replace 𝐿 by the limiting subspace 𝑀 in (6.1) and employ
basis of exponential polynomials from formula (2.10).

Theorem 7.1 means that function Φ(𝜆1, . . . , 𝜆𝑛) can be extended to a function continuous
in the whole space C𝑛. This fact is important in composing numerical algorithms aimed on
solving nonlinear approximation problem and Problem 1.1. Problem 1.1 should be treated
in generalized sense including together with the minimization over exponential functions the
minimization over exponential polynomials.

8. Discussions and conclusions

The present work was discussed on November 19, 2014 in Bashkir State University in the
seminar which now has the status of the city seminar on theory of functions named after
A.F. Leont’ev. During the discussion N.F. Valeev expressed the idea that theorems like 5.1,
5.2, 5.3 and 6.1, 6.2, 6.3 can be proved in the framework of the theory of linear ordinary
differential equations. R.S. Yulmukhametov conjectured that results similar to these theorems
can be contained in earlier works of 1960 not accessible via the Internet. After two days he sent
to the author the e-mail with a sophisticated and shorter proof of Theorem 5.1 found by himself.

various sums of such expressions. However, in English mathematical literature the term “quasipolynomial” has
a different meaning [8].
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In view of these circumstances, the author does not pretend to the priority of Theorems 5.1,
5.2, 5.3 and 6.1, 6.2, 6.3, but he provides them with the proofs for the completeness and
because these proofs are rather constructive and can be employed for quantitative estimates in
composing numerical algorithms. The main result of the work is Theorem 7.1 having a direct
influence on solving Problem 1.1 numerically.

Along with a practical application, Problem 1.1 requires a further theoretical study. The
author thinks that it has a certain potential for generating new results and deserves a
popularization.

9. Addendum upon the first refereeing and discussion in a conference

On December 2–5, 2014, the second all-Russian scientific youth conference “Topical problems
of nano- and microelectronics” was held in Bashkir State University. It was organized by
R.Z. Bakhtizin. The author presented his report in the section “Digital processing of information
and automation of measurements in nano- and microelectronics”. During the report the original
applied problem and the algorithm of its solving were discussed. The referee also emphasizes
the applied problem and points to the paper [9], where the nonhomogeneous discrete Fourier
transform (NDFT) and its application to creating digital frequency filters were considered. Some
of above formulae can be found in [9]. For instance, it concerns formula (5.5) for Vandermonde
matrix and formula (5.6) for interpolation polynomial. In some other papers in book [9]
quadratic 𝐿2-norms and root-mean-square deviations were considered. However, in book [9]
we found no formulae being in direct correspondance with the above formulae in Sections 2-4.
Employing of wavelets, which were mentioned by the referee, means to replace exponential
functions by more complicated functions [10].

Many of the papers in book [9] use somehow Nyquist-Shannon sampling theorem [11]. The
author learned on this theorem from R.Z. Bakhtizin. It describes the reconstruction of a signal
with a bounded spectrum by a discrete sample in an infinite sequence of points. Signals in
the applied problem from the group of companies “PhysTech” are assumed to have a bounded
spectrum. But Nyquist-Shannon sampling theorem is not used in the present work. It can be
required in future while increasing the number of spectral points 𝜆1, . . . , 𝜆𝑛.

The choice of optimal values 𝜆1, . . . , 𝜆𝑛 in the applied problem from the group of companies
“PhysTech” resembles choosing of frequencies for NDFT filters. However, there is an important
difference. The choice of the frequencies for filters is made once during their design. In our case
the frequencies 𝜆1, . . . , 𝜆𝑛 should be determined on-fly in processing each incoming signal.
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