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GENERALIZED SOLUTIONS AND

EULER-DARBOUX TRANSFORMATIONS

I.V. VEREVKIN

Abstract. We introduce Euler-Darboux transformation for non-homogeneous differential
equations with the right-hand side being a generalized function. As an example, we con-
struct the fundamental solutions for Klein-Gordon-Fock and Schrödinger equations with
variable coefficients describing a particle in external scalar field.
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1. Euler-Darboux transform of inhomogeneous equations and generalized
solutions

We consider the linear inhomogeneous differential equation

𝐿𝑢 = 𝐴𝑢 + 𝐵𝑢 = 𝑓, (1)

where 𝐴 is a differential operator in one variable 𝑥:

𝐴 =
𝐾∑︁
𝑖=0

𝑎𝑖(𝑥)𝐷𝑖
𝑥, (2)

𝐵 is the differential operator in variables 𝑦1, . . . , 𝑦𝑛 reading as

𝐵 =
𝑀∑︁

|𝛼|>0

𝑏𝛼(𝑦)𝐷𝛼
𝑦 , (3)

and 𝑓(𝑥, 𝑦1, . . . , 𝑦𝑛) is a generalized function. In what follows we make use of the standard
theory of generalized functions [1] and we introduce the notations: 𝛼 = (𝛼1, . . . , 𝛼𝑛) is an

integer multi-index, 𝐷𝑖
𝑥 =

𝜕𝑖

𝜕𝑥𝑖
, 𝐷𝛼

𝑦 =
𝜕|𝛼|

𝜕𝑦1𝛼1 . . . 𝜕𝑦𝑛𝛼𝑛
are generalized derivatives. For the

classical functions we shall also employ the notations of the derivatives (also generalized in
the general situation) obvious by the context: ℎ′, 𝛾𝑦. Functions 𝑎𝑖(𝑥) and 𝑏𝛼(𝑦) are assumed
to be smooth in corresponding domains. Moreover, we assume that all functions multiplying
generalized functions are infinitely differentiable. Following work [2], we denote by 𝐸𝐾,𝑀 the
class of equations (1).

If ℎ(𝑥), 𝑔(𝑦) are classical solutions to the equations

𝐴ℎ = 𝑐ℎ,

𝐵𝑔 + 𝑐𝑔 = 0, where 𝑐 ∈ R1,
(4)
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then function 𝑢1 = 𝑔ℎ solves homogeneous equation (1). Function 𝑢1 generates a transformation
of equation (1).

Theorem 1. Class of equations 𝐸𝐾,𝑀 possesses the following properties:
1. If 𝛾 is a smooth function reading as 𝛾 = 𝑝(𝑥)𝑞(𝑦) ̸= 0, then the transformation

𝑢 → 𝑣 = 𝑢/𝛾

maps generalized solutions of equation (1) into generalized solutions of the equation

𝐿̂𝑣 = 𝑣𝐿(𝛾)/𝛾 + 𝐴1𝑣 + 𝐵1𝑣 = 𝑓/𝛾,

where

𝐴1 =
𝐾∑︁
𝑖=1

𝑎1𝑖 (𝑥)𝐷𝑖
𝑥, 𝐵1 =

𝑀∑︁
|𝛼|>1

𝑏1𝛼(𝑦)𝐷𝛼
𝑦 .

As 𝛾 = 𝑢1 ̸= 0, equation 𝐿̂𝑣 = 𝑓/𝛾 reads as

𝐿1𝑣 = 𝐴1𝑣 + 𝐵1𝑣 = 𝑓/𝛾. (5)

2. The transformation 𝑣 → 𝑤 = 𝑣𝑥 maps generalized solutions to equation (5) into generalized
solution of the equation

𝐿2𝑤 =
𝐾∑︁
𝑖=1

(𝐷𝑥(𝑎1𝑖 )𝐷
𝑖−1
𝑥 𝑤 + 𝑎1𝑖𝐷

𝑖
𝑥𝑤) +

𝑀∑︁
|𝛼|>1

𝑏1𝛼𝐷
𝛼
𝑦𝑤 = 𝐷𝑥(𝑓/𝛾). (6)

Proof. We observe that product 𝛾𝑣, where 𝑣 is a generalized function, satisfies Leibnitz formula
for the derivative of a product. Taking this fact the into consideration as well as the identity
(𝐿𝑢, 𝜙) = (𝐿(𝛾𝑣), 𝜙) implied by the identity (𝑢, 𝜙) = (𝛾𝑣, 𝜙), we obtain

𝐿𝑢 = 𝐿(𝛾𝑣) = 𝑣𝐿(𝛾) + ̃︀𝐴𝑣 + ̃︀𝐵𝑣 = 𝑓, (7)

where ̃︀𝐴𝑣 =
𝐾∑︁
𝑖=0

̃︀𝑎𝑖(𝑥, 𝛾, 𝛾𝑥, . . .)𝐷𝑖
𝑥𝑣,

̃︀𝐵𝑣 =
𝑀∑︁

|𝛼|>1

̃︀𝑏𝛼(𝑦, 𝛾, 𝛾𝑦, . . .)𝐷
𝛼
𝑦 𝑣,

and 𝜙 is a function in the space of test functions. Coefficients ̃︀𝑎𝑖 can depend only on 𝑥, 𝛾, and

the derivatives of 𝛾 w.r.t. 𝑥, while coefficients ̃︀𝑏𝛼 can depend only on 𝑦, 𝛾 and its derivatives

w.r.t. 𝑦1, . . . , 𝑦𝑛. Function 𝛾 and its derivatives can be involved in coefficients ̃︀𝑎𝑖, ̃︀𝑏𝛼 only
linearly.

We multiply (7) by 1/𝛾 to obtain the equation

̃︀𝐿𝑣 =
1

𝛾
𝐿(𝛾)𝑣 + 𝐴1𝑣 + 𝐵1𝑣 = 𝑓/𝛾,

where operators 𝐴1, 𝐵1 read as

𝐴1 =
𝐾∑︁
𝑖=0

̃︀𝑎𝑖(𝑥, 𝑝, 𝑝𝑥, . . .)𝐷𝑖
𝑥, 𝐵1 =

𝑀∑︁
|𝛼|>1

̃︀𝑏𝛼(𝑦, 𝑞, 𝑞𝑦, . . .)𝐷
𝛼
𝑦 .

As 𝛾 = 𝑢1, we obtain equation (5). In order to prove second property, it is sufficient to
differentiate (5) w.r.t. 𝑥 and to introduce a new generalized function 𝑤 = 𝐷𝑥𝑣. As a result, we
arrive at equation (6).

We observe that all the equations 𝐿𝑢 = 𝑓 , 𝐿1𝑣 = 𝑓/𝛾, 𝐿2 = 𝐷𝑥(𝑓/𝛾) belong to the same
class 𝐸𝐾,𝑀 .
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Corollary. Let ℎ be a non-trivial solution to equation (4), 𝑟 be a smooth function of 𝑥. Then
the transformation

𝑣 =
1

𝑟

(︂
𝐷𝑥𝑢− ℎ′

ℎ
𝑢

)︂
(8)

maps generalized solutions of equation (1) into generalized solutions of the same class 𝐸𝐾,𝑀 .

Indeed, the transformation

𝑣 = 𝑝(𝑥)𝑞(𝑦)𝐷𝑥

(︂
𝑢

𝑢1

)︂
(9)

is a combination of the transformations considered in Theorem 1 and hence, it preserves the
class of the equation. Here 𝑝, 𝑞 are smooth arbitrary functions, 𝑢1 is a solution to equation
(1) obtained by the separation of variables 𝑢1 = ℎ(𝑥)𝑔(𝑦). If we let 𝑞 = 𝑔, 𝑝 = ℎ/𝑟, by (9) we
obtain (8).

Following work [2], let us prove

Lemma 1. The transformation

𝑢𝑘 = ℳ𝑘𝑢 =
𝑊 (ℎ1, . . . , ℎ𝑘, 𝑢)

𝑊 (ℎ1, . . . , ℎ𝑘)
(10)

maps a generalized solution to equation (1) into a generalized solution to equation of the same
class 𝐸𝐾,𝑀 .

Despite the proof of the lemma given in [2] works for also for the case of generalized solution,
we provide it here since it is employed in the proof of Theorem 3.

In order to make sure that Lemma 1 is valid, we observe that if we know solutions ℎ1,. . . ,
ℎ𝑘 to equation (4) for different 𝑐1, . . . , 𝑐𝑘, as it was shown in [2], we can construct an operator
of 𝑘th order being a superposition of first Euler-Darboux operators ℒℎ = ℎ𝐷𝑥(1/ℎ) as well
as the associated transformation acting on 𝐸𝐾,𝑀 . Indeed, let ℎ1, . . . , ℎ𝑘 be smooth linearly
independent functions of 𝑥. We construct a sequence of functions and operators

𝑝1 = ℎ1, 𝑝2 = ℒ𝑝1ℎ2, . . . 𝑝𝑁 = ℒ𝑝𝑁−1
. . .ℒ𝑝1ℎ𝑁 ,

ℳ1 = ℒ𝑝1 , ℳ2 = ℒ𝑝2ℳ1, . . . ℳ𝑁 = ℒ𝑝𝑁ℳ𝑁−1.
(11)

It follows from the construction of operators ℳ𝑘 that functions ℎ1, . . . , ℎ𝑘 satisfy 𝑘th order
differential equation

ℳ𝑘ℎ = 0. (12)

Thus, they make a basis of solutions to equation (12). Therefore, the action of operator 𝑀𝑘 on
an arbitrary function is give by [3]

ℳ𝑘𝑢 = 𝐷𝑘
𝑥𝑢 + 𝑎𝑘−1𝐷

𝑘−1
𝑥 𝑢 + . . . + 𝑎0𝑢 =

𝑊 (ℎ1, . . . , ℎ𝑘, 𝑢)

𝑊 (ℎ1, . . . , ℎ𝑘)
. (13)

It remains to take solutions to equation (4) for different ℎ1, . . . , ℎ𝑘.

2. Transformation of equations in class 𝐸2,𝑀

In the present section we consider Euler-Darboux transformations of special type in the class
of equations 𝐸2,𝑀 . We consider the equation

𝐹𝐷2
𝑥𝑢 + 𝐺𝐷𝑥𝑢 + 𝐻𝑢 = 𝐵𝑢 + 𝑓, (14)

where 𝐹 , 𝐺, 𝐻 are smooth functions of 𝑥, 𝑓 is a generalized function, and 𝐵 is a linear operator
given by (3).
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Theorem 2. The Euler-Darboux transformation given by identity (8) maps generalized so-
lutions to equation (14) into generalized solution to the equation

𝐹𝐷2
𝑥𝑣 + 𝐺𝐷𝑥𝑣 + 𝐻𝑣 = 𝐵𝑣 + 𝑓1, (15)

where

𝐺1 = 𝐺 + 𝐹 ′ + 2𝐹
𝑟′

𝑟
, (16)

𝐻1 = 𝐻 +
(𝐹𝑟′ + 𝐺𝑟)′

𝑟
+ 𝐹 ′(lnℎ)′ + 2𝐹 (lnℎ)′′, (17)

𝑓1 =
1

𝑟
(𝐷𝑥𝑓 − ℎ′

ℎ
𝑓), (18)

while function ℎ(𝑥) solves the ordinary differential equation

𝐹ℎ𝑥𝑥 + 𝐺ℎ𝑥 + (𝐻 + 𝑐)ℎ = 0, where 𝑐 ∈ R1. (19)

Proof. We introduce the notations

𝑣 = 𝑅𝑢 =
1

𝑟
(𝐷𝑥𝑢 + 𝑠𝑢), where 𝑠 = −ℎ′/ℎ,

𝐴𝑢 = 𝐹𝐷2
𝑥𝑢 + 𝐺𝐷𝑥𝑢 + 𝐻𝑢, 𝐴1𝑢 = 𝐹1𝐷

2
𝑥𝑢 + 𝐺1𝐷𝑥𝑢 + 𝐻1𝑢.

Then original equations (14) and (15) cast into the form 𝐴𝑢 = 𝐵𝑢 + 𝑓 and 𝐴1𝑣 = 𝐵𝑣 + 𝑓1. In
order to prove the theorem, we need to show that

(𝐴* −𝐵*)𝑅*𝜙 = 𝑅*(𝐴*
1 −𝐵*)𝜙. (20)

Here the star indicates the formal adjoint operator defined for operators 𝐴 and 𝐵 as follows:

𝐴*𝜙 =
𝐾∑︁
𝑖=0

(−1)𝑖𝐷𝑖
𝑥(𝑎𝑖(𝑥)𝜙), 𝐵*𝜙 =

𝑀∑︁
|𝛼|>0

(−1)|𝛼|𝐷𝛼
𝑦 (𝑏𝛼(𝑦)𝜙).

Indeed,

(𝑅(𝐴−𝐵)𝑢, 𝜙) =(𝑢, (𝐴* −𝐵*)𝑅*𝜙) = (𝑢,𝑅*(𝐴*
1 −𝐵*)𝜙)

=(𝑅𝑢, (𝐴*
1 −𝐵*)𝜙) = (𝑣, (𝐴*

1 −𝐵*)𝜙) = ((𝐴1 −𝐵)𝑣, 𝜙) = (𝑅𝑓, 𝜙).
(21)

Here we have employed the commutation of operators 𝐵 and 𝑅 and as one can see easily, it
implies 𝐵*𝑅*𝜙 = 𝑅*𝐵*𝜙. It remains to show that 𝐴*𝑅*𝜙 = 𝑅*𝐴*

1𝜙. We have

𝐴*𝑅*𝜙 = 𝐷2
𝑥

[︁
𝐹 (−𝐷𝑥(𝜙/𝑟) +

𝑠

𝑟
𝜙)

]︁
−𝐷𝑥

[︁
𝐺(−𝐷𝑥(𝜙/𝑟) +

𝑠

𝑟
𝜙)

]︁
+ 𝐻

[︁
−𝐷𝑥(𝜙/𝑟) +

𝑠

𝑟
𝜙
]︁
,

𝑅*𝐴*
1𝜙 = −𝐷𝑥

[︂
1

𝑟
(𝐷2

𝑥(𝐹1𝜙) −𝐷𝑥(𝐺1𝜙) + 𝐻1𝜙)

]︂
+

𝑠

𝑟
[𝐷2

𝑥(𝐹1𝜙) −𝐷𝑥(𝐺1𝜙) + 𝐻1𝜙].

The left hand side of the equation 𝐴*𝑅*𝜙−𝑅*𝐴*
1𝜙 = 0 is a polynomial w.r.t. 𝜙𝑥𝑥𝑥, 𝜙𝑥𝑥, 𝜙𝑥, 𝜙.

The coefficients at these quantities must vanish. Equating the coefficients at 𝜙𝑥𝑥𝑥, 𝜙𝑥𝑥, we
obtain respectively 𝐹1 = 𝐹 and 𝐺1 = 𝐺 + 𝐹 ′ + 2𝐹 (𝑟′/𝑟). Substituting 𝐹1 and 𝐺1 into the
coefficient at 𝜙𝑥, we arrive at (17).

Equating the coefficient at 𝜙 to zero, in view of found 𝐹1, 𝐺1, and 𝐻1 we obtain

𝐹𝑠′′ + (𝐹 ′ − 2𝐹𝑠 + 𝐺)𝑠′ − 𝐹 ′𝑠2 + 𝐺′𝑠−𝐻 ′ = (𝐹𝑠′ + 𝐺𝑠− 𝐹𝑠2 −𝐻)′ = 0. (22)

As 𝑠 = −ℎ′/ℎ, this identity becomes (−𝐹ℎ′′/ℎ−𝐺ℎ′/ℎ−𝐻)′ = 0 that implies equation (19).

Let us consider higher Euler-Darboux transformations. If we know 𝑘 solutions ℎ1, . . . , ℎ𝑘 to
equation (19) for different 𝑐1, . . . , 𝑐𝑘, we can construct Euler-Darboux transformation of order
𝑘.
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Theorem 3. Let ℎ1, . . . , ℎ𝑘 be solutions to equation (19) associated with different constants
𝑐1, . . . , 𝑐𝑘. Then transformation (13) maps generalized solutions to equation (14) into the
generalized solutions to equation

𝐹𝐷2
𝑥𝑢𝑘 + 𝐺𝑘𝐷𝑥𝑢𝑘 + 𝐻𝑘𝑢𝑘 = 𝐵𝑢𝑘 + 𝑓𝑘, (23)

At that, the coefficients and function 𝑓𝑘 are given by the formulae

𝐺𝑘 = 𝐺 + 𝑘𝐹 ′, 𝐻𝑘 = 𝐻 + 𝑘𝐺′ +
𝑘(𝑘 − 1)

2
𝐹 ′′ + 𝐹 ′(ln𝑊 )′ + 2𝐹 (ln𝑊 )′′ (24)

and

𝑓𝑘 = ℳ𝑘𝑓 =
𝑊 (ℎ1, . . . , ℎ𝑘, 𝑓)

𝑊 (ℎ1, . . . , ℎ𝑘)
. (25)

Here 𝑊 is the Wronskian for functions ℎ1, . . . , ℎ𝑘.

Proof. We employ the results of Theorem 2. The expression for 𝐺𝑘 is obtain by induction by
applying formula (16) for 𝑟 = 1. Employing (17) and construction (11) of functions 𝑝1, . . . , 𝑝𝑘,
it is easy to see that the inductive construction of coefficients 𝐻𝑘 leads us to the formulae

𝐻𝑘 = 𝐻 + 𝑘𝐺′ +
𝑘(𝑘 − 1)

2
𝐹 ′′ + 𝐹 ′(ln 𝑝1 . . . 𝑝𝑘)′ + 2𝐹 (ln 𝑝1 . . . 𝑝𝑘)′′. (26)

Let us find the product 𝑝1 . . . 𝑝𝑘. Since in accordance (11) and (13) the identities

𝑝𝑖+1 = ℳ𝑖ℎ𝑖+1 =
𝑊 (ℎ1, . . . , ℎ𝑖, ℎ𝑖+1)

𝑊 (ℎ1, . . . , ℎ𝑖)

hold true, we have the identities

𝑝1 . . . 𝑝𝑘 = ℎ1
𝑊 (ℎ1, ℎ2)

ℎ1

. . .
𝑊 (ℎ1, . . . , ℎ𝑘)

𝑊 (ℎ1, . . . , ℎ𝑘−1)
= 𝑊 (ℎ1, . . . , ℎ𝑘)

that implies formula (24) for coefficient 𝐻𝑘. The validity of the formula for 𝑓𝑘 is obvious thanks
to (13) and (18).

3. Construction of fundamental solutions

Let us construct fundamental solutions to Klein-Gordon-Fock equations (KGF) and to
Schrödinger equation with variable coefficients. For the sake of simplicity we restrict our-
selves by one-dimensional spatial problem. The generalized formulation of the Cauchy problem
employed below was discussed in details in [1]. KGF equation reads as [4]

𝐷2
𝑡 𝑢 + 𝑚2𝑢 = 𝑎2𝐷2

𝑥𝑢, where 𝑎,𝑚 ∈ R1. (27)

In order to construct the fundamental solution, we consider the generalized Cauchy problem
for equation (27) with source [1]

𝐷2
𝑡 𝑢 + 𝑚2𝑢 = 𝑎2𝐷2

𝑥𝑢 + 𝑓(𝑥, 𝑡), (28)

where function 𝑓(𝑥, 𝑡) reads as

𝑓 = 𝑢0(𝑥) · 𝛿′(𝑡) + 𝑢1(𝑥) · 𝛿(𝑡) (29)

Here · stands for the Cartesian product of functions.
Under Euler-Darboux transformation, by Theorem 2 equation (28) is mapped into the equa-

tion

𝐷2
𝑡 𝑣 + 𝑚2𝑣 = 𝑎2𝐷2

𝑥𝑣 + 𝐻1(𝑥)𝑣 + 𝑓1 (30)

with

𝑓1 = 𝐷𝑥𝑓 − ℎ′

ℎ
𝑓. (31)
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Function 𝐻1(𝑥) is determined by formula (17). In order to the solution to Cauchy problem for
equation (28) to be mapped into the fundamental solution of equation (30), we suppose the
following condition

𝐷𝑥𝑓 − ℎ′

ℎ
𝑓 = 𝛿(𝑥− 𝑦) · 𝛿(𝑡).

These conditions can be rewritten as ordinary differential equations for functions 𝑢0 and 𝑢1

𝑢′
0 −

ℎ′

ℎ
𝑢0 = 0, (32)

𝑢′
1 −

ℎ′

ℎ
𝑢1 = 𝛿(𝑥− 𝑦). (33)

Solutions to equations (32) and (33) are chosen as follows (for the sake of simplicity of
fundamental solution)

𝑢0 = 0, (34)

𝑢1(𝑥, 𝑦) =
𝜃(𝑥− 𝑦)ℎ(𝑥)

ℎ(𝑦)
, (35)

where 𝜃(𝑥−𝑦) is the Heaviside theta-function. The solution to the generalized Cauchy problem
for equation (28) under the choice 𝑢0 = 0 is the convolution of the fundamental solution to
equation (27) and function 𝑢1. Fundamental solution to KGF equation can be chosen as [1]

𝐸(𝑥, 𝑦, 𝑡, 𝜏) =
1

2𝑎
𝜃(𝑎𝑡− |𝑥− 𝑦|)𝐽0

(︁𝑚
𝑎

√︀
𝑎2(𝑡− 𝜏)2 − (𝑥− 𝑦)2

)︁
, (36)

where 𝐽0 is the Bessel function. The solution to the generalized Cauchy problem is

𝑢(𝑥, 𝑡) =

∞∫︁
−∞

𝑢1(𝜉)𝐸(𝑥, 𝜉, 𝑡, 0)𝑑𝜉. (37)

Omitting intermediate calculation, we write down the solution to the generalized Cauchy prob-
lem for KGF equation:

𝑢(𝑥, 𝑦, 𝑡) =
1

2𝑎ℎ(𝑦)

𝑎𝑡∫︁
−𝑎𝑡

𝜃(𝑥− 𝑦 − 𝑧)ℎ(𝑥− 𝑧)𝐽0

(︁𝑚
𝑎

√
𝑎2𝑡2 − 𝑧2

)︁
𝑑𝑧. (38)

We find fundamental solution to equation (30) by the formula

𝐸1(𝑥, 𝑦, 𝑡) = 𝐷𝑥𝑢(𝑥, 𝑦, 𝑡) − ℎ′(𝑥)

ℎ(𝑥)
𝑢(𝑥, 𝑦, 𝑡). (39)

By simple calculation we get

𝐸1(𝑥, 𝑦, 𝑡) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0, if 𝑥− 𝑦 < −𝑎𝑡,
1
2𝑎
𝐽0(

𝑚
𝑎

√︀
𝑎2𝑡2 − (𝑥− 𝑦)2)+

1
2𝑎ℎ(𝑦)

𝑥−𝑦∫︀
−𝑎𝑡

(ℎ′(𝑥− 𝑧) − ℎ′(𝑥)
ℎ(𝑥)

ℎ(𝑥− 𝑧))𝐽0(
𝑚
𝑎

√
𝑎2𝑡2 − 𝑧2)𝑑𝑧, if −𝑎𝑡 6 𝑥− 𝑦 6 𝑎𝑡,

1
2𝑎ℎ(𝑦)

𝑎𝑡∫︀
−𝑎𝑡

(ℎ′(𝑥− 𝑧) − ℎ′(𝑥)
ℎ(𝑥)

ℎ(𝑥− 𝑧))𝐽0(
𝑚
𝑎

√
𝑎2𝑡2 − 𝑧2)𝑑𝑧, if 𝑥− 𝑦 > 𝑎𝑡.

In these formulae the prime denotes the differentiation w.r.t. the complex argument written
in the brackets. The provided formulae can be easily generalized for higher Euler-Darboux
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transformations. In order to do it, we need to take function 𝑢1 satisfying equation

𝑊 (ℎ1, . . . , ℎ𝑘, 𝑢1)

𝑊 (ℎ1, . . . , ℎ𝑘)
= 𝛿(𝑥− 𝑦). (40)

The solution to this equation is given by the formula

𝑢1(𝑥, 𝑦) =
𝜃(𝑥− 𝑦)

𝑊𝑦(ℎ1, . . . , ℎ𝑘)

𝑘∑︁
𝑖=1

𝑊𝑦(ℎ1, . . . , ℎ𝑖−1, ℎ𝑖+1, . . . , ℎ𝑘)ℎ𝑖(𝑥). (41)

Here we have introduced the notation 𝑊𝑦(ℎ1, . . . , ℎ𝑘) = 𝑊 (ℎ1(𝑦), . . . , ℎ𝑘(𝑦)). The coefficients
of the transformed equation are determined by Theorem 3, see formula (24).

The construction of the fundamental solution to Schrödinger equation with variable coeffi-
cients can be done in the same way as for KGF equation. Beginning with the equation

𝑖𝐷𝑡𝑢 = −𝐷2
𝑥𝑢, (42)

we consider the generalized Cauchy problem with the following source

𝑖𝐷𝑡𝑢 = −𝐷2
𝑥𝑢 + 𝑢0(𝑥) · 𝛿(𝑡). (43)

We assume that in accordance with formula (18) of Theorem 2 function 𝑢0 is transformed into
Dirac delta function. It holds true, if the mentioned function satisfies the following equation

𝑢′
0 −

ℎ′

ℎ
𝑢0 = 𝛿(𝑥− 𝑦), (44)

whose solution is determined by formula (35). Fundamental solution to equation (42) is [1]

𝐸(𝑥, 𝜉, 𝑡) =
𝜃(𝑡)

2
√
𝜋𝑡

exp

(︂
𝑖(𝑥− 𝜉)2

4𝑡
− 𝑖𝜋

4

)︂
. (45)

Then the solution to the generalized Cauchy problem can be written as the convolution

𝑢(𝑥, 𝑡) =
𝜃(𝑡)

2
√
𝜋𝑡

𝑒−𝑖𝜋/4

ℎ(𝑦)

∞∫︁
−∞

𝜃(𝜉 − 𝑦)ℎ(𝜉) exp

(︂
𝑖(𝑥− 𝜉)2

4𝑡

)︂
𝑑𝜉. (46)

The solution to generalized Cauchy problem for equation (43) is transformed into the funda-
mental solution of the equation

𝑖𝐷𝑡𝑣 = −𝐷2
𝑥𝑣 + 𝐻1(𝑥)𝑣 (47)

by formula (39). As in the case of KGF equation, coefficient 𝐻1(𝑥) is given by formula (17).
Let us write down the solution to transformed equation (45)

𝐸1(𝑥, 𝑦, 𝑡) =
𝜃(𝑡)

2
√
𝜋𝑡

𝑒−𝑖𝜋/4

ℎ(𝑦)

∞∫︁
𝑦

ℎ(𝜉)

[︂
𝑖
𝑥− 𝜉

2𝑡
− ℎ′(𝑥)

ℎ(𝑥)

]︂
exp

(︂
𝑖(𝑥− 𝜉)2

4𝑡

)︂
𝑑𝜉. (48)

It is obvious that the latter formula determines the fundamental solution only in the case of
existence of appropriate integrals.

Similar to KGF equation, the construction of the fundamental solution for Schrödinger equa-
tion is also generalized for higher Euler-Darboux transformations.

The author expresses his deep gratitude to O.V. Kaptsov for the formulation of the problem
and attention to the work.
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