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GENERALIZED SOLUTIONS AND
EULER-DARBOUX TRANSFORMATIONS

I.V. VEREVKIN

Abstract. We introduce Euler-Darboux transformation for non-homogeneous differential
equations with the right-hand side being a generalized function. As an example, we con-
struct the fundamental solutions for Klein-Gordon-Fock and Schrédinger equations with
variable coefficients describing a particle in external scalar field.
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1. EULER-DARBOUX TRANSFORM OF INHOMOGENEOUS EQUATIONS AND GENERALIZED
SOLUTIONS

We consider the linear inhomogeneous differential equation

Lu=Au+ Bu = f, (1)
where A is a differential operator in one variable x:
K
A=) ai(x)D, (2)
i=0
B is the differential operator in variables v, ..., y, reading as

B=3" baly)D5, 3)

laf>0

and f(z,41,...,Yn) is a generalized function. In what follows we make use of the standard
theory of generalized functions [I] and we introduce the notations: a = (a,...,q,) is an

integer multi-index, D! = i, DY = o are generalized derivatives. For the
* oxt’ Y Y12t ... Oy,

classical functions we shall also employ the notations of the derivatives (also generalized in

the general situation) obvious by the context: ', v,. Functions a;(x) and b,(y) are assumed

to be smooth in corresponding domains. Moreover, we assume that all functions multiplying

generalized functions are infinitely differentiable. Following work [2], we denote by Ek s the

class of equations (1).

If h(z), g(y) are classical solutions to the equations
Ah = ch,
Bg+cg=0, where ¢ € R',

(4)
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then function u; = gh solves homogeneous equation (1). Function u; generates a transformation
of equation (1).

Theorem 1. Class of equations Ex y; possesses the following properties:
1. If v is a smooth function reading as v = p(x)q(y) # 0, then the transformation
u—v=u/ly
maps generalized solutions of equation (1) into generalized solutions of the equation
Lv =vL(y)/y + A + By = f/v,

where
K

M
A=Y d@D,  Bi=Y b0

=1 la|>1
As~y =uy #0, equation Lv = f/7y reads as
Liv=Av+ Byv=f/y. (5)

2. The transformation v — w = v, maps generalized solutions to equation (5) into generalized
solution of the equation

K M
Low =Y (D,(a})Di ™ w + a} Diw) + Y bLDgw = D,(f /). (6)
i=1 |a|>1

Proof. We observe that product yv, where v is a generalized function, satisfies Leibnitz formula
for the derivative of a product. Taking this fact the into consideration as well as the identity
(Lu, p) = (L(yv), ¢) implied by the identity (u,p) = (yv,¢), we obtain

Lu = L(yv) = vL(y) + Av+ Bv = f, (7)
where
N K ' _ Mo
Av = Zaz<x777 Yzs - - .)Dzﬂ% Bv = Z ba(y7777ya e '>D;U’
i=0 la[>1

and ¢ is a function in the space of test functions. Coefficients a; can depend only on z, v, and
the derivatives of v w.r.t. x, while coefficients b, can depend only on y, v and its derivatives

w.r.t. yi,...,Y,. Function 7 and its derivatives can be involved in coefficients a;, b, only
linearly:.
We multiply (7) by 1/ to obtain the equation
~ 1
Lv = aL(v)v + A+ Biv = f/r,
where operators A;, B; read as
K Mo
Al :Zaz(l‘7papxa)D;7 Bl = Zba(y7q7Qy"")D(yX‘
i=0 laf>1

As v = wuy, we obtain equation (5). In order to prove second property, it is sufficient to
differentiate (5) w.r.t.  and to introduce a new generalized function w = D,v. As a result, we
arrive at equation (6).

We observe that all the equations Lu = f, Lyv = f/v, Ly = D,(f/7) belong to the same
class Ex pr. O
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Corollary. Let h be a non-trivial solution to equation (4), r be a smooth function of x. Then

the transformation
1 D h (8)
v=—|D,u——u
r h

maps generalized solutions of equation (1) into generalized solutions of the same class Er .

Indeed, the transformation
o= )it () )
Uy

is a combination of the transformations considered in Theorem 1 and hence, it preserves the
class of the equation. Here p, ¢ are smooth arbitrary functions, u; is a solution to equation
(1) obtained by the separation of variables u; = h(x)g(y). If we let ¢ = g, p = h/r, by (9) we
obtain (8).

Following work [2], let us prove

Lemma 1. The transformation
W(h, ..., h,u)
W(hla ) hk)

maps a generalized solution to equation (1) into a generalized solution to equation of the same
class EK,M-

U = Mku = (10)

Despite the proof of the lemma given in [2] works for also for the case of generalized solution,
we provide it here since it is employed in the proof of Theorem 3.
In order to make sure that Lemma 1 is valid, we observe that if we know solutions hg,.. .,

hi to equation (4) for different ¢y, ..., ¢, as it was shown in [2], we can construct an operator
of kth order being a superposition of first Euler-Darboux operators £, = hD,(1/h) as well
as the associated transformation acting on Eg 5. Indeed, let hy, ..., hy be smooth linearly
independent functions of x. We construct a sequence of functions and operators
P1 = hl, P2 :'Cplh% ... DN :EPN—I ...Eplh]v, (11)
Ml :'Cpla M2 :'Cngb MN:'CpNMN—l-
It follows from the construction of operators M, that functions hy, ..., hy satisfy kth order

differential equation
Mih = 0. (12)

Thus, they make a basis of solutions to equation (12). Therefore, the action of operator My on
an arbitrary function is give by [3]

W(hl, ce ,hk,u)
W(h17' . 7hk> '

It remains to take solutions to equation (4) for different hy, ..., hg.

Mpu = D’;u + ak,lD’;’lu + ... 4+ agu =

(13)

2. TRANSFORMATION OF EQUATIONS IN CLASS Fjs s

In the present section we consider Euler-Darboux transformations of special type in the class
of equations Ej ;. We consider the equation

FD2u+ GD,u+ Hu = Bu + f, (14)

where F', G, H are smooth functions of x, f is a generalized function, and B is a linear operator
given by (3).
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Theorem 2. The Euler-Darboux transformation given by identity (8) maps generalized so-
lutions to equation (14) into generalized solution to the equation

FD>v+ GDyv+ Hv = Bv + fi, (15)
where
/
G :G+F’+2F%, (16)
/ /
=+ I pnny £ 2Ry (17)
T
1 B
=—(D,f — —1), 18
fi=—(Def =) (19)
while function h(z) solves the ordinary differential equation
Fhyy + Ghy + (H +c)h =0, where c€ R (19)

Proof. We introduce the notations

1

-
Au = FD?Uu +GD,u+ Hu, Ayu= FlDiu + G1D u+ Hyu.

Then original equations (14) and (15) cast into the form Au = Bu+ f and Ajv = Bv + f;. In

order to prove the theorem, we need to show that

v=Ru=—(Dyu+ su), where s=—h'/h,

(A* — B*)R*¢ = R*(A] — B")e. (20)
Here the star indicates the formal adjoint operator defined for operators A and B as follows:
K M
Ao = (=)' Di(ai(x)p),  Bo= Y (=1)"Dg(ba(y)p).
i=0 >0

Indeed,
(R(A = B)u, @) =(u, (A" = B )R*¢) = (u, R*(A] — B")p)
=(Ru, (AT = B")¢) = (v, (A1 = B")p) = (A1 — B)v,¢) = (Rf, ).
Here we have employed the commutation of operators B and R and as one can see easily, it

implies B*R*¢p = R*B*p. It remains to show that A*R*¢ = R*Ajp. We have

A*R*¢ = D2 [F(—Dm(SO/T) + igo)} - D, [G(—Dx((p/r) + itp)} +H [—Dm(go/r) + ;Qo ,

(21)

1
R*Ajp =D, {;(Di(ﬂs@) — D,(Grp) + Hﬂﬂ)} + ;[D?c(FISO) — D.(G1p) + Hi¢).

The left hand side of the equation A*R*p — R*Ajp = 0 is a polynomial w.r.t. ©urz, Pz, Pu, P-
The coefficients at these quantities must vanish. Equating the coefficients at ¢©,p0, ©re, We
obtain respectively Fy = F and G; = G + F' + 2F(r'/r). Substituting F; and G; into the
coeflicient at ¢,, we arrive at (17).

Equating the coefficient at ¢ to zero, in view of found Fj, G, and H; we obtain

Fs'+ (F' —2Fs+G)s' — F's*+ G's — H = (Fs' + Gs — Fs* — H) = 0. (22)
As s = —I'/h, this identity becomes (—Fh"/h—Gh'/h—H)" = ( that implies equation (19). [

Let us consider higher Euler-Darboux transformations. If we know £ solutions hq, ..., hi to

equation (19) for different ¢y, ..., ¢, we can construct Euler-Darboux transformation of order
k.
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Theorem 3. Let hy, ..., hy be solutions to equation (19) associated with different constants
¢1, ..., ¢x. Then transformation (13) maps generalized solutions to equation (14) into the
generalized solutions to equation

FDiuk + G Dyup + Hyu, = Buy + fi, (23)
At that, the coefficients and function fi are given by the formulae
k(k—1
Gy =G+ kF' H,=H+ kG + %F” + F'(InW) +2F(InW)" (24)
and W e f)
M _ 1y ooy Ik, ] 25
Te= Ml = G ) (25)
Here W is the Wronskian for functions hy, ..., hy.

Proof. We employ the results of Theorem 2. The expression for GG is obtain by induction by
applying formula (16) for » = 1. Employing (17) and construction (11) of functions py, ..., px,
it is easy to see that the inductive construction of coefficients Hj, leads us to the formulae
k(k—1)

2
Let us find the product p; ...pg. Since in accordance (11) and (13) the identities
W(hb cety hia hiJrl)

W(hy, ..., h;)

H,=H+ kG + F"+ F'(lnpy...px) +2F(Inpy...pp)". (26)

Div1 = Mihi—H =

hold true, we have the identities

W (hy, hs) W(hy, ..., hg)

.pr=nh
P1---Dk T Wi(hy, ..., hg_1)

that implies formula (24) for coefficient Hy. The validity of the formula for fj is obvious thanks
to (13) and (18). O

= W(h1a7h/€)

3. CONSTRUCTION OF FUNDAMENTAL SOLUTIONS

Let us construct fundamental solutions to Klein-Gordon-Fock equations (KGF) and to
Schrodinger equation with variable coefficients. For the sake of simplicity we restrict our-
selves by one-dimensional spatial problem. The generalized formulation of the Cauchy problem
employed below was discussed in details in [I]. KGF equation reads as [4]

D?u+m?u = a®*D*u, where a,m € R (27)
In order to construct the fundamental solution, we consider the generalized Cauchy problem
for equation (27) with source [1]
D?u+m*u = a®>D>u + f(x,t), (28)
where function f(z,t) reads as
f=uo(x) - 8'(t) + ua(x) - 5(t) (29)
Here - stands for the Cartesian product of functions.
Under Euler-Darboux transformation, by Theorem 2 equation (28) is mapped into the equa-
tion
Div+m?*v = a*D2v + Hi(z)v + fi (30)
with
h/
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Function H;(x) is determined by formula (17). In order to the solution to Cauchy problem for
equation (28) to be mapped into the fundamental solution of equation (30), we suppose the
following condition

Dof = = 5(x — ) i),

These conditions can be rewritten as ordinary differential equations for functions uy and wu,

h/
, W
U= = iz —y). (33)

Solutions to equations (32) and (33) are chosen as follows (for the sake of simplicity of
fundamental solution)

Uy = O, (34)
0(x — y)hia)
Wy (35)

where 6(z —y) is the Heaviside theta-function. The solution to the generalized Cauchy problem
for equation (28) under the choice uy = 0 is the convolution of the fundamental solution to
equation (27) and function u;. Fundamental solution to KGF equation can be chosen as [I]

Ul(x7y> =

Er,y.t,7) = %9(@ — [ =y (5 Va2 =77 = (& =) (36)

where Jj is the Bessel function. The solution to the generalized Cauchy problem is

o) = [ w(© B¢ 0)de (37)
Omitting intermediate calculation, we write down the solution to the generalized Cauchy prob-
lem for KGF equation:

at

u(z,y,t) = Wl(y) / O(x —y— 2)h(x — 2)Jo <%m> dz. (38)

—at

We find fundamental solution to equation (30) by the formula

Ey(z,y,t) = Dyu(x,y,t) — Zg))u(x,y, t). (39)

By simple calculation we get

(0, if v —y < —at,
L2 PP = (5= yP)+
z—y ,
Ey(x,y,t) = 4 Mi(y) [ (W(x—=z)— };L((;))h(m — 2))Jo(BVa*t? — 2%)dz, if —at <z —y < at,

—at
at

2ai1(y) f (h/(gj - Z) - };L/((:,))h(m - Z))Jo(%\/ a?t? — zz)dz, if x — y > at.

\ —at

In these formulae the prime denotes the differentiation w.r.t. the complex argument written
in the brackets. The provided formulae can be easily generalized for higher Euler-Darboux
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transformations. In order to do it, we need to take function u; satisfying equation

W(hl, ey hk,ul)
W(hh R hk’)

The solution to this equation is given by the formula

=d(z —y). (40)

0(x
Wy(hh

k
ul(xvy) - y)hk)ZWy(hla"'7hi—1>hi+17'"ath)hi(x)' (41)
e —

Here we have introduced the notation Wy (hy, ..., k) = W(hi(y), ..., hi(y)). The coefficients
of the transformed equation are determined by Theorem 3, see formula (24).

The construction of the fundamental solution to Schrodinger equation with variable coeffi-
cients can be done in the same way as for KGF equation. Beginning with the equation

iDyu = —D?u, (42)
we consider the generalized Cauchy problem with the following source
iDyu = —D>u + ug(z) - §(t). (43)

We assume that in accordance with formula (18) of Theorem 2 function wy is transformed into
Dirac delta function. It holds true, if the mentioned function satisfies the following equation

hl
up — 7, %0 = o(z —y), (44)
whose solution is determined by formula (35). Fundamental solution to equation (42) is [1]
0(t) i(x—&)? im
Bz, 6,1) = —L S VAU 45
(r.600) = ypep (MR (45)

Then the solution to the generalized Cauchy problem can be written as the convolution

L) e T iz — €
) = L [ oe—um@es (T) de. (46)

—00

The solution to generalized Cauchy problem for equation (43) is transformed into the funda-
mental solution of the equation

iDw = —D2v + Hy(x)v (47)

by formula (39). As in the case of KGF equation, coefficient H;(z) is given by formula (17).
Let us write down the solution to transformed equation (45)

ey L L = N e P

Y

It is obvious that the latter formula determines the fundamental solution only in the case of
existence of appropriate integrals.

Similar to KGF equation, the construction of the fundamental solution for Schrodinger equa-
tion is also generalized for higher Euler-Darboux transformations.

The author expresses his deep gratitude to O.V. Kaptsov for the formulation of the problem
and attention to the work.
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