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A CLOSEDNESS OF SET OF DIRICHLET SERIES SUMS

A.S. KRIVOSHEYEV, O.A. KRIVOSHEYEVA

Abstract. In the work we consider Dirichlet series. We study the problem of closedness for
the set of the sums for such series in the space of functions holomorphic in a convex domain
of a complex plane with a topology of uniform convergence on compact subsets. We obtain
necessary and sufficient conditions under those each function in the closure of a linear span
of exponents with positive indices is represented by a Dirichlet series. These conditions can
be formulated only in terms of geometric characteristics of an index sequence and of the
convex domain.
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1. Introduction

Let Λ = {λk}∞k=1 be an unbounded strictly increasing sequence of positive numbers. In the
work we consider the Dirichlet series

∞
∑

k=1

dk exp(λkz). (1)

It is known (see, for instance, [1, Ch. II, Sect. 1, Subsect. 4]) that under certain natural
condition for the exponents λk, series (1) converges absolutely and uniformly on the compact
sets in the half-plane {z ∈ C : Re z < γ} to an analytic function and diverges in the half-plane
{z ∈ C : Re z > γ}. The number γ called convergence abscissa is calculated by a formula being
an analogue for Cauchy-Hadamard formula for power series (see, for instance, [1, Ch. II, Sect.
1, Subsect. 4, Th. 2.1.2]). We also note the expansion of a function into the Dirichlet series is
always unique (see, for instance, [1, Ch. II, Sect. 1, Subsect. 3]).

Let D be a convex domain in C and H(D) stand for the space of analytic in D function with
the topology of uniform convergence on compact subsets in D. The aim of this work is to find
out the conditions under those the set of the sums of series (1), whose convergence half-planes
contain domain D, is a closed subset in space H(D).

This set contains a linear span of the system E = {exp(λkz)}∞k=1 and it is a part of the
subspace W (Λ, D), which a closure of linear span E in H(D). Subspace W (Λ, D) is closed
and invariant w.r.t. the differentiation operator. System E is the set of eigenfunctions for
this operator in W (Λ, D) and sequence Λ is its spectrum. The definition of space W (Λ, D)
implies immediately that it admits the spectral synthesis, i.e., each of its functions is a limit
of linear combinations of the eigenfunctions. It is easy to see that the closedness of sums
of series (1) in H(D) is equivalent to the fact that each function in W (Λ, D) is represented
by series (1) which converges uniformly on compact subsets of domain D. If W (Λ, D) is
nontrivial (i.e., system E is incomplete in H(D)) and the latter holds true, then one says
that the fundamental principle holds true in subspace W (Λ, D). The dual problem to that of
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fundamental principle in a nontrivial closed invariant subspace of H(D) admitting the spectral
synthesis is the interpolation problem in the space of entire functions of exponential kind whose
adjoint diagrams lie in domain D. The studies of both the problems made first independently
have a rich history. The survey of main results obtained within these studies was presented in
works [2] and [3]. A criterion of the fundamental principle (and for the interpolation as well) in
arbitrary nontrivial closed invariant subspaces admitting spectral synthesis was obtain in works
[3] and [4]. However, this criterion is formulated in terms of existence of certain special family
of entire function vanishing at the points λk, k ≥ 1, and obeying appropriate lower estimates.
In the general case, especially for unbounded domains D, there is still an open question on the
conditions for sequence Λ and domain D guaranteeing the existence of such family.

In the present work we obtain the complete solution for the problem on closedness of sums
of series (1) for an aribtrary convex domain D and, in particular, for the fundamental principle
problems in the case of positive spectrum. In contrast to work [3], we employ simple geometric
characteristics of sequence Λ.

In the second section we collect auxiliary results. In particular, we construct the aforemen-
tioned sequences of entire functions (Lemmata 7, 9) as well as an entire function in W (Λ,C)
which can not be represented by series (1) in any open subset (Lemma 3).

The main results of the work are given in the third section (Theorems 1-4). In particular, we
prove that the set of the sums of the Dirichlet series converging in a given half-plane is closed
if and only if SΛ > −∞. Quantity SΛ was introduced in work [3] (its definition is given in the
second section). It is similar to the classical Bernstein condensation index (see, for instance,
[1, Ch. II, Sect. 6, Subsect. 2]) but in contrast to the latter, it is effective for each complex
sequence.

2. Preliminary results

We shall make use of some results from the theory of entire functions of exponential type,
i.e., of the functions f satisfying the estimate: ln |f(z)| 6 A + B|z|, z ∈ C, where A,B > 0
depend on f . As the upper and lower indicators of f (subharmonic function ln |f |), we call
respectively the functions

hf (λ) = lim
t→∞

ln |f(tλ)|
t

, hf(λ) = lim
δ→0

lim
t→∞

1

πδ2

∫

B(λ,δ)

ln |f(tz)|
t

dxdy, λ ∈ C,

where z = x+ iy. By these definitions and Hartogs theorem on the upper limit of a family of
subharmonic functions, it is easy to obtain the inequality hf(λ) 6 hf(λ), λ ∈ C. We say (cf.
[5, Ch. II]) that f has (completely) regular growth if

hf (λ) = lim
t→∞,t/∈E

ln |f(tλ)|
t

, λ ∈ C,

where E is a set of zero relative measure on the ray (0,+∞), i.e., the Lebesgue measure of its
intersection with the interval (0, r) is infinitesimal w.r.t. r as r → +∞. There is a series of
other equivalent definitions of regular growth. Let us provide one of them. A function f (cf.
[6, Ch. 4, Def. 4.1]) is called function of regular growth if hf (λ) = hf(λ), λ ∈ C.

The upper indicator hf is a convex function positive homogeneous of order one which coin-
cides with the support function of a convex compact set K (more precisely, complex conjugate
with K compact set) called adjoint diagram of f (see, for instance, [7, Ch. I, Sect. 5, Th. 5.4
(Pólya)]),

hf (λ) = HK(λ) = sup
z∈K

Re (λz), λ ∈ C.

Let Λ = {λk}∞k=1 be a sequence of complex numbers with the unique limiting point ∞. By
the symbol n(ϕ1, ϕ2, r,Λ) we denote the number of points λk lying in the sector {λ = teiϕ : ϕ ∈
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(ϕ1, ϕ2), t ∈ (0, r)}. We say (see [5, Ch. II, Sect. 1]) that Λ has an angular density (as of order
one) if for each ϕ1, ϕ2 except possible countable set there exists the limit

τ(ϕ1, ϕ2,Λ) = lim
r→∞

n(ϕ1, ϕ2, r,Λ)

r
.

Set Λ is called well-distributed if it has an angular density and there exists

lim
r→∞

∑

|λk|<r

1

λk
.

According to Theorem 4 in Chapter III in book [5], a function f has a regular growth if and only
if its zero set (counting multiplicities) is well-distributed. At that, if K is the adjoint diagram
for f , then except possible a countable number of values ϕ1, ϕ2, the identity

τ(ϕ1, ϕ2,Λ) =
1

2π
s(ϕ1, ϕ2, K) (2)

holds true [5, Ch. II, Sect. 1, Formula (2.07)], where s(ϕ1, ϕ2, K) is the length of the arc on
boundary ∂K between the support points z(ϕ1) ∈ ∂K and z(ϕ2) ∈ ∂K of respectively support
lines l(ϕ1) = {z : Re (zeiϕ1) = HK(e

iϕ1)} and l(ϕ2) = {z : Re (zeiϕ2) = HK(e
iϕ2)}. Except

possible countable set of values ϕ (associated with straight parts of the boundary), support line
l(ϕ) has the only support point z(ϕ). Among two arcs connecting points z(ϕ1) and z(ϕ2), we
choose one so that each its point is the support one of some straight line l(ϕ) (depending on
it) with value of ϕ in the segment [ϕ1, ϕ2]. In the case K is the segment of length τ (and only
in this case), the length of the arc s(ϕ1, ϕ2, K), where ϕ1 and ϕ2 are not equal to two opposite
numbers ϕ0 and −ϕ0, can take just one of three possible values: 0 if the interval (ϕ1, ϕ2)
contains none of these numbers, τ if it contains just one of them, and 2τ if −ϕ0, ϕ0 ∈ (ϕ1, ϕ2).

Let D be a convex domain in C and H∗(D) be the strongly adjoint space for H(D). The
Laplace transform f(λ) = ν(exp(λz)) makes an isomorphism (see, for instance, [8, Ch. III,
Sect. 12, Th. 12.3]) between H∗(D) and space PD consisting of entire functions of exponential
type whose adjoint diagrams lie in domain D. By Hahn-Banach theorem, the incompleteness
of the system E = {exp(λkz)}∞k=1 in H(D) (i.e., non-triviality of W (Λ, D)) is equivalent to the
existence of a non-zero linear continuous functional ν ∈ H∗(D) vanishing at the elements of
the system. Thus, the incompleteness of E is equivalent to the existence of the function f ∈ PD
vanishing at the points λk, k = 1, 2, . . .

Let Λ = {λk}∞k=1 be an unbounded strictly increasing sequence of positive numbers n(r,Λ)
and denotes the numbers of its terms lying in the semi-interval (0, r]. We sat that Λ has density
τ(Λ) (is measurable) if there exists a limit

τ(Λ) = lim
r→∞

n(r,Λ)

r
.

As maximal density of sequence Λ, we call the quantity

τ0(Λ) = lim
δ→0

lim
r→∞

n(r,Λ)− n((1− δ)r,Λ)

δr
.

We note that in accordance with Lemma in Section E3 of Chapter VI in book [9], the upper
limit as δ → 0 in the definition of τ0(Λ) can be replaced by the limit since it always exists. We
let

τ(Λ) = lim
r→∞

n(r,Λ)

r
, τ(Λ) = lim

r→∞

n(r,Λ)

r
.

Quantities τ (Λ) and τ(Λ) are called respectively lower and upper density for sequence Λ. The
latter is measurable if and only if τ(Λ) = τ(Λ). It is easy to see that inequalities

τ(Λ) 6 τ(Λ) 6 τ0(Λ) (3)
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hold true. The former follows immediately from the definitions. For the case τ(Λ) < +∞, the
latter is implied by the relations

lim
r→∞

n(r,Λ)− n((1− δ)r,Λ)

δr
≥ lim

r→∞

n(r,Λ)

δr
− lim

r→∞

n((1− δ)r,Λ)

δr
=

=
τ (Λ)

δ
− (1− δ) lim

r→∞

n((1− δ)r,Λ)

(1− δ)δr
=
τ(Λ)

δ
− (1− δ)

τ(Λ)

δ
= τ (Λ), δ > 0.

If τ(Λ) = +∞, then one can easily select a subsequence Λ′ in sequence Λ with an arbitrarily
large finite upper density. Then by the proven we obtain: τ(Λ′) 6 τ0(Λ

′) 6 τ0(Λ). Therefore,
τ0(Λ) = +∞, i.e., inequality (3) is valid in this case as well. Similar arguments show that
in the case when the sequence has density τ(Λ), the identity τ0(Λ) = τ(Λ) holds true. In
the general case, the second inequality in (3) can be strict. Indeed, consider the following
example. Let Λ = ∪∞

m=1Λm, where Λm = {λk, k(m) 6 k < k(m + 1)}, λk(m)+j = 10m + j,
0 6 j < k(m+ 1)− k(m), m = 1, 2, . . ., and k(1) = 1, k(m+ 1)− k(m) = 10m−1 as m > 1. By
direct calculations one can easily get the relations τ(Λ) 6 1/9, τ0(Λ) = 1.

Let Λ = {λk}∞k=1 be a complex sequence. Following work [3], we let

qjΛ(z, δ) =
∏

λk∈B(λj ,δ|λj |),k 6=j

(

z − λk
3δ|λk|

)

.

Here B(w, r) is an open circle centered at w with radius r. The absolute value of the function

qjΛ(z, δ) can be interpreted as a measure of accumulation of the points λk ∈ B(λj , δ|λj|), k 6= j,

at z. In the case of absence of such points, we assume that qjΛ(z, δ) ≡ 1. We note that

the absolute value of each of multipliers in the definition of qjΛ, in the circle B(λj , δ|λj|) is
estimated from above by the quantity 2(3(1− δ))−1 (for δ ∈ (0, 1)), i.e., as δ ∈ (0, 1/3), it
does not exceeds one. Moreover, if δ1 6 δ2, the number of multipliers in the definition of
qjΛ(z, δ1) does not exceeds the number of multipliers in the definition of qjΛ(z, δ2) and each of

the multipliers for qjΛ(z, δ1) is not less in absolute value than the corresponding multiplier for

qjΛ(z, δ2). Thus, if 0 < δ1 6 δ2 < 1/3, then |qjΛ(z, δ1)| ≥ |qjΛ(z, δ2)|, z ∈ B(λj , δ2|λj|). We let
SΛ = 0 if Λ consists of a finite number of elements and

SΛ = lim
δ→0

lim
k→∞

ln |qkΛ(λk, δ)|
|λk|

otherwise. This definition is well-defined, since according to the latter inequality, the limit w.r.t.
δ always exists. By the said above, SΛ 6 0. We note that the coefficient 3 in the definition
of qjΛ is chosen just for convenience (cf. [3, Rem. 1 to Th. 5.1]). It ensures the non-positivity
for quantity SΛ. It is close by the meaning with the classical Bernstein condensation index,
but it is effective for each complex sequence, not only for a measurable positive sequence and
a complex sequence of zero density. Together with SΛ, we introduce one more quantity

S̃Λ = lim
δ→0

lim
k→∞

ln |qkΛ(λk, δ)|
δ|λk|

.

As for SΛ, the inequality S̃Λ 6 0 is valid. If S̃Λ is finite, then, obviously, SΛ = 0. As an example
we consider the sequence of positive numbers Λ = {λk}∞k=1 such that λk+1 − λk ≥ h > 0,
k = 1, 2, . . . Taking into consideration the inequality n! ≥ (n/3)n, we have

|qkΛ(λk, δ)| ≥
∏

λm∈B(λk ,δλk),m6=k

∣

∣

∣

∣

λm − λk
3δλm

∣

∣

∣

∣

≥ (m(k, δ)!hm(k,δ))2

(3δ(1 + δ)λk)2m(k,δ)
≥ (m(k, δ)h)2m(k,δ)

(9δ(1 + δ)λk)2m(k,δ)
,

where m(k, δ) is the maximal integer satisfying inequality m(k, δ)h < δλk. Therefore,

S̃Λ ≥ lim
δ→0

lim
k→∞

2m(k, δ) ln(m(k, δ)h/9δ(1 + δ)λk)

δλk
≥ −2 ln 9

h
.
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Lemma 1. Let Λ = {λk}∞k=1 be an unbounded strictly increasing sequence of positive num-

bers. Suppose that S̃Λ > −∞. Then the maximal density τ0(Λ) is finite.

Proof. Let δ ∈ (0, 1). Employing the definition of qjΛ, we obtain

ln |qjΛ(λj, δ)| = ln

∣

∣

∣

∣

∣

∣

∏

λk∈B(λj ,δλj),k 6=j

(

λj − λk
3δλk

)

∣

∣

∣

∣

∣

∣

6 ln

∣

∣

∣

∣

∣

∣

∏

λk∈B(λj ,δλj),k 6=j

(

δλj
3δλk

)

∣

∣

∣

∣

∣

∣

6

6 ln

(

λj
3(1− δ)λj

)(m(j,δ)−1)

= −(m(j, δ)− 1) ln(3(1− δ)),

where m(j, δ) is the number of points λk in the circle B(λj, δλj), i.e., m(j, δ) = n((1+δ)λj,Λ)−
−n((1 − δ)λj,Λ) if the point (1 + δ)λj does not belong to Λ, and the number m(j, δ) is less by
one otherwise. Therefore, we have

S̃Λ = lim
δ→0

lim
k→∞

ln |qkΛ(λk, δ)|
δλk

6 lim
δ→0

lim
j→∞

− ln(3(1− δ))m(j, δ)

δλj
=

= −lim
δ→0

ln(3(1− δ)) lim
j→∞

m(j, δ)

δλj
= − ln 3lim

δ→0
lim
j→∞

n((1 + δ)|λj|,Λ)− n((1− δ)|λj|,Λ)
δλj

.

Let us show that the double upper limit in the latter identity is estimated from below by the
quantity τ0(Λ). If τ0(Λ) = 0, it is obvious. For each δ ∈ (0, 1), by rk(δ), k = 1, 2, . . . we denote
the sequence implementing the upper limit as r → ∞ in the definition of the maximal density.
Let τ0(Λ) > 0. Then we can assume that each semi-interval ((1 − δ)rk(δ), rk(δ)] contains
some nonzero number of sequence Λ. We choose arbitrarily one of them and by j(k, δ) we
indicate its index. Since λj(k,δ) 6 rk(δ) 6 λj(k,δ)/(1− δ), it is easy to observe that the inclusion

((1− δ)rk(δ), rk(δ)] ⊂ ((1− δ̃)λj(k,δ), (1 + δ̃)λj(k,δ)] holds true, where δ̃ = δ/(1− δ). Thus,

τ0(Λ) = lim
δ→0

lim
r→∞

n(r,Λ)− n((1− δ)r,Λ)

δr
= lim

δ→0
lim
k→∞

n(rk(δ),Λ)− n((1− δ)rk(δ),Λ)

δrk(δ)
6

6 lim
δ→0

δ̃

δ
lim
j→∞

n((1 + δ̃)λj,Λ)− n((1− δ̃)λj,Λ)

δ̃λj
=

= lim
δ̃→0

lim
r→∞

n((1 + δ̃)λj ,Λ)− n((1− δ̃)λj ,Λ)

δ̃λj
.

Hence, in view of the above arguments, we obtain S̃Λ 6 − ln 3τ0(Λ). It implies the required
statement. The proof is complete.

Lemma 2. Let Λ = {λk}∞k=1 be an unbounded strictly increasing sequence of positive num-
bers. If SΛ > −∞, then τ(Λ) < +∞
Proof. Suppose τ (Λ) = +∞. Then for each A > 0 there exists a subsequence Λ(A) of sequence
Λ such that the upper density τ (Λ(A)) is finite and greater than A. We fix δ ∈ (0, 1) and
A > 0. We have

τ (Λ(A)) = lim
r→∞

n(r,Λ(A))

r
6 lim

r→∞

n(r,Λ(A))− n((1− δ)r,Λ(A))

r
+ lim

r→∞

n((1− δ)r,Λ(A))

r
=

= lim
r→∞

n(r,Λ(A))− n((1− δ)r,Λ(A))

r
+ (1− δ)τ (Λ(A)).

It follows that for each A > 0,

δA 6 δτ (Λ(A)) 6 lim
r→∞

n(r,Λ(A))− n((1− δ)r,Λ(A))

r
6 lim

r→∞

n(r,Λ)− n((1− δ)r,Λ)

r
.
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Hence,

lim
r→∞

n(r,Λ)− n((1− δ)r,Λ)

r
= +∞, δ ∈ (0, 1).

Let δ ∈ (0, 1/2). We choose a sequence rj → +∞ such that

lim
j→∞

n(rj ,Λ)− n((1− δ)rj ,Λ)

rj
= +∞.

We can assume that for each j ≥ 1, the semi-interval ((1 − δ)rj , rj] contains
some points of sequence Λ. Let λkj be one of such points. Then the inclusion
((1− δ)rj, rj] ⊂ ((1− 2δ)λkj , (1 + 2δ)λkj) holds true. This is why

lim
j→∞

m(kj, 2δ)

λkj
= +∞,

where m(kj , 2δ) is defined in Lemma 1. As in this lemma, we obtain

ln |qkjΛ (λkj , 2δ)| 6 −(m(kj, 2δ)− 1) ln(3(1− 2δ)).

Therefore, we have

SΛ = lim
δ→0

lim
k→∞

ln |qkΛ(λk, δ)|
λk

6 lim
δ→0

lim
j→∞

ln |qkjΛ (λkj , 2δ)|
λkj

6

6 lim
δ→0

ln(3(1− 2δ)) lim
j→∞

−(m(kj, 2δ)− 1)

λkj
= − ln 3 lim

δ→0
lim
j→∞

(m(kj , 2δ)− 1)

λkj
= −∞.

It contradicts the assumption. Thus, τ (Λ) < +∞. The proof is complete.

By S(z, r) we denote the circumference centered at z of radius r > 0. The proof of the next
two statements is based on the ideas of the proof of Theorem 3.1 in work [10].

Lemma 3. Let Λ = {λk}∞k=1 be an unbounded strictly increasing sequence of positive numbers
such that SΛ = −∞. Then there exists an entire function g ∈ W (Λ,C) which does not expand
into a Dirichlet series w.r.t. the system E = {exp(λkz)}∞k=1 on any open subset in the plane.

Proof. Suppose first that τ(Λ) < +∞. By assumption, SΛ = −∞. Hence, there exist a sequence
of positive numbers {δp} and a subsequence {λk(p)} such that δp → 0 as p→ ∞ and

lim
p→0

ln |qk(p)Λ (λk(p), δp)|
λk(p)

= −∞. (4)

We can assume that

λk(p+1) ≥ 2λk(p), δp < 1/4, p ≥ 1. (5)

Consider the functions

gp(z) =
1

2πi

∫

S(λk(p),5δpλk(p))

exp(λz)dλ

(λ− λk(p))q
k(p)
Λ (λ, δp)

, p = 1, 2, . . .

Let us find the upper estimate for |gp|. We have

|qk(p)Λ (λ, δp)| =

∣

∣

∣

∣

∣

∣

∏

λk∈B(λk(p),δpλk(p)),k 6=k(p)

λ− λk
3δpλk

∣

∣

∣

∣

∣

∣

≥

≥
(

4δpλk(p)
3δp(1 + δp)λk(p)

)m(k(p),δp)

≥ 1, λ ∈ S(λk(p), 5δpλk(p)),
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where m(k(p), δp) is determined in Lemma 1. Thus, the inequalities

|gp(z)| =

∣

∣

∣

∣

∣

∣

∣

1

2πi

∫

S(λk(p),5δpλk(p))

exp(λz)dλ

(λ− λk(p))q
k(p)
Λ (λ, δp)

∣

∣

∣

∣

∣

∣

∣

6

6 5λk(p)δp sup
λ∈S(λk(p),5δpλk(p))

∣

∣

∣

∣

exp(λz)

(λ− λk(p))

∣

∣

∣

∣

6 sup
λ∈S(λk(p),5δpλk(p))

| exp(λz)| 6

6 exp(Re (λk(p)z) + 5δpλk(p)|z|), z ∈ C, (6)

hold true.
Consider the function

g(z) =

∞
∑

p=1

cpgp(z), (7)

where cp =
√

|qk(p)Λ (λk(p), δp)|, p ≥ 1. Let us show that this series converges uniformly on

each compact subset of the plane. Let R > 0. By (4), there exists a number p0 such that
|cp| 6 exp(−2Rλk(p)), p ≥ p0. Then in view of (6) we have

∞
∑

p=1

|cp|max
|z|6R

|gp(z)| 6 A +

∞
∑

p=p0

exp(−2Rλk(p) +Rλk(p) + 5δpRλk(p)) < +∞.

This estimate holds true thanks to inequalities λk(p+1) ≥ 2λk(p), p ≥ 1 and that δp → 0 as
p→ ∞.

Thus, function g(z) is entire and belongs to space W (Λ,C). Suppose it is represented by
series (1) on some open subset U ⊂ C containing a point z0. Then by Abel theorem for
Diriclhet series (see, for instance [1, Ch. II, Sect. 1, Subsect. 2], series (1) converges uniformly
on compact subsets of the half-plane Π = {z ∈ C : Re z < Re z0}. On open subset Π ∩ U
its sum is equal to g(z). This is why it converges to g(z) in the whole half-plane Π. Since
upper density τ (Λ) is finite, there exists (see, for instance, [1, Ch. IV, Sect. 1, Subsect. 1])
the biorthogonal to E sequence of functionals {νk} ⊂ H∗(Π) ⊂ H∗(C), i.e., νk(exp(λkz)) = 1,
k ≥ 1, and νk(exp(λjz)) = 0, if k 6= j. Since series (1) in the topology of space H(Π), the
identities

νk(g) = dk, k ≥ 1 (8)

are valid.
Employing the residua and the definition of function gp, we obtain

gp(z) = bk(p) exp(λk(p)z) +
∑

λk∈((1−δp)λk(p),(1+δp)λk(p)),k 6=k(p)

bk exp(λkz),

where bk(p) = (q
k(p)
Λ (λk(p), δp))

−1, p ≥ 1. By (5), the intervals ((1 − δp)λk(p), (1 + δp)λk(p)) are
mutually disjoint. Then, taking into consideration the convergence of series (7) in the topology
of space H(C) and identities (8), we obtain

|dk(p)| = |νk(p)(g)| = |cpbk(p)| =
(

√

∣

∣

∣
q
k(p)
Λ (λk(p), δp)

∣

∣

∣

)−1

, p ≥ 1.

It follows from (4) that for each z ∈ C
|dk(p)| exp(Re (λk(p)z)) → +∞, p→ ∞.

It contradicts to the convergence of series (1) in half-plane Π. Thus, function g ∈ W (Λ,C) does
not expand into the series w.r.t. system E on any open subset of the plane.

It remains to consider the situation when τ(Λ) = +∞. In this case there exists no (see, for
instance, [1, Ch. I, Sect. 1, Th. 1.1.2]) entire function of exponential type f ∈ PC vanishing at
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all points of λk. Therefore, system E is complete in H(C), i.e., W (Λ,C) = H(C). Let λ0 > 0
differ from the points λk, k ≥ 1. Suppose the function exp(λ0z) ∈ W (Λ,C) is represented by
series (1) on some open subset of the complex plane. As above, this representation can be
extended on some half-plane. Then in this half-plane, the identity

0 =
∞
∑

k=0

dk exp(λkz)

holds true, where d0 = −1. In the beginning of the work we mentioned that the representation
by the Dirichlet series is always unique. Thus, the relations dk = 0, k = 0, 1, . . . hold true. We
obtain the contradiction. The proof is complete.

Corollary. Let D be a convex domain in C, Λ = {λk}∞k=1 be an unbounded strictly increasing
sequence of positive numbers. Suppose the set of the sums of series (1) converging in domain
D is closed in space H(D). Then SΛ > −∞ and τ(Λ) < +∞.

Proof. If SΛ = −∞, by Lemma 3, there exists a function g ∈ W (Λ,C) ⊂ W (Λ, D) which does
not expand into series (1) in domain D. It contradicts the assumption. Thus, SΛ > −∞. Then
by Lemma 2, τ (Λ) < +∞. The proof is complete.

Lemma 4. Let Λ = {λk}∞k=1 be an unbounded strictly increasing sequence of positive num-

bers. Suppose S̃Λ = −∞. Then for each τ > 0, there exists δ > 0 and function g ∈ W (Λ, G),
where G = ({z : Re z < τδ} ∩ B(0, τ)) ∪ {z : Re z < 0} is represented by series (1) with the
convergence abscissa γ = 0.

Proof. Let

g(z) =
∞
∑

p=1

cpgp(z), (9)

where cp = exp(−6τδµm(p)),

gp(z) =
1

2πi

∫

S(µm(p),5δµm(p))

exp(λz)dλ

ap(λ− µm(p))q
m(p)

Λ̃
(λ, δ)

, p = 1, 2, . . . ,

and the sequence Λ̃ = {µm}∞m=1 is a part of Λ. We shall choose numbers ap ≥ 1 later. Now we

determine number δ, construct Λ̃, and select m(p). In order to do it, we first of all observe that
according to the assumption, S̃Λ = −∞. This is why the exist δ ∈ (0, 1/4) and a subsequence
{λk(p)}∞p=1 of sequence Λ obeying condition

ln |qk(p)Λ (λk(p), δ)| 6 −6τδλk(p), p = 1, 2, . . . (10)

At that, we can assume that

λk(p+1) ≥ 2λk(p), p = 1, 2, . . . (11)

We shall seek sequence Λ̃ ⊂ Λ as the union ∪∞
p=1Λp. Fix p = 1, 2, . . .. If n((1 + δ)λk(p),Λ)−

n((1 − δ)λk(p),Λ)− 1 < 12τδλk(p) + 1, as Λp, we take the set of all points in sequence Λ lying
in the circle B(λk(p), δλk(p)). Otherwise we put the point λk(p) into Λp and as many points in Λ
lying in the circle B(λk(p), δλk(p)) as we need the number of points l(p) of set Λp to satisfy the
estimates

12τδλk(p) 6 l(p)− 1 < 12τδλk(p) + 1. (12)

We note that by (11) and the choice of number δ, the circles B(λk(p), δλk(p)), p = 1, 2, . . ., are
mutually disjoint. This is why the sets Λp, p = 1, 2, . . ., are mutually disjoint, too. We shall

assume that the elements µm of sequence Λ̃ are indexed in the ascending order. By m(p),
p = 1, 2, . . ., we denote the number for which µm(p) = λk(p). The inequalities

ln |qm(p)

Λ̃
(µm(p), δ)| 6 −6τδµm(p), p = 1, 2, . . . (13)
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hold true. Indeed, the function q
m(p)

Λ̃
comprises the multipliers constructed by the points of set

Λp. If it coincides with the set of points in Λ lying in circle B(λk(p), δλk(p)), then q
m(p)

Λ̃
(µm(p), δ) =

q
k(p)
Λ (λk(p), δ) and (13) are implied by (11). Otherwise, taking into consideration (12) and
inequality δ < 1/4, as in Lemma 1, we get

ln |qm(p)

Λ̃
(µm(p), δ)| 6 −(l(p)− 1) ln(3(1− δ)) 6 (−(l(p)− 1))/2 6 −6τδµm(p).

Let us show now that the upper density of sequence Λ̃ is finite. According to (12), the
inequalities

n((1 + δ)µm(p), Λ̃)− n((1− δ)µm(p), Λ̃)

µm(p)

6 12τδ +
2

µm(p)

, p = 1, 2, . . . (14)

hold true. Let r > 0 and p(r) be the maximal among the numbers p = 1, 2, . . ., for which the
intervals (0, r) and ((1−δ)µm(p), (1+δ)µm(p)) intersect. Then the inequality r > (1−δ)µm(p(r)) is
valid. Since all the points µm lie in the union ∪∞

p=1((1− δ)µm(p), (1+ δ)µm(p)) and µm(p) = λk(p),
p = 1, 2, . . ., due to (14) and (11) we get

n(r, Λ̃)

r
6

p(r)
∑

p=1

n((1 + δ)µm(p), Λ̃)− n((1− δ)µm(p), Λ̃)

r
6

p(r)
∑

p=1

12τδµm(p) + 2

r
6

6

p(r)
∑

p=1

12τδµm(p) + 2

(1− δ)µm(p(r))

6
p(r)

(1− δ)2p(r)−2µm(1)

+

p(r)
∑

p=1

12τδ

(1− δ)2p(r)−p
.

It follows that quantity τ(Λ̃) is finite.
Let us find the upper estimates for the absolute values of functions gp. Since ap ≥ 1, we have

|apqm(p)

Λ̃
(λ, δ)| ≥ |qm(p)

Λ̃
(λ, δ)| =

∣

∣

∣

∣

∣

∣

∏

µm∈B(µm(p) ,δµm(p)),m6=m(p)

(λ− µm)

3δµm

∣

∣

∣

∣

∣

∣

≥

≥
∏

µm∈B(µm(p) ,δµm(p)),m6=m(p)

4δµm(p)

3δµm
≥ 1, λ ∈ S(µm(p), 5δµm(p)).

Therefore, the inequalities

|gp(z)| =

∣

∣

∣

∣

∣

∣

∣

1

2πi

∫

λ∈S(µm(p),5δµm(p))

exp(λz)dλ

ap(λ− µm(p))q
m(p)

Λ̃
(µm(p), δ)

∣

∣

∣

∣

∣

∣

∣

6

6 sup
λ∈S(µm(p) ,5δµm(p))

| exp(λz)| 6 exp(Re (µm(p)z) + 5δµm(p)|z|), z ∈ C.

hold true.
Let us show that series (9) converge uniformly on compact subsets of the domain D = {z :

Re z < τδ} ∩ B(0, τ). Let z ∈ D and |z| 6 τ − β. The latter estimates, the definition of
coefficients cp and (11) yield

|g(z)| 6
∞
∑

p=1

exp(Re (µm(p)z) + 5δµm(p)|z| − 6τδµm(p)) 6

∞
∑

p=1

exp(−5βδµm(p)) <∞.

The terms of series (9) are entire functions. Therefore, g(z) is function analytic in domain D.
We note that it is true for each choice of numbers ap ≥ 1, p = 1, 2, . . . Let us show now that
under a suitable choice of these numbers, function g(z) can be expanded in the Dirichlet series
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whose line of convergence coincides with the imaginary axis. Employing the theory of residues,
for each p = 1, 2, . . . we obtain

gp(z) = a−1
p



bm(p) exp(µm(p)z) +
∑

µm∈Λp,m6=m(p)

bm exp(µmz)



 ,

where bm(p) = (q
m(p)

Λ̃
(µm(p), δ))

−1. Let p = 1, 2, . . . For each number m such that µm ∈ Λp, we

let dm = cpbmap
−1. By (13) and the definition of cp, the inequality

max
m:µm∈Λp

ln |cpbm|
µm(p)

≥
−6τδµm(p) − ln |qm(p)

Λ̃
(µm(p), δ)|

µm(p)

≥ 0

holds true. This is why there exists a number ap ≥ 1 so that

max
m:µm∈Λp

ln |dm|
µm(p)

= max
m:µm∈Λp

ln |cpbm| − ln ap
µm(p)

= 0. (15)

Consider the Dirichlet series
∞
∑

m=1

dm exp(µmz). (16)

Since the upper density τ(Λ̃) is finite, it is obvious that the quantity limm→∞ lnm/µm vanishes.
This is why (see, for instance, [1, Ch. II, Sect. 1, Th. 2.1.2], [11]) Cauchy-Hadamard formula

γ = lim
m→∞

ln |dm|
µm

holds true for series (16), where γ is the convergence abscissa for this series. At that, in the
half-plane {z ∈ C : Re z < γ}, series (16) converges absolutely (see, for instance, [1, Ch. II,
Sect. 1, Cor. of Th. 2.1.1], [11]). By (15),

γ = lim
m→∞

ln |dm|
µm

= lim
p→∞

max
m:µm∈Λp

ln |dm|
µm

= 0.

Thus, the imaginary axis is the convergence line for series (16). Since it converges absolutely in
the left half-plane, the sums of series (9) and (16) coincide in the intersection {z ∈ C : Re z <
0} ∩ D. It means that function g ∈ W (Λ, G) can be represented series (1) with convergence
abscissa γ = 0. The proof is complete.

Let Λ = {λk}∞k=1, Λ̃ = {µn}∞n=1. We say that Λ is a part of Λ̃ (Λ ⊂ Λ̃) or Λ̃ is the completion
of Λ if there exists a subsequence {µn(k)} coinciding with {λk}. The well-known Pólya theorem
(see, for instance, [9, Ch. VI, Sect. E3]) states that each sequence with a finite maximal density
is a part of some measurable sequence with the same density. Since this result is important
for further studies and understanding the whole picture, we provide its proof. The method
employed for constructing the completion, in our opinion, is simpler than that in book [9].

Lemma 5 (Pólya theorem). Suppose the maximal density of a sequence Λ = {λk}∞k=1 is

finite. Then there exists its measurable completion Λ̃ such that τ(Λ̃) = τ0(Λ).

Proof. We shall seek sequence Λ̃ as the union ∪∞
m=1Λm, where Λm = {µn, n(m) 6 n < n(m+1)},

m = 1, 2, . . . and n(1) = 1. We construct sets Λm by induction. Let α = 1/τ0(Λ) and m = 1.
If the semi-interval (0, α] contains the points in Λ, we let µn = λn, 1 6 n < n(2), where n(2)
is the minimal of numbers k satisfying the inequality λk > α. Otherwise we let µ1 = α and
n(2) = 2. Suppose we have constructed sets Λm for m < p. Let us define Λp. By sp we indicate
the number of points in sequence Λ lying in the semi-interval (α(p−1), αp] (it can happen that
sp = 0). If the total amount of points in the sets Λ1, . . . ,Λp−1 does not exceed p−1 and sp = 0,
we let n(p+ 1) = n(p) + 1 and Λp = {µn(p)}, where µn(p) = αp. Otherwise, as Λp, we take the
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set consisting of all points Λ lying in (α(p− 1), αp] (if sp = 0, set Λp is empty). At that, we let
n(p + 1) = n(p) + sp.

Let us show that Λ̃ is the desired sequence. Let λk be an arbitrary point in Λ and a number
m is so that the semi-interval (α(m− 1), αm] contains λk. Then sm 6= 0 and by construction,
set Λm together with sequence Λ̃ comprise λk. Therefore, Λ ⊂ Λ̃. Employing induction, let us
prove the inequalities

n(αm, Λ̃) ≥ m, m = 1, 2, . . . (17)

By construction, each such semi-interval (α(m − 1), αm] intersects with Λ̃ by the set Λm.
This is why n(αm, Λ̃) coincides with the total number of points in the sets Λ1, . . . ,Λm. Let

m = 1. Then n(α, Λ̃) = 1 if s1 = 0, and n(α, Λ̃) = s1 ≥ 1 otherwise. Suppose (17) is
proven for all m < p. If n(α(p − 1), Λ̃) > p − 1, then n(αp, Λ̃) ≥ n(α(p− 1), Λ̃) ≥ p. Let

n(α(p − 1), Λ̃) 6 p − 1. Then due to (17) we obtain n(α(p − 1), Λ̃) = p − 1. In this case, by
construction, n(αp, Λ̃) = n(α(p−1), Λ̃)+1 = p, if sp = 0, and n(αp, Λ̃) = n(α(p−1), Λ̃)+sp ≥ p
otherwise. Hence, inequality (17) is valid for all m. Taking it into account, we obtain

τ(Λ̃) = lim
r→∞

n(r, Λ̃)

r
≥ lim

p→∞

n(αp(r), Λ̃)

αp(r) + β(r)
= lim

p→∞

n(αp, Λ̃)

αp
≥ 1

α
= τ0(Λ), (18)

where β(r) ∈ (0, α] as r ≥ 1. It remains to prove inequality τ (Λ̃) 6 τ0(Λ). Suppose τ(Λ̃) ≥
τ0(Λ) + 3ε for some ε > 0. Then due to (2), τ0(Λ̃) ≥ τ0(Λ) + 3ε. It was observed above that in
the definition of the maximal density one can take the limit instead of the upper limit w.r.t. δ.
This is why there exists δ0 > 0 such that

lim
r→∞

n(r, Λ̃)− n((1− δ)r, Λ̃)

δr
≥ τ0(Λ) + 2ε, δ ∈ (0, δ0). (19)

Lessening δ0 > 0 if necessary, we can assume that the inequality

lim
r→∞

n(r,Λ)− n((1− δ)r,Λ)

δr
6 τ0(Λ) + ε, δ ∈ (0, δ0) (20)

holds true as well. We fix δ ∈ (0, δ0). If for some r > 0, the semi-interval ((1− δ)r, r] contains
no points Λ̃ different to Λ, then n(r, Λ̃) − n((1 − δ)r, Λ̃) = n(r,Λ) − n((1 − δ)r,Λ). We note

that by construction, all the points Λ̃ not belonging Λ read as µn(p) = αp, where p ranges in a
some subsequence P of natural numbers. Thus, in view of (19) and (20), for each sufficiently
large r > 0, there exists a maximal number p(r) ∈ P such that αp(r) ∈ ((1−δ)r, r]. Due to the
maximal property p(r), each non-empty semi-interval (αp(r), r] contains no points Λ̃ different
to points Λ. This is why

n(r, Λ̃)− n(αp(r), Λ̃) = n(r,Λ)− n(αp(r),Λ).

While proving inequality (18), we have shown that n(αp(r), Λ̃) = p(r). Therefore,

lim
r→∞

n(r, Λ̃)− n((1− δ)r, Λ̃)

δr
6 lim

j→∞

n(rj ,Λ)− n(αp(rj),Λ)

δrj
+ lim

r→∞

p(rj)− n((1− δ)rj , Λ̃)

δrj
,

where rj → ∞ implements the left upper limit in this inequality. Since αp(r) ∈ ((1 − δ)r, r],
passing to a subsequence, we can assume that αp(rj)/rj converges to some αγ ∈ [1−δ, 1]. Then
in view of (20) we obtain

lim
j→∞

n(rj ,Λ)− n(αp(rj),Λ)

δrj
6 lim

j→∞

n(rj,Λ)− n((αγ − δ̃)rj,Λ)

δrj
=

= (1− αγ + δ̃) lim
j→∞

n(rj ,Λ)− n((αγ − δ̃)rj ,Λ)

(1− αγ + δ̃)δrj
6

(1− αγ + δ̃)

δ
(τ0(Λ) + ε),
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where δ̃ > 0 is such that δ + δ̃ ∈ (0, δ0). Let mj be a maximal natural number such that
αmj 6 (1− δ)rj . By (17) we have

lim
j→∞

p(rj)− n((1− δ)rj , Λ̃)

δrj
6 lim

j→∞

p(rj)− n(αmj , Λ̃)

δrj
=
γ

δ
− (1− δ)

δα
.

Thus, we obtain

lim
r→∞

n(r, Λ̃)− n((1− δ)r, Λ̃)

δr
6

(1− αγ + δ̃)

δ
(τ0(Λ) + ε) +

γ

δ
− (1− δ)

δα
=

=
δ̃(τ0(Λ) + ε) + (1− αγ)ε

δ
+ τ0(Λ) 6

δ̃(τ0(Λ) + ε)

δ
+ ε+ τ0(Λ).

Since δ̃ can be regarded as infinitesimal, the latter inequality contradicts (19). Thus, our
assumption is wrong, i.e., τ (Λ̃) 6 τ0(Λ). Together with (18) it completes the proof.

Remark. The proof of the lemma remains true if instead of strictly increasing sequence Λ,
one takes a non-decaying multiple sequence.

Lemma 6. Let Λ = {λk}∞k=1 be an unbounded strictly increasing sequence of positive numbers
with a finite maximal density τ0(Λ). Then there exists an entire function f of exponential type
and regular growth vanishing at the points λk, k ≥ 1, whose adjoint diagram is the segment of
imaginary axis [−iπτ0(Λ), iπτ0(Λ)]. At that, for all λ not lying on the real axis, the identity

lim
t→+∞

ln |f(tλ)|
t

= πτ0(Λ)|Imλ|

holds true and the convergence is uniform the angle α < ϕ < π − α, α ∈ (0, π) for all λ =
exp(iϕ).

Proof. By Lemma 5, there exists the completion Λ̃ = {µn}∞n=1 of sequence Λ such that τ(Λ̃) =
τ0(Λ). Consider the function

f(λ) =
∞
∏

n=1

(

1− λ2

µ2
n

)

.

It vanishes at the points λk, k ≥ 1. Since Λ̃ is measurable, it is easy to check that the zero
set f(λ) is well-distributed. This is why f has a regular growth. By Theorem 5.9 in book [7,
Ch. I, Sect. 5], the required identity holds true that implies immediately that the segment
[−iπτ0(Λ), iπτ0(Λ)] is the adjoint diagram of function f . The proof is complete.

Let R ⊂ C and δ > 0. By Rδ we denote the union of the circles B(z, δ|z|), where z ranges in
set R.

Lemma 7. Let D be a convex domain in C, Λ = {λk}∞k=1 be an unbounded strictly increasing
sequence of positive numbers with a finite maximal density τ0(Λ). Suppose space W (Λ, D) is
nontrivial, HD(1) < +∞, and the intersection of the support line {z ∈ C : Re z = HD(1)}
with the boundary of domain D containing the segment of length 2πτ0(Λ). Then for each
compact set L ⊂ D and each δ > 0, there exists function f ∈ PD vanishing at the points
λk, k ≥ 1, and such that for some T (δ) > 0, the ray (T (δ),+∞) lies on the set Rδ, where
R = {z : ln |f(z)| ≥ HL(z)}.
Proof. By assumption, subspace W (Λ, D) is nontrivial. This is why, as it was mentioned above,
there exists an entire function f1 ∈ PD vanishing at the points λk, k ≥ 1. Let K1 be the adjoint
diagram of function f1. Since K1 is a compact set in domain D, the inequality

HK1(z) < HD(z), z 6= 0 (21)

holds true.



106 A.S. KRIVOSHEYEV, O.A. KRIVOSHEYEVA

According to Lemma 6, there exists a function f̃2 of exponential type vanishing at the points
λk, k ≥ 1 whose adjoint diagram is K = [−πτ0(Λ), πτ0(Λ)]. Moreover, for all z not lying on
the real axis, we have

lim
t→+∞

ln |f̃2(tz)|
t

= πτ0(Λ)|Imz|, (22)

and the convergence is uniform in the angle α < ϕ < π−α, α ∈ (0, π) for all z = exp(iϕ). The
hypothesis implies that for some w0 ∈ C, the segment K2 = K + w0 lies on the boundary of
domain D. Therefore, the inequality

HK2(z) 6 HD(z), z ∈ C, (23)

holds true. Compact setK2 is the adjoint diagram of f2(z) = f̃2(z) exp(w0z), which by Lemma 6
is an entire function of exponential type and regular growth. Moreover, it vanishes at the points
λk, k ≥ 1. Consider the function

fΛ(z) =
∞
∏

k=1

(

1− z

λk

)

exp

(

z

λk

)

.

It is entire, has the first order of growth and possibly infinite type (see, for instance, [1, Ch. I,
Sect. 1, Thms. 1.1.3 and 1.1.5). Since f1 and f2 are divisible by fΛ, the functions ln |f1|−ln |fΛ|
and ln |f2| − ln |fΛ| are subharmonic in the plane and has the first order of growth (see [5, Ch.
I, Sect. 9, Cor. of Thm. 12]). Then by Theorem 5 in work [12], for each τ ∈ (0, 1), there exist
an entire function ϕτ (z), constant C > 0, and an exceptional set E ⊂ C such that

| ln |ϕτ (z)| − ψτ (z)| 6 C ln |z|, z ∈ C \ E, (24)

where ψτ (z) = τ(ln |f1(z)| − ln |fΛ(z)|) + (1 − τ)(ln |f2(z)| − ln |fΛ(z)|). At that, E can be
covered by the circles Bi = B(zi, γi), i ≥ 1, such that Σγi < ∞. Let fτ (z) = ϕτ (z)fΛ(z),
τ ∈ (0, 1). Then fτ is an entire function.

We fix a compact set L ⊂ D and a number δ > 0 and let us show that as the required
function f we can take fτ for some τ ∈ (0, 1). First of all, we observe that fτ vanish at points
λk, k ≥ 1. Then, since K1 and K2 are adjoint diagrams of functions f1 and f2, respectively,
then in view of the aforementioned Pólya theorem for the indicators in (21), (23), (24) and
“smallness” of exceptional set E, it is easy to obtain the estimate (see, for instance, [3, Th.
4.3])

hfτ (z) < HD(z), z 6= 0, τ ∈ (0, 1).

It means that the adjoint diagram of fτ lies in domain D, i.e., fτ ∈ PD for each τ ∈ (0, 1). It
remains to choose τ ∈ (0, 1) so that for some T (δ) > 0, the ray (T (δ),+∞) lies in set Rδ, if in
the definition of R one takes fτ as f .

By the theorem on the lower estimate for an entire function of finite order and type on the
circles (see, for instance, [1, Ch. I, Sect. 1, Thm. 1.1.9]), there exists a number a > 0 and an
unbounded increasing sequence of positive numbers {rp}∞p=1 such that

rp+1 6 (1 + δ/2)rp, ln |f1(z)| ≥ −a|z|, |z| = rp, p ≥ 1. (25)

Since the segment K2 = K + w0 lies on the boundary of domain D, and segment K contains
the origin, point w0 lies in the intersection of the boundary of domain D and the support line
{z ∈ C : Re z = HD(1)}. Therefore, due to the fact that L is a compact set in D, there exist

ε > 0 and δ̃ ∈ (0, δ/2) so that the inequality

Re (w0z) > HL(z) + 4ε|z|, z ∈ B(1, δ̃), (26)

holds true. Finally, we choose τ ∈ (0, 1) so that

−τRe (w0z) > −ε|z|, −τa ≥ −ε. (27)

Since the sum of radii of exceptional circles Bi, i ≥ 1 is finite, there exists an index p0 such
that for all p ≥ p0, there exists a point zp /∈ E in the arc of the circumference |z| = rp lying
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in the upper half plane and the ring B(rp, δ̃rp) \ B(rp, δ̃rp/2). At that, one can assume that

the inequalities C ln |zp| < ε|zp|, p ≥ p0 hold true, and by (22), the inequality ln |f̃2(zp)| >
πτ0(Λ)|Imzp| − ε|zp|, p ≥ p0 hold true as well. Then due to (24)-(27), we obtain

ln|fτ (zp)| ≥ τ ln |f1(zp)|+ (1− τ)ln|f2(zp)| − ε|zp| ≥ −τa|zp|+
+(1− τ)(ln |f̃2(zp)|+ Re (w0zp))− ε|zp| ≥ −3ε|zp|+ (1− τ) ln |f̃2(zp)|+ Re (w0zp) ≥

≥ HL(zp) + 4ε|zp| − 3ε|zp| − (1− τ)ε|zp| > HL(zp), p ≥ p0. (28)

We let T (δ) = rp0 and z ∈ (T (δ),+∞). We choose an index p ≥ p0 such that rp 6 z < rp+1.

Then by (25) and the choice of δ̃, we have

|zp − z| 6 |zp − rp|+ |rp − z| < δ̃rp + rp+1 − rp < δrp = δ|zp|.
Thus, in accordance with (28), we get z ∈ B(zp, δ|zp|) ⊂ Rδ. The proof is complete.

We let

qΛ(z, λk, δ) = qkΛ(z, δ)
z − λk
3δλk

, k ≥ 1.

As for functions qjΛ(z, δ), we have the inequality

|qΛ(z, λk, δ1)| ≥ |qΛ(z, λj, δ2)|, z ∈ B(λj, δ2λj), (29)

if 0 < δ1 6 δ2 < 1/3 and B(λk, δ1λk) ⊂ B(λj , δ2λj).

Lemma 8. Let Λ = {λk}∞k=1 be an unbounded strictly increasing sequence of positive numbers
such that SΛ = 0. Then for ε > 0 there exists δ ∈ (0, 1/3) such that for each γ, θ ∈ (0, 1] and
some index k0 = k0(ε, δ, γ, θ), the inequalities

ln |qΛ(z, λk, δ)| ≥ −ε|z|, z ∈ B(λk, δ|λk|) \
⋃

λj∈B(λk ,δλk)

B(λj , θρj(γ)), k ≥ k0, (30)

hold true, where ρj(γ) = min{γ/2, (λj − λj−1)/2, (λj+1 − λj)/2}, j ≥ 1 and λ0 = 0.

Proof. Fix ε > 0. By the hypothesis, SΛ = 0. Thus, by the definition of SΛ, there exist
δ ∈ (0, 1/9) and an index k1 such that

ln |qjΛ(λj, 3δ)|/λj ≥ −ε
6
, j ≥ k1. (31)

As in Lemma 1, we obtain

ln |qjΛ(λj , 3δ)| 6 −(m(j, 3δ)− 1) ln(3(1− 3δ)),

where m(j, 3δ) is the number of points λk lying in the circle B(λj , 3δλj). Thus, increasing index
k1, if necessary, due to (31) and the choice of number δ we have

m(j, 3δ) 6
ελj
6 ln 2

+ 1 6
ελj
3
, j ≥ k1. (32)

Let γ, θ ∈ (0, 1] and z ∈ S(λj, θρj(γ)). Then by the definition of numbers ρj(γ), for each
l 6= j, the inequality |z − λl| ≥ |λj − λl|/2 holds true. Together with (31), (32) it implies

ln |qjΛ(z, 3δ)| ≥ ln |qjΛ(λj, 3δ)| −m(j, 3δ) ln 2 ≥ −ελj/2, z ∈ S(λj , θρj(γ)), j ≥ k1. (33)

If ρj(γ) = γ/2, there exists an index k2 ≥ k1 such that

1

λj
ln

∣

∣

∣

∣

z − λj
9δλj

∣

∣

∣

∣

≥ 1

λj
ln

γθ

12δλj
≥ −ε/4, z ∈ S(λj, θρj(γ)), j ≥ k2.

Consider now the case ρj(γ) = (λj+1−λj)/2. Since ρj(γ) 6 1/2, for some k3 ≥ k2 and all the
indices j ≥ k3 corresponding to this case, the circle B(λj+1, 3δλj+1) contains point λj . This is

why one of the terms in the sum determining quantity ln |qj+1
Λ (z, 3δ)| is ln |(z−λj)/9δλj|. As it
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was mentioned above, all these terms are non-positive in the circle B(λj+1, 3δλj+1). Therefore,
inequality

ln

∣

∣

∣

∣

z − λj
9δλj

∣

∣

∣

∣

≥ ln |qj+1
Λ (z, 3δ)|, z ∈ B(λj+1, 3δλj+1), j ≥ k3,

holds true. Hence, by (31),

ln
λj+1 − λj

9δλj
≥ −ελj+1

6
, j ≥ k3.

It follows that for some k4 ≥ k3

ln

∣

∣

∣

∣

z − λj
9δλj

∣

∣

∣

∣

= ln
θρj(γ)

9δλj
= ln

θ

2
+ ln

λj+1 − λj
9δλj(p)

≥ ln
θ

2
− ελj+1

6
=

= ln
θ

2
− ε(λj + 2ρj(γ))

6
≥ ln

θ

2
− ελj

6
− 1

6
≥ −ελj

4
, z ∈ S(λj , θρj(γ)), j ≥ k4.

The case ρj(γ) = (λj − λj−1)/2 can be considered in the same way. Thus, we can suppose that
in all cases

ln

∣

∣

∣

∣

z − λj
9δλj

∣

∣

∣

∣

≥ −ελj
4
, z ∈ S(λj , θρj(γ)), j ≥ k4.

Together with (33) and the definition of function qΛ(z, λj , 3δ) it yields

ln |qΛ(z, λj, 3δ)| ≥ −3ελj/4, z ∈ S(λj, θρj(γ)), j ≥ k4. (34)

Since δ < 1/3, for each point λj ∈ B(λk, δ|λk|), the circle B(λj , 3δ|λj|) contains the circle
B(λk, δ|λk|). We choose an index k0 ≥ k4 such that j ≥ k4, if λj ∈ B(λk, δ|λk|) and k ≥ k0.
We can suppose that S(λj, θρj(γ)) ⊂ B(λj , 3δ|λj|) as j ≥ k4. Then in accordance with (29)
and (34) we have

ln |qΛ(z, λk, δ)| ≥ −3ελj/4, z ∈ S(λj , θρj(γ)), λj ∈ B(λk, δ|λk|), k ≥ k0.

Therefore, for each k ≥ k0 and j such that λj ∈ B(λk, δ|λk|) the inequality

ln |qΛ(z, λk, δ)| ≥ −3ε(1 + δ)λk/4 ≥ −5ελk/6, z ∈ S(λj , θρj(γ))

is valid. Moreover, as δ < 1/3, the inequality

ln |qΛ(z, λk, δ)| ≥ 0, z ∈ S(λk, 5δ|λk|), k ≥ 1,

is valid as well. Then by the maximum principle in the domain B(λk, 5δ|λk|) \
∪λj∈B(λk ,δλk)B(λj, θρj(γ)), the harmonic function ln |qΛ(z, λk, δ)| satisfies the estimate

ln|qΛ(z, λk, δ)| ≥ −5ελk/6, k ≥ k0.

Therefore,

ln |qΛ(z, λk, δ)| ≥ − 5ε|z|
6(1− δ)

≥ −ε|z|, z ∈ B(λk, δ|λk|) \λj∈B(λk ,δλk) B(λj , θρj(γ)), k ≥ k0.

The proof is complete.

Lemma 9. Let Λ = {λk}∞k=1 be an unbounded strictly increasing sequence of positive numbers
such that SΛ = 0. Then for each ε̃ > 0, there exists its completion Λε̃ = {µn}∞n=1 ⊂ (0,+∞)
(Λε̃ is strictly increasing) and a number γ0 ∈ (0, 1) such that the inequalities

∣

∣

∣

∣

ln |f(λ)| − π|Imλ|
γ0

∣

∣

∣

∣

6 ε̃|λ|, λ ∈ C \ (E1 ∪ E2 ∪ B(0, T )) (35)

hold true, where f is an entire function of exponential type,

f(λ) =

∞
∏

n=1

(

1− λ2

µ2
n

)

, E1 =

∞
⋃

k=1

B(±λk, θρk(γ0)), E2 =

∞
⋃

n=1

B(±µ̃n(γ0), θγ0/2),
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ρk(γ0), k ≥ 1, are defined in Lemma 8, µ̃n(γ0) = γ0n − γ0/2, n ≥ 1, θ ∈ (0, 1) and T > 0
depend on θ, ε̃.

Proof. Since SΛ = 0, by Lemma 2, upper density τ (Λ) is finite. Let γ > 0. First we construct
the completion Λ(γ) = {µn(γ)}∞n=1 of sequence Λ. We shall seek it as the union ∪∞

m=1Λm(γ),
where Λm(γ) = {µn(γ), n(m) 6 n < n(m+ 1)}, m = 1, 2, . . ., and n(1) = 1. We construct
sets Λm(γ) by induction. Let m = 1. If the semi-interval (0, γ] contains points in Λ, we let
µn(γ) = λn, 1 6 n < n(2), where n(2) is the minimal of indices k satisfying the inequality
λk > γ. Otherwise we let µ1(γ) = γ/2 and n(2) = 2. Suppose we have already constructed
sets Λm(γ) for all m < p. Let us define Λp(γ). We indicate sp the number of the points of
sequence Λ lying in the semi-interval (γ(p − 1), γp] (it can happen that sp = 0). If the total
number of points in the sets Λ1(γ), . . . ,Λp−1(γ) does not exceed p − 1 and sp = 0, we let
n(p + 1) = n(p) + 1 and Λp(γ) = {µn(p)(γ)}, where µn(p)(γ) = γp − γ/2. Otherwise as Λp(γ),
we take the set consisting of all points Λ lying in (γ(p−1), γp] (if sp = 0, then Λp(γ) is empty).
Here we let n(p + 1) = n(p) + sp.

Let λk be an arbitrary point in Λ, and the index m is so that the semi-interval (γ(m−1), γm]
contains λk. Then sm 6= 0 and by construction, set Λm(γ) together with sequence Λ(γ) contain
λk. Therefore, Λ ⊂ Λ(γ). Employing the induction, let prove inequalities

n(γm,Λ(γ)) ≥ m, m = 1, 2, . . . (36)

By construction, each semi-interval (γ(m−1), γm] intersects Λ(γ) by set Λm(γ). This is why
n(γm,Λ(γ)) coincides with the total amount of the points in sets Λ1(γ), . . . ,Λm(γ). Let m = 1.
Then n(γ,Λ(γ)) = 1, if s1 = 0, and n(γ,Λ(γ)) = s1 ≥ 1 otherwise. Suppose (36) is proven
for all m < p. If n(γ(p − 1),Λ(γ)) > p − 1, then n(γp,Λ(γ)) ≥ n(γ(p − 1),Λ(γ)) ≥ p. Let
n(γ(p− 1),Λ(γ)) 6 p− 1. Then by induction assumption we get n(γ(p− 1),Λ(γ)) = p− 1. In
this case by construction, n(γp,Λ(γ)) = n(γ(p− 1),Λ(γ) + 1 = p, if sp = 0, and n(γp,Λ(γ)) =
n(γ(p− 1),Λ(γ)) + sp ≥ p otherwise. Thus, inequality (36) is valid for all m.

By construction, each of groups Λm(γ) either comprises only some of points λk, or is empty, or
consists just of one point µn(m)(γ) not involved in sequence Λ. Let us show that as γ < 1/τ (Λ),
there exists infinitely many of the groups of latter kind. Suppose the opposite. Then for some
r0 > 0, an infinite interval (r0,+∞) contains no points of sequence Λ(γ) different to λk. This
is why

lim
r→∞

n(r,Λ(γ))

r
= lim

r→∞

n(r,Λ)− n(r0,Λ) + n(r0,Λ(γ))

r
= lim

r→∞

n(r,Λ)

r
= τ (Λ).

On the other hand, by (36) we have

lim
r→∞

n(r,Λ(γ))

r
≥ lim

m→∞

n(γm,Λ(γ))

γm
≥ 1

γ
> τ(Λ).

We obtain the contradiction. Therefore, there exist infinitely many groups of mentioned kind.
Let I(γ) be the union of all semi-intervals (γm, γ(m + 1)] associated with such groups. Then
J(γ) = (0,+∞) \ I(γ) is the union of all bounded semi-intervals (γmj(γ), γpj(γ)], j ≥ 1.

Let j ≥ 1. According to the definition of I(γ), group Λmj(γ)(γ) consists of the
only point µn(mj(γ))(γ) not involved in sequence Λ. Then by construction, we have
n(γ(mj(γ)− 1),Λ(γ)) 6 mj(γ)− 1 and smj(γ) = 0. Therefore, n(γmj(γ),Λ(γ)) 6 mj(γ). To-
gether with (36) it implies the identity

n(γmj(γ),Λ(γ)) = mj(γ), j ≥ 1. (37)

Group Λpj(γ)+1(γ) is analogous to group Λmj(γ)(γ). Then by construction we have also the
identity n(γpj(γ),Λ(γ)) 6 pj(γ). By (36) it yields

n(γpj(γ),Λ(γ)) = pj(γ), j ≥ 1. (38)
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Let δ′ > 0. According to the definition of J(γ), all the points λk lie in set J(γ) and none
of the points of sequence Λ(γ) different to λk, k ≥ 1, belongs to J(γ). Therefore, by (37) and
(38), for all j ≥ 1 we have

pj(γ)−mj(γ) = n(γpj(γ),Λ(γ))− n(γmj(γ),Λ(γ)) = n(γpj(γ),Λ)− n(γmj(γ),Λ). (39)

Since Λ has a finite upper density, for some C > 0 we have the inequality n(r,Λ) 6 Cr. This
is why it follows from (39) that

pj(γ)−mj(γ) 6 n(γpj(γ),Λ) 6 Cγpj(γ) 6 δ′pj(γ), j ≥ 1,

for all γ < min{1/τ(Λ), δ′/C} = γ(δ′). It implies easily the estimate

pj(γ)−mj(γ) 6 δ′′mj(γ), j ≥ 1, γ < γ(δ′), (40)

where δ′′ = δ′/(1− δ′).
We fix ε̃ > 0 and ε ∈ (0, ε̃/5). Let us show that for some γ > 0, as the required sequence Λε̃

we can take Λ(γ). First of all, according to Lemma 8, given ε > 0, we find δ ∈ (0, 1/3) such
that (30) holds true.

We introduce a new sequence Λ̃(γ) = {λ̃k(γ)}∞k=1 of positive numbers taken in the ascending

order. It is the union of the groups Λ̃j(γ), j ≥ 1, where Λ̃j(γ) = {γpj(γ) + γ/2, γ(pj(γ) + 1) +
γ/2, . . . , γmj(γ)− γ/2}. Consider the functions

L(λ) =

∞
∏

k=1

(

1− λ2

λ2k

)

, L(λ, γ) =

∞
∏

k=1

(

1− λ2

(λ̃k(γ))2

)

.

Sequence Λ has a finite upper density. By construction, τ(Λ̃(γ)) 6 1/γ. This is why (see, for
instance, [1, Ch. I, Sect. 1, Thm. 1.1.5]) L(λ) and L(λ, γ) are entire functions of exponential
type. Let us compare their behavior. In order to do it, we employ the result from work [13].

By (39) and (40), sequence Λ̃(γ) is δ′′-close to Λ, i.e.,

|λk − λ̃k(γ)| 6 δ′′|λk|, k ≥ 1, (41)

and thus, it is asymptotically δ′′-close to sequence Λ (in the terminology of work [13]). Since
in our case the sums of inverses to zeroes of functions L(λ) and L(λ, γ) lying in the circle
B(0, r) equal to zero for each r > 0, as δ′′ ∈ (0, 1/2), by Theorem in work [13] (where we let
α = 1/2, β = 1), the inequality

| ln |L(λ)| − ln |L(λ, γ)|| 6 A
√
δ′′|λ|, λ ∈ C \ E(δ′′) (42)

holds true, where A > 0 is independent of δ′′. Set E(δ′′) is the union of the circles Bi = B(ξi, σi),

i ≥ 1 and it has the linear density not exceeding 4
√
δ′′,

lim
r→∞

1

r

∑

|ξi|6r

σi 6
4
√
δ′′, (43)

and it is centered with the union of zero sets for functions L(λ) and L(λ, γ), i.e., each point of
these sets lies in at least of circles Bi, and each of circles Bi contains at least one point of this
union. We can obviously assume that E(δ′′) is symmetric w.r.t. the origin.

We choose δ′ > 0 such that for δ′′ = δ′/(1− δ′), the inequality

A
√
δ′′ < ε,

4
√
δ′′ < δ/12 (44)

are valid. We fix γ0 ∈ (0, γ(δ′)), γ0 < 1, and let us show that sequence Λε̃ = Λ(γ0) is the required
one. Let θ ∈ (0, 1) and k0 be the index for each (30) is satisfied with γ = γ0. According to (43)
and (44), we find r0 > 0 such that

1

r

∑

|ξi|6r

σi 6 δ/11, r ≥ r0. (45)



A CLOSEDNESS OF SET OF DIRICHLET SERIES SUMS 111

We choose a number k1 ≥ k0 to have λk ≥ r0 and λ̃k(γ0) ≥ r0 for each k ≥ k1, and let Bi be

an arbitrary circle in set E(δ′′) containing either some point λk or λ̃k(γ0) with an index k ≥ k1.
If λk ∈ Bi, according to (45), in the case |ξi| 6 λk the inequality σi 6 δλk/11 holds true, while in
the case |ξi| ≥ λk the inequality σi 6 δ|ξi|/11 is valid, and then in view of the inclusions λk ∈ Bi,
δ ∈ (0, 1/3) we obtain λk ≥ |ξi|(1−δ/11) and σi 6 δ|ξi|/11 6 δλk/11(1− δ/11) 6 3δλk/32. The

situation λ̃k(γ0) ∈ Bi can be treated in the same way. Thus, by (41) and (44), we have

σi 6 max{3δλk/32, 3δλ̃k(γ0)/32} 6 3δ(1 + δ′′)λk/32 6 13δλk/128 6 δλk/9.

It follows that Bi lies either in the circle B(λk, 2δλk/9) or in the circle B(λ̃k(γ0), 2δλk/9).
Therefore, in view of (41) and (44), the inclusion Bi ⊂ B(λk, δλk/3) holds true.

Let Bj ∩B(λk, δλk) 6= ∅. Then by (45), |ξi| 6 (1 + δ)λk/(1− δ/11) 6 11δλk/8. This is why,
employing (45) once again, we find that the total sum of all the radii of circles Bj intersecting
B(λk, δλk) does not exceed δλk/4. It means that for t ∈ (1/2, 1), the circle S(λk, tδλk) does
not intersect set E(δ′′). Then due to (42) and (44) we have the estimate

ln |L(λ)| ≥ ln |L(λ, γ0)| − ε|λ|, λ ∈ S(λk, tδλk), k ≥ k1.

We recall that the absolute value of the function qΛ(λ, λk, δ) does not exceeding one in the circle
B(λk, δ|λk|). This is why for each λ ∈ S(λk, tδλk) the inequality

ln |L(λ, γ0)| 6 ln |L(λ)| − ln |qΛ(λ, λk, δ)|+ ε(1 + tδ)λk 6 ln |L(λ)/qΛ(λ, λk, δ)|+ 2ελk

holds true, and it can be extended to the circle B(λk, tδλk), since ln |L(λ)/qΛ(λ, λk, δ)| is a
harmonic in B(λk, δ|λk|) function and ln |L(λ, γ0)| is subharmonic in the same domain. Then
by (30) we get

ln |L(λ, γ0)| 6 ln |L(λ)|+ 2ελk + ε|λ| 6 ln |L(λ)|+ 4ε|λ|,

λ ∈ B(λk, tδλk) \
⋃

λj∈B(λk ,δλk)

B(λj , θρj(γ0)), k ≥ k1, (46)

At that, the union of the circles B(±λk, tδλk), k ≥ k1 cover all the circles Bi in set E(δ′′) each

of those consists some of the points ±λk or ±λ̃k(γ0) with an index k ≥ k1. It is easy to see that
the remaining part of set E(δ′′) (not covered by the mentioned union) lies in the circle B(0, T1)
for some T1 > 0. Thus, it follows from (46) that

ln |L(λ)| ≥ ln |L(λ, γ0)| − 4ε|λ|, λ ∈ C \
⋃

k≥1

B(±λk, θρk(γ0)) ∪ B(0, T1). (47)

We also note that the zeroes of the function L(λ, γ0) are separated by the distance at least
γ0. This is why, according to the example discussed before Lemma 1, the quantity S̃Λ̃(γ0)

is
finite and thus SΛ̃(γ0)

= 0. Therefore, as to sequence Λ, we can apply Lemma 8 to sequence

Λ̃(γ0) and arguing as above, we can obtain the estimate

ln |L(λ, γ0)| ≥ ln |L(λ)| − 4ε|λ|, λ ∈ C \
⋃

k≥1

B(±λ̃k(γ0), θγ0/2) ∪ B(0, T2). (48)

for some T2 > 0.
Consider the functions

f(λ) =
∞
∏

n=1

(

1− λ2

(µn(γ0))2

)

, L̃(λ, γ0) =
∞
∏

n=1

(

1− λ2

(µ̃n(γ0))2

)

,

where µ̃n(γ0) = γ0n − γ0/2, n ≥ 1. It is easy to show that Λ(γ0) has a finite upper density
not exceeding τ(Λ) + 1/γ0). This is why (see, for instance., [1, Ch. I, Sect. 1, Thm. 1.1.5])

f(λ) is an entire function of exponential type. Sequence Λ̃(γ0) has the density 1/γ0 and is a
regular set (see [5, Ch. II, Sect. 1]). Therefore, L̃(λ, γ0) has a regular growth and its adjoint
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diagram coincides with the segment of imaginary axis [−iπ/γ0, iπ/γ0] (see [1, Ch. I, Sect. 2,
Thm. 1.2.9]). Since its zero set L̃(λ, γ0) is regular, the inequality

ln |L̃(λ, γ0)| =
π|Imλ|
γ0

+ o(λ), λ ∈ C \
⋃

n≥1

B(±µ̃n(γ0), θγ0/2), (49)

holds true (see [5, Ch. II, Sect. 1, Thm. 5]), o(λ) depends on θ ∈ (0, 1] and o(λ)/|λ| → 0 as
|λ| → ∞.

By construction,

ln |f(λ)| − ln |L̃(λ, γ0)| = ln |L(λ)| − ln |L(λ, γ0)|, λ ∈ C.
Moreover, each point λ̃k(γ0) coincides with one of the points µ̃n(γ0). This is why in view of the
choice of numberε > 0 and by (47)–(49) we get (35). The proof is complete.

Lemma 10. Let D be a convex domain in C, Λ = {λk}∞k=1 be an unbounded strictly increas-
ing sequence of positive numbers. Suppose the set of sums of series (1) converging in domain
D is closed in space H(D). Then the system E = {exp(λkz)}∞k=1 is incomplete in H(D).

Proof. If the hypothesis of the lemma holds true, by the corollary of Lemma 3 the inequality
τ (Λ) < ∞ holds true. Then, as above, there exists an entire function f of exponential type
vanishing at the points λk, k ≥ 1. Suppose some shift z0 + K of the adjoint diagram K for
function f lies in domain D. Then the function exp(z0λ)f(λ) belongs to space PD and vanishes
at the points λk, k ≥ 1. It means that system E is incomplete in H(D). It happens, for
instance, when D is the plane of a half-plane.

Suppose domain D is neither the plane nor a half-plane and assume system E is complete
in space H(D). Then by the hypothesis, each function in H(D) is represented by series (1) in
domain D. By Abel theorem for Dirichlet series (see, for instance, [1, Ch. II, Sect. 1, Subsect.
4]), each of such series converges uniformly on compact sets in the half-plane {z : Re z < HD(1)}
(which can coincide with the plane once HD(1) = +∞). Therefore, each function in H(D) can
be analytically continued into this half-plane that is impossible. Thus, E is incomplete in H(D).
The proof is complete.

3. Main results

Let D be an unbounded convex domain and denote

J(D) = {λ ∈ C : HD(λ) = +∞}.
If D = C, then J(D) = C \ {0}. In the case D is a half-plane {z ∈ C : Re (zeiϕ) < a}, set J(D)
is the plane with the cut along the ray {λ = teiϕ : t ≥ 0}. If D is the strip {z ∈ C : Re (zeiϕ) <
a,Re (zei(ϕ+π)) < b}, then J(D) = C \ {λ = teiϕ : t ∈ R}. In all other cases, domain D contains
no straight lines. However, D always contains some ray {z = z0 + teiϕ, t ≥ 0}. At, set J(D)
is an angle strictly less than 2π and it involves an open angle of size π which the half-plane
{λ = teiψ : −ϕ− π

2
< ψ < −ϕ + π

2
, t > 0}. We shall say that D is narrow, if D is a strip or

J(D) coincides with an open half-plane. Otherwise we shall say D is wide.
For a narrow domain D, there exists the unique ψ ∈ [0, π), such that HD(e

iψ) < +∞ and
HD(e

iψ+π) < +∞. It corresponds to the boundary rays {λ = teiψ : t > 0} and {λ = teiψ+π :
t > 0} of set J(D). By means of a shift, a convex compact set can be put inside narrow domain
K if and only if the inequality

HD(e
iψ) +HD(e

iψ+π) > HK(e
iψ) +HK(e

iψ+π)

holds true.
If D is a wide domain, then for each convex compact set K there exists a shift which puts

this set inside domain D. Thus, if the sequence Λ = {λk}∞k=1 is so that τ(Λ) < ∞, then, as in
Lemma 10, system E = {exp(λkz)}∞k=1 is incomplete in H(D).
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Theorem 1. Suppose Λ = {λk}∞k=1 is an unbounded strictly increasing sequence of positive
numbers and D is an unbounded convex domain in C such that the positive semi-axis lies on the
boundary of set J(D) but does not belong to it. Then the following statements are equivalent

1. Each function in W (Λ, D) can be represented by series (1) in the half-plane
{z ∈ C : Re z < HD(1)} (i.e., it is analytically continued into the half-plane and is rep-
resented there by the series);

2. SΛ = 0.

Proof. Suppose z0 ∈ D. By the hypothesis, the positive semi-axis lies on the boundary of set
J(D). Therefore, one of the rays l1 = {z = z0 + teiπ/2, t ≥ 0}, l2 = {z = z0 + te−iπ/2, t ≥ 0}
(possibly, both) lies in domain D. For clarity’s sake, let it be ray l1. We choose ε0 > 0 such
that the circle B(z0, 2ε0 lies inside D. Then domain l1 + B(z0, 2ε0) is contained in D as well.
By Lemma 9, there exists an entire function f of exponential type vanishing at the points λk,
k ≥ 1, and a number γ0 > 0 satisfying inequality (35) (as ε̃ = ε0). Let K be the adjoint
diagram for function f . Then according to (35), for all points λ not lying on the real axis we
have

HK(λ) = hf(λ) 6 π|Imλ|/γ0 + ε0|λ|.
Since the support function is continuous, this inequality can be continued on the whole plane.
Let t0 > π/γ0. Consider the function f0(λ) = f(λ) exp(λz̃0), where z̃0 = z0+ t0e

iπ/2. Its adjoint
diagram is the compact set K + z̃0 which, as it is easy to see, lies in domain l1+B(z0, 2ε0) and
thus in D. Hence, f0 belongs to space PD and vanishes at the points λk, k ≥ 1. It means that
system E = {exp(λkz)}∞k=1 is incomplete in H(D).

Now we can apply Theorem 5.1 in work [3]. If Item 1 holds true, by this theorem we have
the identity SΛ = 0 (under the hypothesis of the theorem the quantity SΛ(D) involved in the
cited theorem coincides with SΛ).

Let us prove the opposite. Suppose Item 2 holds true and let us show that in this case
Item 5 in Theorem 5.1 of work [3] is valid. Let L be an arbitrary convex set in domain D.
Then HD(λ) > HL(λ), λ 6= 0. In accordance with the definition of the support function and
the continuity of the support function of a compact set, we find a point z1 ∈ D and numbers
ε̃, δ̃ > 0 satisfying inequality

Re z1 − ε̃ > HL(λ), λ ∈ B(1, δ̃). (50)

Lessening ε̃ > 0, if necessary, we can assume that the circle B(z1, 2ε̃) lies in domain D. Then
D contains also the domain l1 + B(z1, 2ε̃). Let the a number γ0 ∈ (0, 1) and a function f(λ)
satisfy inequality (35). We indicate f1(λ) = f(λ) exp(λz̃1), where z̃1 = z1+t1e

iπ/2 and t1 > π/γ0.
Function f1 vanishes at the points λk, k ≥ 1. Moreover, its adjoint diagram lies in domain
l1 +B(z1, 2ε̃), and this, in D, i.e., f1 ∈ PD.

Suppose δ > 0. Let us show that for some T (δ) > 0 each point λk obeying |λk| > T (δ)
belongs to the set Rδ, where R = {z : ln |f1(λ)| ≥ HL(λ)}.

We denote T (δ) = max{T, γ0/δ̃, γ0/δ}, where T > 0 is the same as in (35). Let |λk| > T (δ).
Then |λk − iγ0 − λk| 6 δλk < δ|λk − iγ0| and by (35) we have

ln |f(λk − iγ0)| ≥
|Im(λk − iγ0)|

γ0
− ε̃|λk − iγ0| = π − ε̃|λk − iγ0| ≥ −ε̃λk.

By (50) and the homogeneity of the support function we obtain

ln |f1(λk − iγ0)| = ln |f(λk − iγ0)|+ Re (z̃1(λk − iγ0)) ≥ −ε̃λk + λkRe z̃1 + γ0Imz̃1 =

= −ε̃λk + λkRe z1 + γ0Imz̃1 ≥ HL(λk − iγ0).

Here we suppose that Imz̃1 ≥ 0. If Imz̃1 < 0, then instead of λk− iγ0, one should take λk+ iγ0.
We have shown that λk ∈ Rδ, if |λk| > T (δ). Thus, the hypothesis of Theorem 5.1 in work

[3] is satisfied and as well as Item 5 of this Theorem. This is why, Item 2 of this theorem
holds true as well, and in accordance with it, each function in W (Λ, D) is represented by series
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(1) in domain D. Then by Abel theorem for Dirichlet series (see, for instance, [1, Ch. II,
Sect. 1, Subsect. 2,4]), each function in W (Λ, D) is represented by series (1) in the half-plane
{z ∈ C : Re z < HD(1)}. The proof is complete.

We note that each half-plane D = {z : Re z < a} satisfies the hypothesis of the theorem.
This is why the following statement holds true.

Corollary. Let Λ = {λk}∞k=1 be an unbounded strictly increasing sequence of positive numbers
and D = {z : Re z < a}. Each function in W (Λ, D) is represented by series (1) in half-plane
D if and only if SΛ = 0.

Theorem 2. Let Λ = {λk}∞k=1 be an unbounded strictly increasing sequence of positive num-
bers and D be an unbounded convex domain in C such that the positive semi-axis belongs to set
J(D). Then the following statements are equivalent

1. Each function in W (Λ, D) is represented by series (1) in the whole plane;
2. SΛ > −∞.

Proof. As we have mentioned above, under the hypothesis of the theorem, system E is in-
complete in H(D). Then by Theorem 5.1 in work [3], Item 1 of the present theorem implies
Item 2.

Let us prove the opposite and check Item 5 of Theorem 5.1 in work [3]. Inequality SΛ > −∞
holds due to Item 2. In our case, other statements of Item 5 of this theorem hold true trivially,
since all the points λk belong to the real semi-axis lying in J(D). Thus, by Theorem 5.1 in
work [3], each function in W (Λ, D) is represented by series (1) in domain D. Since the support
function of D is unbounded on the real semi-axis, by Abel theorem for Dirichlet series, each of
such series converges in the whole plane. The proof is complete.

In the particular case D = C we obtain

Corollary. Let Λ = {λk}∞k=1 be an unbounded strictly increasing sequence of positive num-
bers. There following statements are equivalent

1. Each function in W (Λ,C) is represented by series (1) in the whole plane;
2. SΛ > −∞;
3. Each function in W (Λ,C) is represented by series (1) on some open subset of the plane.

Proof. Items 1 and 2 are equivalent by Theorem 2. The implication Item 1 ⇒ Item 3 is trivial.
The implication Item 3 ⇒ Item 2 follows from Lemma 3. The proof is complete.

Theorem 3. Let Λ = {λk}∞k=1 be an unbounded strictly increasing sequence of positive num-
bers, D is an unbounded convex domain in C such that the real semi-axis belongs to set J(D)
and ψ ∈ [0, π) is so that HD(e

iψ) < +∞ and HD(e
iψ+π) < +∞. Then the following statements

are equivalent

1. Each function in W (Λ, D) is represented by series (1) in the whole plane;
2. SΛ > −∞ and

| sinψ| lim
a→+∞

1

ln a
lim

r→+∞

∑

r6λk<ar

Re
1

λk
<

1

2π

(

HD(e
iψ) +HD(e

iψ+π)
)

. (51)

Proof. If Item 1 holds, then by Lemma 10, system E is incomplete in H(D). Then, as one easily
see, Theorem 2 in work [14] yields (51). Applying then Theorem 5.1 in work [3], we obtain
Item 2.

And vice versa, if (51) holds, by Theorem 2 in work [14], system E is incomplete in H(D).
Then by Theorem 5.1 in work [3], the implication Item 2 ⇒ Item 1 holds true. The proof is
complete.

Theorem 4. Let Λ = {λk}∞k=1 be an unbounded strictly increasing sequence of positive num-
bers, D be a convex domain in C such that function HD(λ) is bounded in the vicinity of λ = 1.
Then the following statements are equivalent
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1. Each function in W (Λ, D) can be represented by series (1) in the half-plane
{z ∈ C : Re z < HD(1)};

2. System E is incomplete in H(D), SΛ = 0, τ0(Λ) < +∞, and the intersection of the support
line {z ∈ C : Re z = HD(1)} with the boundary of the domain D contains the segment of
length 2πτ0(Λ).

Proof. Suppose Item 2 holds true. Let us show that the hypothesis of Theorem 3.6 in work [3]
holds true. Conditions 1 and 2 are equivalent, i.e., SΛ = 0. Conditions 3 and 4 are trivially
satisfied since all the points λk belong to the positive real semi-axis, in the vicinity of which
the support function of domain D is bounded. It remains to check Condition 5. Such check has
already been made in Lemma 7. In accordance with this lemma, condition 5 of Theorem 3.6 in
work [3] is also satisfied. Then by this theorem and Proposition 2.10 of work [3], each function
W (Λ, D) is represented by series (1) in domain D. As above, by Abel theorem for Dirichlet
series, we obtain Item 1 of the present theorem.

Suppose Item 1 holds true and let S̃Λ = −∞. Then by Lemma 4, for each τ > 0, there
exist δ > 0 and function gτ ∈ W (Λ, G), where G = ({z : Re z < τδ} ∩B(0, τ)) ∪ {z : Re z < 0}
represented by series (1) with the convergence abscissa γ = 0. We let X = ∂D ∩ {z : Re z =
HD(1)}. By assumption, HD(λ) is bounded in the vicinity of λ = 1. This is why X is either a
point or a segment. If X consists of the only point, we denote it by z0 otherwise this symbols
stands for the center of segment X . Let τ > 0 be strictly greater than the length of X (possibly

being zero). Then for some δ̃ ∈ (0, δ), the domain G̃ = G + z0 − δ̃ contains D. We let

g(z) = gτ(z − z0 + δ̃). Function g belongs to space the W (Λ, G̃) ⊂W (Λ, D) and is represented

by series (1) with convergence abscissa γ = Re z0 − δ̃ = HD(1) − δ̃. Since the expansion into
the Dirichlet series is unique, it contradicts Item 1.

Thus, S̃Λ > −∞. As it has already been mentioned, it yields SΛ = 0. Moreover, by Lemma 1,
the maximal density τ0(Λ) is finite and by Lemma 10-, system E is incomplete in H(D). It
remains to show that the length of set X is at least 2πτ0(Λ).

Suppose the length X equals 2πτ ′ < 2πτ0(Λ). We choose α > 0 so that τ ′ + α < τ0(Λ).
Consider the domains

D′′ = {z : Re z < HD(1)} ∩ {z : Re (ze−iβ) < Re ((z0 + i(τ ′ + α))e−iβ)}∩

∩{z : Re (zeiβ)) < Re ((z0 − i(τ ′ + α))eiβ)}, D′ = D′′ ∩ {z : Re z > b}.
It is easy to see that domain D′′ is unbounded and convex and it contains D for some β > 0,
and domain D′ ⊂ D′′ is an isosceles trapezium (as b < HD(1)) whose bases are parallel to the
imaginary axis. One of them lies on the support line {z : Re z = HD(1)} of domain D, contains
X , and has the length 2π(τ ′ + α). The length of the other is strictly greater 2π(τ ′ + α), and it
increases as b decreases. We choose b ∈ R such that this length becomes strictly greater than
2πτ0(Λ). Then domain D′ contains some shift of the segment [−iπτ0(Λ), iπτ0(Λ)]. Let f be a
function whose existence is stated in Lemma 6. Since f vanishes at points λk, k ≥ 1, system E
is incomplete in H(D′). This is why space W (Λ, D′) is non-trivial.

Suppose each function in W (Λ, D′) is represented by series (1) in domain D′. Since it is
bounded, by Theorem 5.2 in work [3], there exists an entire function ϕ of exponential type
vanishing at points λk, k ≥ 1, having regular growth everywhere in the plane, and its adjoint
diagram coincides with the closure of domain D′. Then by (2), the identity

τ(−ϕ, ϕ, Λ̃) = 1

2π
s(−ϕ, ϕ,D′) (52)

holds true except at most a countable set of values of ϕ. Here Λ̃ is the zero set of f , s(−ϕ, ϕ,D′)
is the length of the arc γ(ϕ) on boundary ∂D′ connecting the support points z(ϕ), z(−ϕ) ∈ ∂D′

of the support lines l(±ϕ) = {z : Re (ze±ϕi) = H ′
D(e

±ϕi)}, respectively. Since Λ is a part of a
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measurable set Λ̃, we have

τ0(Λ) = lim
δ→0

lim
r→∞

n(r,Λ)− n((1− δ)r,Λ)

δr
6 lim

δ→0
lim
r→∞

n(−ϕ, ϕ, r,Λ)− n(−ϕ, ϕ, (1− δ)r,Λ)

δr
=

= lim
δ→0

(

lim
r→∞

n(−ϕ, ϕ, r,Λ)
δr

− lim
r→∞

n(−ϕ, ϕ, (1− δ)r,Λ)

δr

)

=

= lim
δ→0

(

τ(−ϕ, ϕ, Λ̃)
δ

− (1− δ)τ(−ϕ, ϕ, Λ̃)
δ

)

= τ(−ϕ, ϕ,Λ)

except at most a countable set of values of ϕ. As ϕ is small enough, the arc γ(ϕ) coincides with
the basis of trapezium D′ of length 2π(τ ′ + α). This is why by (52), inequality τ0(Λ) 6 τ ′ + α
should hold that contradicts the choice of number α.

Hence, there exists a function g′ ∈ W (Λ, D′) which can not be represented by (1) in domain
D′. Now consider the domain D̃′ = D′ ∩ {z : Re z < a}, where b < a < HD. It lies in D

′ and is
an isosceles trapezium whose bases are parallel to the imaginary axis. One of them coincides
with that of D′ having the length strictly greater than 2πτ0(Λ). We choose a number a such
that the other basis of D̃′ has a length strictly greater than 2πτ0(Λ). System E is incomplete in

H(D̃′) due to the same reasons as in H(D′). Then by the proven implication Item 2 ⇒ Item 1,
function g′ ∈ W (Λ, D̃′) is represented by series (1) in the half-plane {z : Re z < a}. The union

of the latter and domain D′ contains D′′. This is why g′ ∈ W (Λ, D̃′) ∩H(D′′). Since domain
D′′ is unbounded, by Theorem 8.1 in work [15], the inclusion g′ ∈ W (Λ, D′′) holds true as well.
Domain D lies in D′′. Therefore, g′ ∈ W (Λ, D). Due to Item 1, function g′ is represented by
series (1) in the half-plane {z ∈ C : Re z < HD(1)} containing D′. It contradicts to the choice
of g′.

Thus, the length of segment X is at least 2πτ0(Λ). The proof is complete.

Remark. If sequence Λ has the density τ(Λ) (and then τ(Λ) = τ0(Λ)), system E is incomplete
in H(D) if and only domain D contains some vertical segment of length 2πτ0(Λ) (see [16,
Ch. III, Sect. 1, Thm. 3.1.6]). If domain D is unbounded, then, as above, the condition of
incompleteness for system E is incomplete in H(D) can be either excluded or replaced by (51).

Corollary 1. Let Λ = {λk}∞k=1 be an unbounded strictly increasing sequence of positive num-
bers, D be an unbounded wide convex domain in C such that function HD(λ) is bounded in the
vicinity of λ = 1. Then the following statements are equivalent

1. Each function in W (Λ, D) can be represented by series (1) in the half-plane
{z ∈ C : Re z < HD(1)};

2. SΛ = 0, τ0(Λ) < +∞ and the intersection of the support line {z ∈ C : Re z = HD(1)} with
the boundary of domain D contains the segment of length 2πτ0(Λ).

Corollary 2. Let Λ = {λk}∞k=1 be an unbounded strictly increasing sequence of positive num-
bers, D be an unbounded convex domain in C such that function HD(λ) is bounded in the vicinity
of λ = 1 and ψ ∈ [0, π) is so that HD(e

iψ) < +∞ and HD(e
iψ+π) < +∞. Then the following

statements are equivalent

1. Each function inW (Λ, D) can represented by series (1) in the half-plane {z ∈ C : Re z < HD(1)};
2. There holds (51), SΛ = 0, τ0(Λ) < +∞, and the intersection of the support line

{z ∈ C : Re z = HD(1)} and of the boundary of domain D contains a segment of length
2πτ0(Λ).
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