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SYMMETRIES AND GOURSAT PROBLEM

FOR SYSTEM OF EQUATIONS 𝑢𝑥𝑦 = 𝑒𝑢+𝑣𝑢𝑦, 𝑣𝑥𝑦 = −𝑒𝑢+𝑣𝑣𝑦

YU.G. VORONOVA, A.V. ZHIBER

Abstract. We describe the higher symmetries and construct the general solution for
a hyperbolic system of equations. We also obtain the explicit formula for the solution of
Goursat problem.
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1. Introduction

In work [1], the authors considered Goursat problem for exponential system of equations

𝜕2𝑢𝑖

𝜕𝑥𝜕𝑦
+

𝑟∑︁
𝑘=1

𝑎𝑖𝑘𝑒
𝑢𝑘 = 0, 𝑖 = 1, . . . , 𝑟, (1.1)

𝑢𝑖(𝑥, 𝑦)− ln
(︀
𝜏𝑖𝜑

𝑖(𝑥)𝜑𝑖(𝑦)
)︀
= 0 as 𝑥𝑦 = 0, (1.2)

𝑎𝑖𝑘 are the entries of Cartan matrix of a simple Lie algebra, and studied the dependence of a
solution on parameters 𝜏1, . . . , 𝜏𝑟 involved in boundary conditions (1.2). A scheme was suggested
for constructing a solution to this problem with employing higher symmetries admitted by
system of equations (1.1). Examples of reduction to a closed system of ordinary differential
equations were provided.

In works [2]–[4], for linear hyperbolic system of equations with zero generalized Laplace
invariants, the general solution was constructed and an algorithm for solving boundary values
problems was given. In work [5], basing on the symmetry approach, there was constructed an
exact solution to Goursat problem for a nonlinear scalar hyperbolic equation of Liouville type.

In the present paper we consider the system of equations{︂
𝑢𝑥𝑦 = 𝑒𝑢+𝑣𝑢𝑦,
𝑣𝑥𝑦 = −𝑒𝑢+𝑣𝑣𝑦,

(1.3)

obeying det(𝐻1 ·𝐾1) = 0, ord(𝐻1, 𝐾1) = 1, and its chain of the generalized Laplace invariants
breaks at the second step (see [6]), where 𝐻1, 𝐾1 are the main invariants of linearized system
(1.3). We describe the higher symmetries and construct the general solution to system (1.3),
which allows us to obtain an exact solution to Goursat problem.
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2. Symmetries

For the sake of convenience of presentation, we introduce the notations

𝑢1 = 𝑢𝑥, 𝑢2 = 𝑢𝑥𝑥, . . . , 𝑣1 = 𝑣𝑥, 𝑣2 = 𝑣𝑥𝑥, . . . ,

�̄�1 = 𝑢𝑦, �̄�2 = 𝑢𝑦𝑦, . . . , 𝑣1 = 𝑣𝑦, 𝑣2 = 𝑣𝑦𝑦, . . . .

It was shown in work [6] that system of equations (1.3) possesses the integrals of first and
second order

𝑤 = 𝑢1 − 𝑣1 − 𝑒𝑢+𝑣 and �̄� = �̄�1𝑣1,
𝑊 = 𝑢2 − 𝑢1𝑣1 − 𝑒𝑢+𝑣𝑢1 and �̄� = �̄�2

�̄�1
+ 𝑣1 − �̄�1,

(2.1)

such that �̄�𝑤 = 0, �̄�𝑊 = 0, 𝐷�̄� = 0, 𝐷�̄� = 0, where 𝐷,�̄� are the operators of total
differentiation w.r.t. 𝑥, 𝑦, respectively.

The system for higher symmetries of system of equations (1.3) reads as{︂
𝐷�̄�𝑝 = 𝑒𝑢+𝑣�̄�𝑝+ 𝑒𝑢+𝑣�̄�1(𝑝+ 𝑞),
𝐷�̄�𝑞 = −𝑒𝑢+𝑣�̄�𝑞 − 𝑒𝑢+𝑣𝑣1(𝑝+ 𝑞).

(2.2)

By formulae (2.1), the symmetries for system of equations (1.3) depending on variables 𝑢, 𝑣,
𝑢1, 𝑣1, . . . can be sought as

𝑝 = 𝑝(𝑢, 𝑣, 𝑣1, 𝑤,𝑊,𝑤1,𝑊1, . . .), 𝑞 = 𝑞(𝑢, 𝑣, 𝑣1, 𝑤,𝑊,𝑤1,𝑊1, . . .).

We calculate �̄�𝑝, �̄�𝑞, 𝐷�̄�𝑝, 𝐷�̄�𝑞 and substitute them into system (2.2). Then, we equate the
expressions at �̄�1, 𝑣1 and obtain the following system of equations⎧⎪⎪⎨⎪⎪⎩

𝐷𝑝𝑢 = 𝑒𝑢+𝑣(𝑝+ 𝑞),
𝐷 (𝑝𝑣 − 𝑒𝑢+𝑣𝑝𝑣1) = 2𝑒𝑢+𝑣 (𝑝𝑣 − 𝑒𝑢+𝑣𝑝𝑣1) ,

𝐷𝑞𝑢 = −2𝑒𝑢+𝑣𝑞𝑢,
𝐷 (𝑞𝑣 − 𝑒𝑢+𝑣𝑞𝑣1) = −𝑒𝑢+𝑣(𝑝+ 𝑞).

(2.3)

The second and third equations of system (2.3) imply that

𝑝𝑣 − 𝑒𝑢+𝑣𝑝𝑣1 = 0, 𝑞𝑢 = 0.

Summing the first and the fourth equation of system (2.3) and integrating the obtained identity
w.r.t. 𝑢, we obtain the following expression for 𝑝,

𝑝 = −𝑞𝑣𝑢+ 𝑒𝑢+𝑣𝑞𝑣1 + 𝐶𝑢+ ℎ(𝑣, 𝑣1, 𝑤,𝑊, . . .), (2.4)

where ℎ(𝑣, 𝑣1, 𝑤,𝑊, . . .) is an arbitrary function, and 𝐶 is an arbitrary constant. It remains to
substitute the found function 𝑝 into the second and first equation of system (2.3) that leads us
to functions 𝑝 and 𝑞, namely,

𝑝 = (𝐷 + 𝑢1)𝑎− 𝑏, 𝑞 = 𝑣1𝑎+ 𝑏. (2.5)

Here 𝑎(𝑤,𝑊,𝑤1,𝑊1, . . .), 𝑏(𝑤,𝑊,𝑤1,𝑊1, . . .) are arbitrary functions.
Then the symmetries depending on variables 𝑢, 𝑣, �̄�1, 𝑣1, . . . can be sought as

𝑝 = 𝑝(�̄�1, �̄�, �̄� , �̄�1, �̄�1, . . .), 𝑞 = 𝑞(�̄�1, �̄�, �̄� , �̄�1, �̄�1, . . .).

In system of equations (1.3), we make the change of variables,

𝑢+ 𝑣 = 𝑈, 𝑢− 𝑣 = 𝑉.

Then system of equations (1.3) is equivalent to the system{︂
𝑢𝑥𝑦 = 𝑒𝑢𝑣𝑦,
𝑣𝑥𝑦 = 𝑒𝑢𝑢𝑦.

(2.6)
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For the sake of convenience, here we denote new variables 𝑈 , 𝑉 again by 𝑢, 𝑣. Then the
linearized system (see (2.2)) becomes{︂

𝐷�̄�𝑝 = 𝑒𝑢(�̄�𝑞 + 𝑣1𝑝),
𝐷�̄�𝑞 = 𝑒𝑢(�̄�𝑝+ �̄�1𝑝).

(2.7)

Integrating the second equation of system (2.7) w.r.t. 𝑦, we obtain the following system of
equations equivalent to the previous one{︂

𝐷�̄�𝑝 = 𝑒𝑢(�̄�𝑞 + 𝑣1𝑝),
𝐷𝑞 = 𝑒𝑢𝑝.

(2.8)

We shall seek the solution to system of equations (2.8) as

𝑝 =
𝑛∑︁
𝑘=0

𝑝𝑘𝑓
(𝑘)(𝑦), 𝑞 =

𝑛∑︁
𝑘=0

𝑞𝑘𝑓
(𝑘)(𝑦), (2.9)

where 𝑓 (𝑘)(𝑦) = �̄�(𝑘)𝑓(�̄�, �̄� , �̄�1, �̄�1, . . .).
Then we substitute functions (2.9) into system of equations (2.8) and equation coefficients

at like derivatives. We obtain a system of equations equivalent to system (2.8), namely,⎧⎪⎪⎨⎪⎪⎩
𝐷𝑞𝑘 = 𝑒𝑢𝑝𝑘, 𝑘 = 0, 1, . . . , 𝑛,
𝐷�̄�𝑝0 = 𝑒𝑢(�̄�𝑞0 + 𝑣1𝑝0),

𝐷�̄�𝑝𝑘 +𝐷(𝑝𝑘−1) = 𝑒𝑢(�̄�𝑞𝑘 + 𝑞𝑘−1 + 𝑣1𝑝𝑘), 𝑘 = 1, 2, . . . , 𝑛,
𝐷𝑝𝑛 = 𝑒𝑢𝑞𝑛.

(2.10)

Consider the case 𝑛 = 0. Here system (2.10) casts into the form⎧⎨⎩
𝐷�̄�𝑝0 = 𝑒𝑢(�̄�𝑞0 + 𝑣1𝑝0),

𝐷𝑞0 = 𝑒𝑢𝑝0,
𝐷𝑝0 = 𝑒𝑢𝑞0.

(2.11)

We make the replacement 𝑣1 =
√︀
�̄�21 − 4�̄� in the second equation of system (2.11) to obtain

the equation

(𝑞0)�̄�1

√︁
�̄�21 − 4�̄� = 𝑝0.

We differentiate this equation w.r.t. �̄�1 and expressing (𝑝0)�̄�1 by the third equation of system
(2.11), we obtain (︀

(𝑞0)�̄�1(�̄�
2
1 − 4�̄�)− �̄�1𝑞0

)︀′
�̄�1

= 0

or

(𝑞0)�̄�1(�̄�
2
1 − 4�̄�)− �̄�1𝑞0 = 𝐴(�̄�, �̄� , . . .), (2.12)

where 𝐴(�̄�, �̄� , . . .) is arbitrary function. Equation (2.12) is a first order linear differential
equation whose solution can be represented as

𝑞0 = − 𝐴

4�̄�
�̄�1 +𝐵

√︁
�̄�21 − 4�̄�, (2.13)

where 𝐵(�̄�, �̄� , . . .) is an arbitrary function.
Then we substitute expression for 𝑞0 (2.13) into the second and first equations of system

(2.11) to find that 𝑝0, 𝑞0 read as

𝑝0 = �̄�1𝐵(�̄�, �̄� , . . .), 𝑞0 = 𝑣1𝐵(�̄�, �̄� , . . .). (2.14)
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Now we consider the case 𝑛 = 1 in system (2.10). Here system (2.10) can be rewritten as

𝐷𝑞0 = 𝑒𝑢𝑝0, (2.15)

𝐷𝑞1 = 𝑒𝑢𝑝1, (2.16)

𝐷�̄�𝑝0 = 𝑒𝑢(�̄�𝑞0 + 𝑣1𝑝0), (2.17)

𝐷�̄�𝑝1 +𝐷𝑝0 = 𝑒𝑢(�̄�𝑞1 + 𝑞0 + 𝑣1𝑝1), (2.18)

𝐷𝑝1 = 𝑒𝑢𝑞1. (2.19)

Equations (2.16) and (2.19) coincide with equations of system (2.11), therefore, 𝑝1 and 𝑞1 are
located above and read as

𝑝1 = �̄�1𝐵 − 𝐴

4�̄�

√︁
�̄�21 − 4�̄�, 𝑞1 = − 𝐴

4�̄�
�̄�1 +𝐵

√︁
�̄�21 − 4�̄�. (2.20)

Differentiating equation (2.19) w.r.t. 𝑦, we obtain

𝐷�̄�𝑝1 = 𝑒𝑢(�̄�𝑞1 + �̄�1𝑞1). (2.21)

We subtract equation (2.21) from equation (2.18) and after simple transformation we obtain

𝐷𝑝0 = 𝑒𝑢(𝑞0 + 𝐴(�̄�, �̄� , . . .)). (2.22)

We differentiate equation (2.22) w.r.t. 𝑦 and subtract then equation (2.17), we find the expres-
sion for 𝑝0,

𝑝0 =
1

𝑣1
(�̄�𝐴+ �̄�1𝑞0 + �̄�1𝐴). (2.23)

We substitute expression (2.23) for 𝑝0 into equation (2.15) and replacing 𝑣1 =
√︀
�̄�21 − 4�̄�, we

obtain first order linear differential equation for function 𝑞0, namely,

(𝑞0)�̄�1 =
�̄�1

�̄�21 − 4�̄�
𝑞0 +

�̄�𝐴

�̄�21 − 4�̄�
+

�̄�1𝐴

�̄�21 − 4�̄�
.

The solutions to this equation can be represented as

𝑞0 = −�̄�1
�̄�𝐴

4�̄�
− 𝐴+𝑅

√︁
�̄�21 − 4�̄�, (2.24)

where 𝑅 = 𝑅(�̄�, �̄� , . . .) is an arbitrary function. We substitute expression (2.24) into equation
(2.23) that allows us to find 𝑝0,

𝑝0 = −𝑣1
�̄�𝐴

4�̄�
+ �̄�1𝑅. (2.25)

As a result, we obtain that system of equations (2.15)–(2.19) has solutions (2.20), (2.24), (2.25).
It follows from (2.9) that the symmetries for system of equations (2.6) read as

𝑝 =

(︂
−𝑣1

�̄�𝐴

4�̄�
+ �̄�1𝑅

)︂
𝑓 +

(︂
�̄�1𝐵 − 𝐴𝑣1

4�̄�

)︂
�̄�𝑓, (2.26)

𝑞 =

(︂
−�̄�1

�̄�𝐴

4�̄�
− 𝐴+ 𝑣1𝑅

)︂
𝑓 +

(︂
− 𝐴

4�̄�
�̄�1 + 𝑣1𝐵

)︂
�̄�𝑓. (2.27)

In view of formulae (2.14), symmetries (2.26), (2.27) can be represented as

𝑝 =
𝑣1
�̄�
�̄�𝐺, 𝑞 = 4𝐺+

�̄�1
�̄�
�̄�𝐺, (2.28)
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where 𝐺 = −1
4
𝐴𝑓 . We remind that found symmetries (2.14), (2.28) are defined in terms of

new variables 𝑈 , 𝑉 . Returning to variables 𝑢 = 𝑈+𝑉
2

, 𝑣 = 𝑈−𝑉
2

, we obtain the following
representation for symmetries of system of equations (1.3)

𝑝 = �̄�1
1

�̄�
�̄�𝐺+ �̄�1𝐵 + 2𝐺, 𝑞 = −𝑣1

1

�̄�
�̄�𝐺+ 𝑣1𝐵 − 2𝐺. (2.29)

3. Construction of general solution

By employing higher symmetries (2.5), (2.29), the problem on integrating system of equations
(1.3) is reduced to the following dynamical system (see [1]),⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝜏 𝜕𝑢
𝜕𝜏

= (𝐷 + 𝑢1)𝜓
1 − 𝜓2 = �̄�1

1
�̄�
�̄�𝜓1 + �̄�1𝜓

2 + 2𝜓1,
𝜏 𝜕𝑣
𝜕𝜏

= 𝑣1𝜓
1 + 𝜓2 = −𝑣1 1

�̄�
�̄�𝜓1 + 𝑣1𝜓

2 − 2𝜓1,
𝜏 𝜕�̄�1
𝜕𝜏

= 𝑒𝑢+𝑣�̄�1𝜓
1,

𝜏 𝜕𝑣1
𝜕𝜏

= −𝑒𝑢+𝑣𝑣1𝜓1,
𝜏 𝜕𝑢1
𝜕𝜏

= 𝑒𝑢+𝑣�̄�1
1
�̄�
�̄�𝜓1 + 𝑒𝑢+𝑣�̄�1𝜓

2,
𝜏 𝜕𝑣1
𝜕𝜏

= 𝑒𝑢+𝑣𝑣1
1
�̄�
�̄�𝜓1 − 𝑒𝑢+𝑣𝑣1𝜓

2.

(3.1)

We shall assume that 𝜓1 = 𝜓1(𝑥), 𝜓2 = 𝜓2(𝑥), 𝜓1 = 𝜓1(𝑦), 𝜓2 = 𝜓2(𝑦).
The first and second equation of system (3.1) are first order partial differential equation for

functions 𝑢, 𝑣, respectively. The solutions to these equations can be represented as

𝑢 = − ln𝜓1 +

∫︁
𝜓2

𝜓1
𝑑𝑥+ 𝐹 (𝑎, 𝑦), 𝑣 = −

∫︁
𝜓2

𝜓1
𝑑𝑥+𝐺(𝑎, 𝑦), (3.2)

where 𝐹 (𝑎, 𝑦), 𝐺(𝑎, 𝑦) are arbitrary functions, and by 𝑎 we denote the expression

𝑎 = ln 𝜏 +

∫︁
𝑑𝑥

𝜓1
.

Then we substitute the found functions (3.2) into system (3.1), we obtain the system of
equations for functions 𝐹 and 𝐺

𝐹𝑎 = �̄�𝜓1 1

𝐺𝑦

+ 𝜓2𝐹𝑦 + 2𝜓1, (3.3)

𝐺𝑎 = −�̄�𝜓1 1

𝐹𝑦
+ 𝜓2𝐺𝑦 − 2𝜓1, (3.4)

𝐹𝑦𝑎 = 𝑒𝐹+𝐺𝐹𝑦, (3.5)

𝐺𝑦𝑎 = −𝑒𝐹+𝐺𝐺𝑦, (3.6)

𝐹𝑎𝑎 = 𝑒𝐹+𝐺

(︂
�̄�𝜓1 1

𝐺𝑦

+ 𝜓2𝐹𝑦

)︂
, (3.7)

𝐺𝑎𝑎 = 𝑒𝐹+𝐺

(︂
�̄�𝜓1 1

𝐹𝑦
− 𝜓2𝐺𝑦

)︂
. (3.8)

In view of (3.3), (3.4), equations (3.7), (3.8) can be rewritten as{︂
𝑓𝑎𝑎 = 𝑒𝑓+𝑔𝑓𝑎,
𝑔𝑎𝑎 = −𝑒𝑓+𝑔𝑔𝑎,

(3.9)

where 𝑓 = 𝐹 −2𝑎𝜓1, 𝑔 = 𝐺+2𝑎𝜓1. We subtract first equation of system (3.9) from the second
one and integrate the obtained identity w.r.t. 𝑎,

𝑓𝑎 − 𝑔𝑎 = 𝑒𝑓+𝑞 + 𝐶1(𝑦), (3.10)
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where 𝐶1(𝑦) is an arbitrary function. Then we multiply the first equation of system (3.9) by
𝑔𝑎, the second equation by 𝑓𝑎 and sum the obtained expressions to find

𝑔𝑎 =
𝐶2(𝑦)

𝑓𝑎
, (3.11)

where 𝐶2(𝑦) is an arbitrary function. We substitute the found formula for 𝑔𝑎 (3.11) into equation
(3.10) and we get

𝑔 = −𝑓 + ln
(︀
𝑓 2
𝑎 − 𝐶1𝑓𝑎 − 𝐶2

)︀
− ln 𝑓𝑎. (3.12)

We return back to system of equations (3.9) and in view of formula (3.12), the first equation
can be rewritten as

𝑓𝑎𝑎 = 𝑓 2
𝑎 − 𝐶1𝑓𝑎 − 𝐶2.

The right hand side of this expression is a polynomial of second degree and we factorize it

𝑓𝑎𝑎 = (𝑓𝑎 − 𝛼)(𝑓𝑎 − 𝛽),

𝛼, 𝛽 are arbitrary functions of 𝑦. Integrating this equation, we find 𝑓 , namely,

𝑓 =
𝛼

𝛼− 𝛽
[(𝛼− 𝛽)𝑎+ 𝛾]− ln [1− exp{(𝛼− 𝛽)𝑎+ 𝛾}] + 𝛿(𝑦), 𝛼 ̸= 𝛽, (3.13)

𝑓 = 𝛼𝑎− ln(𝜀− 𝑎) + 𝜅(𝑦), 𝛼 = 𝛽, (3.14)

where 𝛼(𝑦), 𝛽(𝑦), 𝛾(𝑦), 𝛿(𝑦), 𝜀(𝑦), 𝜅(𝑦) are arbitrary functions.
Now we substitute the found formulae (3.13), (3.14), (3.12) into equation (3.5). We obtain

the following relations:
1. as 𝛼 ̸= 𝛽,

𝛽′ + 2�̄�𝜓1 = 0, 𝛼 = 𝛽 + 𝑐, 𝛿′ +
𝛽′𝛾

𝛼− 𝛽
= 0, (3.15)

where 𝑐 is an arbitrary constant;
2. as 𝛼 = 𝛽,

𝛼′ + 2�̄�𝜓1 = 0, 𝛼𝜀′ + 𝜅′ = 0. (3.16)

Then we substitute functions (3.13), (3.14), (3.12) into equations (3.6), (3.3), (3.4), and in view
of conditions (3.15), (3.16), we obtain the true identities. Thus, the solution to systems of
equations (1.3) can be represented as (3.2), where functions 𝐹 = 𝑓 + 2𝑎𝜓1, 𝐺 = 𝑔 − 2𝑎𝜓1 are
determined by relations (3.13), (3.14), (3.12), namely, as 𝛼 ̸= 𝛽,

𝑢 = ln𝜑′
1(𝑥) + 𝜑2(𝑥)−

𝛼𝛿′

𝛼′ − ln

(︂
1− 𝑒𝑥𝑝{𝑎− 𝛿′

𝛼′}
)︂
+ 𝛿,

𝑣 = −𝜑2(𝑥) + (𝑎− 𝛿′

𝛼′ ) +
𝛼𝛿′

𝛼′ − ln

(︂
𝛼− (𝛼− 1) exp{𝑎− 𝛿′

𝛼′}
)︂
− 𝛿,

and as 𝛼 = 𝛽,

𝑢 = ln𝜑′
1(𝑥) + 𝜑2(𝑥)− ln(𝜀(𝑦)− 𝑎) + 𝜅(𝑦), (3.17)

𝑣 = −𝜑2(𝑥)− ln

[︂
𝜅′

𝜀′
(𝑎− 𝜀(𝑦)) + 1

]︂
− 𝜅(𝑦). (3.18)

Here 𝜑′
1(𝑥) =

1
𝜓1 , 𝜑

′
2(𝑥) =

𝜓2

𝜓1 , 𝜀(𝑦), 𝜅(𝑦), 𝛼(𝑦), 𝛿(𝑦) are arbitrary functions.
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4. Exact solution to Goursat problem

Consider Goursat problem for system of equations (1.3),

𝑢 |𝑦=0= ln 𝑝(𝑥), 𝑣 |𝑦=0= ln 𝑞(𝑥), 𝑢 |𝑥=0= ln 𝑝(𝑦), 𝑣 |𝑥=0= ln 𝑞(𝑦). (4.1)

We let 𝑦 = 0, 𝜏 = 1 in the solution to (3.17), (3.18) to obtain

𝑢 |𝑦=0= ln 𝑝(𝑥) = ln𝜑′
1 + 𝜑2 − ln(𝜀(0)− 𝜑1) + 𝜅(0), (4.2)

𝑣 |𝑦=0= ln 𝑞(𝑥) = −𝜑2 − ln

(︂
𝜅′(0)

𝜀′(0)
(𝜑1 − 𝜀(0)) + 1

)︂
− 𝜅(0). (4.3)

We sum expressions (4.2) and (4.3) and integrate the obtained identity w.r.t. 𝑥 that allows us
to find function 𝜑1(𝑥),

𝜑1(𝑥) = 𝜀(0)−

(︃
𝐶2 +

{︂
1

𝐶1

− 𝐶2

}︂
𝑒

𝑥∫︀
0

𝑝𝑞𝑑𝜉

)︃−1

, (4.4)

where 𝐶1 = 𝜀(0)− 𝜑1(0), 𝐶2 =
𝜅′(0)
𝜀′(0)

.

Then by expression (4.2) we find function 𝜑2(𝑥), namely,

𝜑2(𝑥) = ln

[︃(︀
𝑞(0)𝑒𝜑2(0)+𝜅(0) − 1

)︀
𝑒
−

𝑥∫︀
0

𝑝𝑞𝑑𝜉
+ 1

]︃
− ln 𝑞 − 𝜅(0). (4.5)

Now we let 𝑥 = 0 in formulae (3.17), (3.18),

𝑢 |𝑥=0= ln 𝑝(𝑦) = ln𝜑′
1(0) + 𝜑2(0)− ln(𝜀− 𝜑1(0)) + 𝜅, (4.6)

𝑣 |𝑥=0= ln 𝑞(𝑦) = −𝜑2(0)− ln

(︂
𝜅′

𝜀′
(𝜑1(0)− 𝜀) + 1

)︂
− 𝜅. (4.7)

We sum identities (4.6), (4.7), then obtain a first order differential equations with separating
variables for function 𝜀(𝑦). Solving this equation, we find

𝜀(𝑦) = 𝜑1(0) + 𝜑′
1(0)

⎛⎝ 𝑦∫︁
0

𝑞𝑝′𝑑𝜉 +
𝜑′
1(0)

𝐶1

⎞⎠−1

. (4.8)

Then 𝜅(𝑦) can be found by expression (4.6) and reads as

𝜅(𝑦) = ln 𝑝− 𝜑2(0)− ln

⎛⎝ 𝑦∫︁
0

𝑞𝑝′𝑑𝜉 + 𝑝(0)𝑒−𝜑2(0)−𝜅(0)

⎞⎠ . (4.9)

Now we employ the matching condition. We let 𝑥 = 0, 𝑦 = 0 in (3.17), (3.18) and obtain the
relations

𝜑′
1(0) = 𝑝(0)𝑞(0)𝐶1(1− 𝐶1𝐶2), (4.10)

𝜑2(0) + 𝜅(0) = − ln (𝑞(0)(1− 𝐶1𝐶2)) . (4.11)

We substitute the found functions (4.4), (4.5), (4.8), (4.9) into solution (3.17), (3.18) and taking
into consideration matching condition (4.10), (4.11), we finally obtain the representation for
the solution to Goursat problem (1.3), (4.1),

𝑢 = ln

⎡⎢⎢⎣ 𝑝(𝑥)𝑝(𝑦)𝑞(0)

𝑝(0)𝑞(0) +
𝑦∫︀
0

𝑝′𝑞𝑑𝜉(1− exp{
𝑥∫︀
0

𝑝𝑞𝑑𝜉})

⎤⎥⎥⎦ ,
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𝑣 = ln

⎡⎢⎢⎣ 𝑞(𝑥)𝑞(𝑦)𝑝(0) exp{
𝑥∫︀
0

𝑝𝑞𝑑𝜉}

(𝑝𝑞 −
𝑦∫︀
0

𝑝′𝑞𝑑𝜉)(exp{
𝑥∫︀
0

𝑝𝑞𝑑𝜉} − 1) + 𝑝(0)𝑞(0)

⎤⎥⎥⎦ .
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