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COMPLETENESS AND MINIMALITY OF SYSTEMS
OF BESSEL FUNCTIONS

B.V. VYNNYTS’KYI, R.V. KHATS’

Abstract. We find the necessary and sufficient conditions for the completeness and mini-
mality in the space L?(0;1) of system (\/ZprJy(zpr) : k € N) generated by Bessel function
of the first kind of index v > —1/2. Moreover, we establish a criterion for the completeness
and minimality of system (272\/ZpyJs/2(xpr) : k € N) in the space L*((0; 1); *dax).
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1. INTRODUCTION AND PRELIMINARIES

Let p € [0;+00), L%*((0;1);2zPdz) be the space of functions f : (0;1) — C such
that t?/2f(t) € L?*(0;1) with the inner product (fi; f2) = fo tP f1(t) fo(t) dt and the norm
112 == fol )2 dt. Let J(z) = 372, ¢ CVM@/2" 28 1o Begsel's function of the first kind

k'F TRT(v+k+1)

of index v. It is known (see [3], [25, p. 345], [32]) that the function .J, is a solution of the
equation z%y" + zy’ + (2% — v?)y = 0, i.e. the equation y" +y'/x + (1 — v*/2%)y = 0, the func-
tion y(z) = J,(zp) is a solution of the equation y” + v/ /z — yv?/2* = —p*y, and the function

y(x) = JzpJ,(xp) satisfies the equation

v:—1/4
-y + —/y = p’y.
x?
The function J, for v > —1 has (see [3], [25, p. 350], [32]) an infinite set of zeros, among

them positive zeros pi, k € N, and negative zeros p_j := —pi, k € N. All zeros are simple,
except perhaps, pg = 0.

Theorem A. (see [3], [25, p. 357], [32]) Let v > —1 and (pi, : k € N) be a sequence of positive
zeros of the function J,. Then the system (\/xJ,(zpy) : k € N) is an orthogonal basis in the
space L*(0;1).

The system (v/zJ,(zpr) : k € N) is also complete in L*(0;1) if ppJ (pr) + aJ,(px) = 0,
a+v > 0 (see [16, p. 124], 25, pp. 356-357]). From [§ it follows that if » > —1/2 and
(pr : k € N) is a sequence of distinct positive numbers such that p, < w(k + v/2) for all
sufficiently large k& € N, then the system (y/z.J,(zpx) : k € N) is complete in the space L*(0;1).

We say that an entire function G is of formal exponential type o € (0; 400) if

G(2)] < cle) exp((o +€)lz]), =2€C,

for each € > 0 and some constant c(¢).
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Theorem 1. Let v > —1/2 and (px : k € N) be an arbitrary sequence of distinct nonzero
complex numbers. For a system (\/tppJ,(tpi) : k € N) to be incomplete in the space L*(0;1) it
is necessary and sufficient that a sequence (py : k € N) is a subsequence of zeros of some even
entire function G of formal exponential type o < 1 such that the function f(z) = z**Y/2G(z)
belongs to the space L*(R).

The proof by standard methods (see [20, pp. 131-132], [21]) follows immediately from the
following lemmas.

Lemma B. (see [2], [13]) Let v > —1/2. A function f has the representation
1
_ / VAL () dt, v € L2(0:1),
0

if and only if f € L*(0;+00) and f(z) = 2"*Y2G(z), where G is an even entire function of
formal exponential type o < 1. Moreover, if f # 0 then G is a transcendental entire function.

Lemma C. (see [I1, p. 67|, [24]) Let v > —1. Then every function f € L*(0;+00) can be
represented in the form

+oo
— / Va2t J,(2t)h(t) dt

with some function h € L*(0; +00). Moreover, || f|| = ||h| and

+oo
= / Vatd,(2t) f(2) dz

A system (e; : k € Ny) of the Hilbert space is said to be minimal (see 20, p. 131], [21
p. 4258], [22]) if for each n € Ny the element e, does not belong to the closure of the linear
span of the system (ej : k € Ny \ {n}). A system is minimal if and only if it has a biorthogonal
system. A complete system has, at most, one biorthogonal system (see [21], [22]).

Similarly to [20, Lecture 18], [21], from Lemmas B, C and Theorem[I] we obtain the following
result.

Theorem 2. Let v > —1/2 and (py : k € N) be an arbitrary sequence of distinct nonzero
complex numbers such that pi # p2, if k # m. The system (\/tppJ,(tpr) : k € N) is complete
and minimal in the space L*(0;1) if and only if the sequence (py : k € Z\ {0}), p_1 := —px,
1S a sequence of zeros of some even entire function G of formal exponential type o < 1
such that the function z**Y/2G(z) does not belongs to the space L?(0;+oc) and the function
(22 — p2) 712" T2G(2) belongs to L*(0;+00). Moreover, the biorthogonal system (i, : k € N) is
formed, in particular, by the functions v, defined by the equality

dz.

Y(t) =

\/_J zt ”+1/2G(z)
on 1/ 2G’ / — P}
Using methods of [I§], [20] and [2I], we can obtain a number of other various necessary and
sufficient conditions for the completeness and minimality of system (v/tprJ,(tpx) : k € N) in
the space L?(0;1). In particular, following the arguments of [20, Lecture 18], [21], §§1.7, 3.3],
Theorem [I] yields the next statement.
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Theorem 3. Let v > —1/2 and (px : k € N) be an arbitrary sequence of distinct nonzero
complex numbers such that |Spr| > dlpk| for all k € N and some § > 0. The system
(VTprd,(tpy) : k € N) is complete in the space L*(0;1) if and only if

e}

ZL:_‘_OO.

—1 [P

At studying of some non-classical boundary-value problems (see [26]-[31]) and generalized
eigenvectors of some linear operators [28)], [29] we needed to obtain the analogues of Theorems
for weighted spaces and establish an approximation properties of the special finite linear
combinations of Bessel functions. We don’t understand to the end the nature of expected
results for an arbitrary v € R. For advance in the given direction it is important to investigate
in details the simplest model cases v = —3/2 and v = 3/2. The case v = —3/2 was considered
in [27], [30] (see also [26], [28], [31]). Here we consider the case v = 3/2 more detail. But even
in this case we cannot obtain the all necessary facts. In particular, remains an open one for us
the problem formulated at the end of this paper. In our view, its solution is very important for
the construction of some spectral theory that is based on the notion of a generalized eigenvector
(see [28], [29]).

It is well known (see [3], [25} p. 350], [32]) that /zJ5/2(2) = —/2/mz (2 cos z —sin z). The

VIZPpI32(p)

function *——">-—= belongs to the space L*((0;1); z?dx) for each p # 0. From Theorem A
22p

it follows that if (p, : £ € N) is a sequence of positive zeros of the function .Js,, then the
VIprJso(
system (O : k € N), Oy(x) := P ;/Z( pk), is complete in the space L?((0;1);z*dr). But
L7 Py
from this statement it does not follows that the system (O : k € N) is complete in the space
L*((0;1); 2%dx). We investigate some approximation properties of the system (O : k € N) in
L?((0;1); x%dz) with an arbitrary sequence of nonzero complex numbers (py, : k& € N). The main
result of the paper is contained in Theorem [J] where is found a criterion for the completeness
and minimality of system (6} : k € N) in the space L*((0;1); z%dx).

2. MAIN RESULTS

Denote by PW?2 the set of all entire functions of formal exponential type o € (0;+00)
belonging to the space L?(R) on the real axis R in C, and by PW(,Q’_ we denote the class of odd
entire functions from PW2. According to the Paley-Wiener theorem (see [12], [19]-[21]), the
class PW? coincides with the class of functions G admitting the representation

Gz = [ vyt g€ L(-010)
and the class PW? _ consists of the functions G of the form

G(z) = /Sin(tz)g(t) dt, g€ L*0;0).
0
Moreover, llgllzz(0) = v/ZT7IGllz30ssocy and

—+o00

g(t) = % / sin(tz)G(z) dz.
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Theorem 4. An entire function Q) can be represented in the form

=) = / Ny ()R dt, e L2((0;1); #da), (1)

if and only if 2 is an odd entire function, Q(0) = Q'(0) = Q”(0) = 0 and the function V' (z)/z
belongs to the space PWﬁf. If these conditions hold then

h(t) = \/g 709;(;) sin(tz) dz

Proof. Let the function € is representable in the form . Since

5 o
Z\/a(]gﬂ(tz):_\/;tzcos(tz) sm(tz)’

t

) \/g /Itzcos(tz)t— ), o
\/7/752 sm tZ \/7/8111 tZ

where ¢(t) = th(t). Since h € L?*((0;1); 2%dx), we have q € LQ(O; 1) and, hence, according to
Paley-Wiener theorem, the function €'(z)/z belongs to the space PVV2 Conversely, if all the

conditions of the theorem hold then the function q = \2/7 [, too 2(2) 2@ gin (tz) dz belongs to
the space L?(0;1) and Q'(2) = \/2/7 fo zsin(tz)q dt Using Fubini’s theorem we get

Q(2) = Q(2) — Q(0) = \/g/q(t) dt]wsin(tw) dw
_ \/g /1 sinz) _ttz cos(tz) Q(;) dt = /1 Nz Js(t2)h(t) dt,

0

where h(t) = q(t)/t. Since g € L*(0;1), one has that h € L?((0;1); 2%dx), and the proof of the
theorem is completed. O

we have

Therefore,

Let E27_ be the class of the entire functions €2 that can be represented in the form , and
let E5 _ be the class of nonzero odd entire functions 2 such that Q(0) = Q'(0) = 2”(0) = 0 and
the function '(z)/z belongs to the space PW} _

Corollary 1. EQ,_ =Fy_.

Corollary 2. The class E,_ coincides with the set of the entire functions €2 that can be

represented in the form
1
2 in(tz) —t t
_ \ﬁ / sint2) tjcos( Dawydt, qe L20:1). )
s
0
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Theorem 5. Let (pi : k € N) be an arbitrary sequence of distinct nonzero complex numbers
such that pi # p> if k # n. For a system (O : k € N) to be incomplete in the space
L%((0;1); 2%dx) it is mecessary and sufficient that a sequence (py : k € Z\ {0}), p_p := —ps, is
a subsequence of zeros of some nonzero even entire function G such that the function Q(z) =
23G(z) belongs to the space Es
Proof. Incompleteness of a system (O : k € N) is equivalent to the incompleteness of the
system (pi©r : k € N). According to the well-known completeness criterion, the last sys-
tem is incomplete in the space L%((0;1);2%dz) if and only if there exists a nonzero function
h € L*((0;1); x2dzx) such that

1

/Pk\/wa?)/z(ka)h(x) dr =0 (3)
0
for all £ € N. If the system (O : k € N) is incomplete, then the function has zeros at
points py, belongs to the space Fy _ and Q(z) # 0. Hence, the function G(z) = 273Q(z) is

required. Conversely, if the sequence (py : k € Z\ {0}), p_x := —px, is a subsequence of zeros
of some even nonzero entire function G such that the function Q(z) = 23G(z) belongs to Fy
then, using , we obtain . The theorem is proved. O

Lemma 1. Let an entire function (2 € Ey _ be defined by the formula (@ Then (here and
so on by Cy, Cy, ...we denote arbitrary positive constants) for all z € C, we have

€|%Z| |\sz| 1/2
90)] < C (1 + |2 - + G| (mzr ; —) .

V1+[97] 1+ [Sz]

1/2

-2 / i) el
\/7/ cos(tz) d \/7/ e

1/2 1/2
Then Q(z) = I(2) + zIs(z) + I3(z). According to the Paley-Wiener theorem, the functions
I5(z) and I3(z) belong to the space PWZ,

Proof. Indeed, let

~1/2
\/>/ ztz dt+ \/s / ztz
1/2
and applying Schwartz’s inequality, we get
el
Ir(z C3——, z¢€C.
L) < O
Similarly,
RE]
I3(2)] < Cj— o, z€C,

VAEERZ
Finally, since |sin(tz) — tzcos(tz)|*> = (sin(tz) — txcos(tz))? + (sinh(ty) — tycosh(ty))?+
+t2(2? sinh?(ty) — y?sin’(tx)) for any t € R and 2z = x + iy € C, we obtain
1/2 1/2
/ |sin(tz) — tz cos(tz)|? gt = / (sin(tz) — tz cos(tx))? gt

t t4

0
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1/2 1/2
+/ (sinh(ty) — ty cosh(ty))? it / 22 sinh?(ty) — y? sin®(tx) i@t
t 12
0 0
w(' t —tcost)? y/z(‘ ht — tcosht)?
3 sint — t cos 3 sinht — t cos
=z / m dt +vy / m dt
0 0
y/2 x/2
9 sinh? ¢ 9 sin®t
+x7y 2 dt —y“x 2 dt.
0 0
Therefore, for z € C
, , el .\ o321\ /2
[11(2)] < Cs | |2]” + |2] v Y z[ ) = Cslz] mZHTM :
This completes the proof of the lemma. O

Theorem 6. Let (py, : k € N) be a sequence of distinct nonzero complex numbers such that
pr # p2 if k # m, and let a sequence (py : k € Z\ {0}), p_x := —px, be a sequence of zeros
of the some even entire function G of finite formal exponential type, for which on the rays
{zrargz = @i}, j € {1,234}, 1 € [0;7/2), w2 € [7/2;7), 3 € (m;37/2], pa € (37/2;27),
we have

|G(2)] = Co(1 +[2]) 7 exp(|S2]).
Then the system (O : k € N) is complete in the space L*((0;1); x?dzx).

Proof. Assume the converse. Then, according to Theorem [ there exists an entire func-
tion 2 € FE_ for which the sequence (pp : & € Z \ {0}) is a subsequence of zeros. Let
V(2) = Q(2)/(2*G(z)). Then V is an even entire function of finite exponential type, for which
(see Lemma |1])

1
V(iz)| < Cr————, argz=p,,
V(z)| < Cr 157 g ¥j
Hence, according to the Phragmén-Lindel6f theorem (see [20], [21]), V(2) = 0. Therefore,
Q(z) = 0. This contradiction proves the theorem. O

Jj € {1;2;3;4}.

Corollary 3. Let (p : k € Z), p—_i := —px, be a sequence of zeros of the function Jsso. Then
the system (O}, : k € N) is complete in the space L*((0;1); z2dx).

Proof. Indeed, the sequence (p : k € Z \ {0}) is a sequence of zeros of the entire function
G(z) = 273(2 cos z — sin z), and this function satisfies the conditions of Theorem [6} Therefore,
the system (O, : k € N) is complete in the space L?((0;1); z%dx). O

Theorem 7. Let (p, : k € N) be a sequence of distinct nonzero complex numbers such that
pr # p2 if k£ m, and let a sequence (py : k € Z\ {0}), p_x := —pr, be a sequence of zeros of
the some even entire function G of finite formal exponential type such that the function z>G(z)
does not belongs to the space Ey _ and for which on the rays {z : argz = ¢,}, j € {1;2;3;4},
o1 € [0;7/2), 2 € [/2im), 3 € (m;3m/2], pa € (37/2;2), the inequality

|G(2)] = Cs(1+ |2]) " exp(|Sz])

holds, where o < 5/2 is a some constant. Then the system (O : k € N) is complete in the
space L*((0;1); x*dz).



COMPLETENESS AND MINIMALITY OF SYSTEMS OF BESSEL FUNCTIONS 137

Proof. Assume the converse. Then, according to Theorem [ there exists an entire func-
tion 2 € E,_ for which the sequence (p, : k € Z \ {0}) is a subsequence of zeros. Let
V(z) = Q(2)/(2*G(2)). Then V is an even entire function of finite formal exponential type, for
which (see Lemma (1))

V() < Co(L+ |22, argz =5, j€{1;2;3:4).

Since aw — 1/2 < 2 and V is an even entire function, then, according to the Phragmén-Lindel6f
theorem, the function V is a constant. Hence, Q(z) = C192°G(z). Therefore, Q ¢ F, . Thus,
we have a contradiction and the proof of the theorem is completed. O

Lemma 2. If an odd entire function L belongs to the space Ey_ and has a root at a point
p # 0, then the function L(z) = L(z)/(2* — p*) also belongs to E .

Proof. Indeed, the function L is an odd entire function of formal exponential type o < 1,
Z/(Z) _ L/(Z)(22 B p2> B 2ZL<Z)’
(22 — p2)?

and L(0) = L'(0) = L"(0) = 0. Besides,
'(z) L)  2L(2)

2 2P —p?) (=P

Tl p DT
x(x? — p?) x
1+Rp 1+Rp
and according to Lemma
400 +o0
L) | (1 +[z])®
[ =l #<ca | |G| i<
1+Rp 1+Rp
Hence, the function L'(z)/z belongs to L2(R). This concludes the proof of the lemma. O

Lemma 3. If an odd entire function L has zeros at points pp # 0, k € N, and the function
L(2)/(2* — p?) belongs to the space FE_, then the functions Li(z) = L(2)/(2* — p}) also belong
to By for every k € N\ {1}.

Lz Ll z

= pz)((Z)Q 7 Then Qx(2) = (p; — pf)r(p)z and
Ly = Qi + Li. Therefore, taking into account the previous lemma, we obtain the required
proposition. ]

Proof. In fact, let Qi(2) = (pi — p?)

Theorem 8. Let (pr : k € N) be an arbitrary sequence of distinct complex numbers such
that p3 # p2, if k # m. If the sequence (py, : k € N) is a subsequence of zeros of some even
entire function G which has simple roots at all points py and the function 23(z* — p?)71G(z)
belongs to Ey _, then the system (O : k € N) has a biorthogonal system (v : k € N) in the
space L?((0;1);x%dx). The biorthogonal system (v : k € N) is formed, in particular, by the
functions i, defined by the equality

T(t) = \/g/ VZS) sin(tz) dz,  Vi(z) = 2p,2°G(2) )

t G (2 = 7))
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Proof. In fact, according to Lemma , the functions V}, belong to the space Ey . Therefore,
there exist nonzero elements 7 of the space L*((0;1); z%dz) such that

1

Vo) = [ ViRt dt

0
and by Theorem 4| the functions v; can be found by . Moreover,

Vk(pn) . 17 n:k7
p% 07 n%l@

and we obtain the required proposition. O

Theorem 9. Let (pr : k € N) be an arbitrary sequence of nonzero complex numbers such
that pi # p? as k # m. The system (O : k € N) is complete and minimal in the space
L%((0;1); 2%dx) if and only if the sequence (py, : k € Z\{0}), p_r := —px, is a sequence of zeros
of some even entire function G such that the function 23(2* — p})"'G(z) belongs to the space
Ey _ and the function 22G(z) does not belongs to this space.

Proof. If the considered system is minimal then there exists a mnonzero function
v € L*((0;1); 2%dx) such that
1

1, k= 17
/pk\/tkag/g(th)'Yl(t) dt = { ()’ k 7§ 1.
0

Let T'(z) = fol 2\t2Js3p9(t2)1(t) dt. The function G(z) = 273(2% — p?)T'(2) is the required,
because the function T'(z) = 23(2% — p?)7'G(z) belongs to the space Fy_ and has zeros at all
points pg, all its zeros are simple and it has no other zeros. Indeed, if p is another root of the
function G, then the function V(z) = G(z)/(2* — p*) which has roots at all points pj, would
belongs to the space E,_ that, according to Theorem , contradicts the completeness of the
considered system. Besides, the function 2°G(z) does not belongs to E» _, because otherwise the
system would be incomplete. Conversely, if all the conditions of the theorem hold then, basing
on Theorem [§] we obtain the required proposition. The proof of theorem is thus completed. [

Corollary 4. Let (p, : k € Z), p_i := —px, be a sequence of zeros of the function Js5. Then
the system (O}, : k € N) has in the space L*((0;1); 2%dx) a biorthogonal system (v : k € N)
which formed by the functions v, defined by the formula

() = 7(1+ PNV RT3 2 (tpr).-

This corollary can be proved by standard methods of the theory of Bessel functions
(see [3], [25, p. 347], [32]). However, it can be proved by Theorem [§f In fact, the
sequence (pg :k € Z\{0}), p_r = —pg, is a sequence of zeros of even entire function
G(z) = 273(zcos z — sin z). Further, the function z3G(z) dose not belongs to the space Es
and the function 23(22 — p?) "*G(z) belongs to this space. Furthermore, according to Theorem [8]
the system (O : k € N) has in the space L*((0;1); z?dz) a biorthogonal system (v, : k € N)
which formed by the functions 7., defined by the equality , where

_ 2pi(zcosz —sinz) , _
Vil(2) = G'(pr)(z2—p}) o) =

() = _\/g +/Oovk<z>tz COS(tZt)ZQ_ sin(tz) "

sin py,
T2
Pk

Therefore,
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zZ.

o \/5 28 +/Oo(zcosz—sinz)(tzcos(tz)—sin(tz)) ;

TG (k) J (22— p})

Let n<z’ t) — t226'i(1+t)z_’_tZQGi(lft)z_’_Z'zei(lth)z_izei(lft)z_’_l'tzei(lﬂ)z_’_Z'tzei(lft)z_ei(lth)z_}_ei(lft)z'
Then (z cos z — sin z)(tz cos(tz) — sin(tz)) = 1(n(z;t) + n(—=2;t)). Hence,

+o0

L n(z;t) 8
) = = o 1) / BT

—00

V2T . .
= - (tpx cos(tpy) — sin(tpr)) (px sin py, + cos pi) = 7(1 + pi)V/EprTs2(tor).

t sin pg
Problem. Let (p : k € Z), p_i := —p, be a sequence of zeros of the function J3/,. Since (see
[32], [25], p. 352]) px ~ wk as k — oo and
Pk Pk
72(1 4+ p2)2 Vi (1)]2
julPal? = TS f o ar [ MO0
F 0 0
w1+ p})? [ Ve
— 3—3(1+0(1)) / t—th+0(1) — +00, k — o0,
Pk
0

then the system (O : k£ € N) is not uniformly minimal (see [21], p. 4258], [22], p. 62]) in the space
L?((0;1); 2%dx) and therefore is not a basis in this space (see [21], p. 4258], [22, p. 62]). However,
it is easy to show that the biorthogonal system (v : k € N) is complete in L*((0;1); z%dz).
Therefore, the numbers d = fol t2f(t)y(t) dt determine the function f € L*((0;1);z%dz)
uniquely. But the series >, dy©Ok(x) not for each function f € L?((0;1);2%dz) converges
in L?((0;1); x%dx) to the function f. We do not know the methods of restoration of the func-
tion f € L*((0;1); z%dx) by numbers dj, and, in particular, whether the given series converges
in L?((0;1); 2%dx) to f in the sense of Cesaro.

Similar problems are studied in [I], [4-[7], [9], [10], [14], [15], [23], [32 Ch. XVIII], [33] and
for exponential systems in [17], [I8], [21], but we cannot use these results.

BIBLIOGRAPHY

1. V.A. Abilov, F.V. Abilova. Approximation of functions by Fourier-Bessel sums [/ Izv. Vyssh.
Uchebn. Zaved. Mat. 2001. No. 8. P. 3-9. [Russ. Math. (Izvestiya Vuzov. Matem.) 2001. V. 45, No.
8. P. 1-7.]

2. N.I. Akhiezer. To the theory of coupled integral equations // Zapiski matem. otdelenia fiziko-matem.
fakulteta i Kharkovskogo matem. obschestva. 1957. V. 25. P. 5-31. (in Russian.)

3. H. Bateman, A. Erdélyi. Higher transcendental functions. Vol. 2. McGraw-Hill, New York-Toronto-
London. 1953.

4. A. Benedek, R. Panzone. Mean convergence of series of Bessel functions // Rev. Un. Mat. Ar-
gentina. 1972. V. 26, No. 1. P. 42-61.

5. A. Benedek, R. Panzone. On mean convergence of Fourier-Bessel series of negative order // Stud.
Appl. Math. 1971. V. 4, No. 3. P. 281-292.

6. A. Benedek, R. Panzone. Pointwise convergence of series of Bessel functions // Rev. Un. Mat.
Argentina. 1972. V. 26, No. 3. P. 167-186.

7. J.J. Betancor, K. Stempak. Relating multipliers and transplantation for Fourier-Bessel expansions
and Hankel transform // Tohoku Math. J. 2001. V. 53, No. 1. P. 109-129.

8. R.P. Boas, H. Pollard. Complete sets of Bessel and Legendre functions // Ann. of Math. 1947. V.
48, No. 2. P. 366-384.



140 B.V. VYNNYTS’KYI, R.V. KHATS’

9.

10

11.

12.
13.

14.

15.

16.

17.

18.

19.
20.

21.

22.
23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

0. Ciaurri, K. Stempak, J.L. Varona. Mean Cesaro-type summability of Fourier-Neumann series
// Studia Sci. Math. Hungar. 2005. V. 42, No. 4. P. 413-430.
. L. Colzani, A. Crespi, G. Travaglini, M. Vignati. Fquiconvergence theorems for Fourier-Bessel
expansions with applications to the harmonic analysis of radial functions in euclidean and non
euclidean spaces // Trans. Amer. Math. Soc. 1993. V. 338, No. 1. P. 43-55.

M.M. Dzhrbashyan. Integral transforms and representations of functions in the complexr domain.
Nauka, Moscow, 1966. (in Russian.)

John B. Garnett. Bounded analytic functions. Academic Press, New York. 1981.

J.L. Griffith. Hankel transforms of functions zero outside a finite interval // J. Proc. Roy. Soc.
New South Wales. 1955. V. 89, No. 2. P. 109-115.

J.J. Guadalupe, M. Pérez, F.J. Ruiz. Mean and weak convergence of Fourier-Bessel series /] J.
Math. Anal. Appl. 1993. V. 173, No. 2. P. 370-389.

J.J. Guadalupe, M. Pérez, F.J. Ruiz, J.L. Varona. Two notes on convergence and divergence a.e.
of Fourier series with respect to some orthogonal systems // Proc. Amer. Math. Soc. 1992. V. 116,
No. 2. P. 457-464.

J.R. Higgins. Completeness and basis properties of sets of special functions. Cambridge University
Press, Cambridge. 1977.

K.P. Isaev, R.S. Yulmukhametov. Unconditional exponential bases in Hilbert spaces // Ufa Math.
J. 2011. V. 3, No. 1. P. 3-15.

B.N. Khabibullin. Completeness of exponential systems and uniqueness sets, Bashkir State Uni-
versity Press, Ufa, 2008. (in Russian)

P. Koosis. Introduction to Hy spaces. Cambridge University Press, Cambridge. 1998.

B.Ya. Levin. Lectures on entire functions. Transl. Math. Monogr. V. 150. Amer. Math. Soc.,
Providence, RI. 1996.

A.M. Sedletskii. Analytic Fourier transforms and exponential approzimations. I, II // J. Math.
Sci. 2005. V. 129, No. 6. P. 4251-4408; 2005. V. 130, No. 6. P. 5083-5255.

1. Singer. Bases in Banach Spaces. V. 1. Springer-Verlag, Berlin. 1970.

K. Stempak. On convergence and divergence of Fourier-Bessel series. Electron. Trans. Numer.
Anal. 2002. V. 14. P. 223-235.

E.C. Titchmarsh. Introduction to the theory of Fourier integrals, Second edition. Clarendon Press,
Oxford. 1948.

V.S. Vladimirov. Equations of mathematical physics. Nauka, Moscow. 1981. [Marcel Dekker, Inc.,
New York. 1971.]

B.V. Vynnyts’kyi, V.M. Dilnyi. On some analogues of Paley-Wiener theorem and one boundary
value problem for Bessel operator. in Proc. of Int. Conf. on complex analysis in memory of A.A.
Gol’dberg, Lviv, Ukraine, May 31 — June 5, 2010, pp. 63-64.

B.V. Vynnyts’kyi, R.V. Khats’. Some approximation properties of the systems of Bessel functions
of index —3/2 // Mat. Stud. 2010. V. 34, No. 2. P. 152-159.

B.V. Vynnyts’kyi, R.V. Khats’. Approximation properties of Bessel functions and a generaliza-
tion of the notion of eigenvector. in: Proc. of Int. Conf. on complex analysis in memory of A.A.
Gol’dberg, Lviv, Ukraine, May 31 — June 5, 2010, pp. 64-65.

B.V. Vynnyts’kyi, R.V. Khats’. A generalization of the notion of eigenvector. in: Proc. of Int.
Conf. “Modern problems of analysis”, Chernivtsi, Ukraine, September 30 — October 3, 2010, pp.
51-52. (in Ukrainian)

B.V. Vynnyts’kyi, O.V. Shavala. Boundedness of solutions of a second-order linear differential
equation and a boundary value problem for Bessel’s equation // Mat. Stud. 2008. V. 30, No. 1. P.
31-41. (in Ukrainian)

B.V. Vynnyts’kyi, O.V. Shavala. On completeness of the system (cos(pnz) + pnxsin(pnx)) and a
boundary value problem for Bessel operator, in: Proc. of Int. Conf. ” Analysis and topology”, Lviv,
Ukraine, May 26 — June 7, 2008, pp. 54-55.

G.N. Watson. A treatise on the theory of Bessel functions. Cambridge University Press, Cambridge.
1944.

G.M. Wing. The mean convergence of orthogonal series // Amer. J. Math. 1950. V. 72, No. 4. P.
792-808.



COMPLETENESS AND MINIMALITY OF SYSTEMS OF BESSEL FUNCTIONS

Bohdan V. Vynnyts’kyi,
Institute of Physics, Mathematics and Informatics,

Ivan Franko Drohobych State Pedagogical University,
3 Stryiska Str.,

82100 Drohobych, Ukraine

E-mail: vynnytskyi@ukr.net

Ruslan V. Khats’,

Institute of Physics, Mathematics and Informatics,
Ivan Franko Drohobych State Pedagogical University,
3 Stryiska Str.,

82100 Drohobych, Ukraine

E-mail: khats@ukr.net

141



