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GROWTH REGULARITY FOR THE ARGUMENTS OF
MEROMORPHIC IN C ∖ {0} FUNCTIONS OF COMPLETELY

REGULAR GROWTH
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Abstract. We study the asymptotic behaviour for the arguments of meromorphic function
in C ∖ {0} of completely regular growth with respect to a growth function 𝜆. We find that
that the key role in the description of this behaviour is played by the function 𝜆1(𝑟) =∫︀ 𝑟
1 𝜆(𝑡)/𝑡 𝑑𝑡.
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1. Introduction

The theory of entire functions of completely regular growth with respect to the function 𝜆
close to a power function was created in late 30’s of the last century by B. Levin and A. Pfluger.
This theory has many applications in various areas of modern complex analysis. A full exposition
this theory as well as its applications can be found in [1].

Using the Fourier series method developed by L. A. Rubel and B. A. Taylor [2],
A. A. Kondratyuk generalized Levin-Pfluger theory of entire functions of completely regular
growth. The growth of a function was measured with respect to an arbitrary non-decreasing
continuous function 𝜆 satisfying the condition 𝜆(2𝑟) 6 𝑀𝜆(𝑟) for some 𝑀 > 0 and all 𝑟 > 0.
This generalization made it possible to describe asymptotic behaviour of entire functions
of completely regular growth in 𝐿𝑝-metrics. He also introduced the classes of meromorphic
functions of completely regular growth [3], [4], [5]. One can find a thorough description of this
theory in [6].

The next possible step in this field is to extend and generalize this theory for multiply
connected domains. Many authors studied meromorphic functions in multiply connected
domains. One of the recent approaches was proposed in [7], [8], [9]. Using a Nevanlinna type
characteristic introduced in these works and the notion of finite 𝜆-density [9], the notion of
holomorphic function of completely regular growth in the punctured plane C* = C ∖ {0} was
introduced in [10] as well as its growth indicators. This work was concerned mainly with the
properties of the growth indicators. Another work in this direction is [11], where using the
Fourier series method under general assumptions, the problem of description of the sets of
holomorphic functions in C* possessing the property of simultaneous regular growth of the
logarithm of modulus and argument was solved.

In the present work we make further studies in this direction. Namely, we study the
asymptotic behaviour of the arguments of meromorphic functions of completely regular growth
in C*.
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2. Definitions, notations and main results

Definition 1 ([9]). A positive nondecreasing continuous unbounded function 𝜆 in [1,+∞) is
said to be a growth function.

We say that a growth function is a function of moderate growth if there exists positive 𝑀
such that 𝜆(2𝑟) 6 𝑀𝜆(𝑟) for all 𝑟 > 1. Let 𝜆 be a function of moderate growth. We denote

𝜆1(𝑟) :=

𝑟∫︁
1

𝜆(𝑡)

𝑡
𝑑𝑡. (1)

Let 𝑓 be a meromorphic function in C* not vanishing identically. By 𝐴* we denote C* without
the intervals {𝑧 = 𝜏𝑎 : 𝜏 > 1} if |𝑎| > 1, and {𝑧 = 𝜏𝑎 : 0 6 𝜏 6 1} if |𝑎| < 1, where 𝑎 is a zero
or pole of 𝑓. Let {𝑎𝑗} be the zeros and {𝑏𝑗} be the poles of 𝑓 ,

𝑓(𝑧) = 𝑓(𝑧)
∏︁

|𝑎𝑗 |=1

(𝑧 − 𝑎𝑗)
−1
∏︁
|𝑏𝑗 |=1

(𝑧 − 𝑏𝑗).

Then [9, Lemma 4.1] there exists 𝑚 ∈ Z such that for the function 𝐹 (𝑧) = 𝑧−𝑚𝑓(𝑧) and for
any given closed path 𝛾 ∈ 𝐴* we have ∫︁

𝛾

𝐹 ′(𝑧)

𝐹 (𝑧)
𝑑𝑧 = 0.

This allows us to determine a branch of the logarithm of 𝐹 (𝑧) in 𝐴*. We observe that

𝑚 =
1

2𝜋𝑖

∫︁
|𝑧|=1

𝑓 ′(𝑧)

𝑓(𝑧)
𝑑𝑧,

see [9, Lemma 4.1].
We use the following notations for the Fourier coefficients

𝑙𝑘(𝑡, 𝐹 ) =
1

2𝜋

2𝜋∫︁
0

𝑒−𝑖𝑘𝜃 log𝐹 (𝑡𝑒𝑖𝜃)𝑑𝜃, 𝑡 > 0, 𝑘 ∈ Z, (2)

𝑐𝑘(𝑡, 𝐹 ) =
1

2𝜋

2𝜋∫︁
0

𝑒−𝑖𝑘𝜃 log |𝐹 (𝑡𝑒𝑖𝜃)|𝑑𝜃, 𝑡 > 0, 𝑘 ∈ Z, (3)

𝑎𝑘(𝑡, 𝐹 ) =
1

2𝜋

2𝜋∫︁
0

𝑒−𝑖𝑘𝜃 arg𝐹 (𝑡𝑒𝑖𝜃)𝑑𝜃, 𝑡 > 0, 𝑘 ∈ Z. (4)

Remark 1. Note that

𝑐𝑘(𝑡, 𝐹 ) =
1

2
(𝑙𝑘(𝑡, 𝐹 ) + 𝑙−𝑘(𝑡, 𝐹 )), 𝑎𝑘(𝑡, 𝐹 ) =

1

2𝑖
(𝑙𝑘(𝑡, 𝐹 )− 𝑙−𝑘(𝑡, 𝐹 )),

for 𝑡 > 0 and 𝑘 ∈ Z.

The Nevanlinna type characteristic 𝑇0(𝑟, 𝑓) for a function 𝑓 meromorphic on the annulus
{𝑧 ∈ C : 1

𝑅0
< |𝑧| < 𝑅0}, where 1 < 𝑅0 6 +∞, was introduced in [7]. Namely,

𝑇0(𝑟, 𝑓) = 𝑚0(𝑟, 𝑓) +𝑁0(𝑟, 𝑓), 1 < 𝑟 < 𝑅0,
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where

𝑚0(𝑟, 𝑓) = 𝑚(𝑟, 𝑓) +𝑚

(︂
1

𝑟
, 𝑓

)︂
− 2𝑚(1, 𝑓),

𝑚(𝑡, 𝑓) =
1

2𝜋

2𝜋∫︁
0

log+ |𝑓(𝑡𝑒𝑖𝜃)| 𝑑𝜃, 1

𝑅0

< 𝑡 < 𝑅0,

𝑁0(𝑟, 𝑓) =

∫︁ 𝑟

1

𝑛0(𝑡, 𝑓)

𝑡
𝑑𝑡,

𝑛0(𝑡, 𝑓) is the counting function of the poles of 𝑓 in the annulus 1/𝑡 6 |𝑧| 6 𝑡, 𝑡 > 1. This
characteristic possesses the properties (see [7], [8], [9]) similar to the properties of the classical
Nevanlinna characteristic 𝑇 (𝑟, 𝑓) [12].

Definition 2 ([9]). Let 𝜆 be a growth function and 𝑓 be a meromorphic function in C*. We
say that 𝑓 is of finite 𝜆-type if 𝑇0(𝑟, 𝑓) 6 𝐴𝜆(𝐵𝑟), for some positive constants 𝐴, 𝐵 and for all
𝑟, 𝑟 > 1.

Definition 3. A meromorphic function 𝑓 in C* is called a function of the first type
completely regular growth (c.r.g.1) if 𝑓 is of finite 𝜆-type and for all 𝑘 ∈ Z there exist

lim
𝑟→+∞

𝑐𝑘(𝑟, 𝑓)

𝜆(𝑟)
=: 𝑐1𝑘 and lim

𝑟→+∞

𝑐𝑘(
1
𝑟
, 𝑓)

𝜆(𝑟)
=: 𝑐2𝑘.

Definition 4. A meromorphic function 𝑓 in C* is called a function of the second type
completely regular growth (c.r.g.2) if 𝑓 is of finite 𝜆-type and for all 𝑘 ∈ Z there exist

lim
𝑟→+∞

𝑐𝑘(𝑟, 𝑓) + 𝑐𝑘(
1
𝑟
, 𝑓)

𝜆(𝑟)
=: 𝑐*𝑘.

We denote by Λ∘,1, Λ∘,2 the classes of meromorphic functions of c.r.g.1 and c.r.g.2 in C*

respectively. If 𝑓 ∈ Λ∘,1 or 𝑓 ∈ Λ∘,2 we say that 𝑓 is of completely regular growth (c.r.g.) in C*.

Remark 2. It is obvious that Λ∘,1 ⊂ Λ∘,2. However, these classes do not coincide.

For example, take a growth function 𝜆 and an entire function 𝑔 of finite 𝜆-type, which is not of
c.r.g. with respect to 𝜆 in the entire complex plane C. Without loss of generality we can assume
𝑔(0) ̸= 0 and 𝑔 has no zeros on the unit circle |𝑧| = 1. For 𝑧 ∈ C* put 𝑓(𝑧) = 𝑔(𝑧)/𝑔(1/𝑧).
Then 𝑓 is obviously meromorphic in C*. We have that log |𝑔(1/𝑧)| is bounded as 𝑧 → ∞. And
because 𝑔 is not of c.r.g. in C, there exists 𝑘 ∈ Z such that the limit lim

𝑟→+∞
𝑐𝑘(𝑟,𝑔)
𝜆(𝑟)

does not exist

or is infinite (see [3] or [6]). Therefore, there is no finite limit of 𝑐𝑘(𝑟,𝑓)
𝜆(𝑟)

as 𝑟 → +∞ for that same
𝑘. Hence, 𝑓 /∈ Λ∘,1. On the other hand, 𝑐𝑘(𝑟, 𝑓) + 𝑐𝑘(

1
𝑟
, 𝑓) = 0 for all 𝑘 ∈ Z. Thus, 𝑓 ∈ Λ∘,2.

Definition 5 ([10]). If 𝑓 is of c.r.g.1 then the functions

ℎ1(𝜃, 𝑓) =
∑︁
𝑘∈Z

𝑐1𝑘𝑒
𝑖𝑘𝜃, ℎ2(𝜃, 𝑓) =

∑︁
𝑘∈Z

𝑐2𝑘𝑒
𝑖𝑘𝜃

are called the growth indicators of 𝑓 ; in case of c.r.g.2 the growth indicator of 𝑓 is

ℎ(𝜃, 𝑓) =
∑︁
𝑘∈Z

𝑐*𝑘𝑒
𝑖𝑘𝜃,

where 𝑐1𝑘, 𝑐
2
𝑘, 𝑐

*
𝑘 are given by Definitions 3 and 4.

Our main results are the following theorems.
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Theorem 1. Let 𝜆 be a function of moderate growth, 𝜆1 be defined by (1), 𝑓 be a
meromorphic in C* function of c.r.g.1 with respect to 𝜆, and ℎ1, ℎ2 be the growth indicators of
𝑓 . Then for all 𝑝 ∈ [1,+∞)⎧⎨⎩ 1

2𝜋

2𝜋∫︁
0

⃒⃒
arg𝐹 (𝑟𝑒𝑖𝜃) + 𝜆1(𝑟)ℎ

′
1(𝜃, 𝑓)

⃒⃒𝑝
𝑑𝜃

⎫⎬⎭
1
𝑝

= 𝑜(𝜆1(𝑟)), 𝑟 → +∞, (5)

⎧⎨⎩ 1

2𝜋

2𝜋∫︁
0

⃒⃒⃒⃒
arg𝐹

(︂
1

𝑟
𝑒𝑖𝜃
)︂
− 𝜆1(𝑟)ℎ

′
2(𝜃, 𝑓)

⃒⃒⃒⃒𝑝
𝑑𝜃

⎫⎬⎭
1
𝑝

= 𝑜(𝜆1(𝑟)), 𝑟 → +∞. (6)

Theorem 2. Let 𝜆 be a function of moderate growth, 𝜆1 be defined by (1), 𝑓 be a
meromorphic in C* function of c.r.g.2 with respect to 𝜆, and ℎ be the growth indicator of
𝑓 . Then for all 𝑝 ∈ [1,+∞)⎧⎨⎩ 1

2𝜋

2𝜋∫︁
0

⃒⃒⃒⃒
arg𝐹 (𝑟𝑒𝑖𝜃)−arg𝐹

(︂
1

𝑟
𝑒𝑖𝜃
)︂
+𝜆1(𝑟)ℎ

′(𝜃, 𝑓)

⃒⃒⃒⃒𝑝
𝑑𝜃

⎫⎬⎭
1
𝑝

= 𝑜(𝜆1(𝑟)), 𝑟 → +∞. (7)

Theorem 3. Let 𝜆 be a function of moderate growth, 𝜆1 be defined by (1), 𝑓 be a
meromorphic in C* function of c.r.g.1 with respect to 𝜆, and ℎ1, ℎ2 be the growth indicators of
𝑓 . Then for all 𝑝 ∈ [1,+∞)⎧⎨⎩ 1

2𝜋

2𝜋∫︁
0

⃒⃒
log𝐹 (𝑟𝑒𝑖𝜃)−𝜆(𝑟)ℎ1(𝜃, 𝑓)+𝜆1(𝑟)ℎ

′
1(𝜃, 𝑓)

⃒⃒𝑝
𝑑𝜃

⎫⎬⎭
1
𝑝

= 𝑜(𝜆1(𝑟)), 𝑟 → +∞, (8)

⎧⎨⎩ 1

2𝜋

2𝜋∫︁
0

⃒⃒⃒⃒
log𝐹 (

1

𝑟
𝑒𝑖𝜃)−𝜆(𝑟)ℎ2(𝜃, 𝑓)−𝜆1(𝑟)ℎ

′
2(𝜃, 𝑓)

⃒⃒⃒⃒𝑝
𝑑𝜃

⎫⎬⎭
1
𝑝

= 𝑜(𝜆1(𝑟)), 𝑟 → +∞. (9)

Theorem 4. Let 𝜆 be a function of moderate growth, 𝜆1 be defined by (1), 𝑓 be a
meromorphic in C* function of c.r.g.2 with respect to 𝜆, and ℎ be the growth indicator of
𝑓 . Then for all 𝑝 ∈ [1,+∞)⎧⎨⎩ 1

2𝜋

2𝜋∫︁
0

⃒⃒⃒⃒
⃒log𝐹 (𝑟𝑒𝑖𝜃)+log𝐹

(︂
1

𝑟
𝑒𝑖𝜃
)︂
−𝜆(𝑟)ℎ(𝜃, 𝑓)+𝜆1(𝑟)ℎ

′(𝜃, 𝑓)

⃒⃒⃒⃒
⃒
𝑝

𝑑𝜃

⎫⎬⎭
1
𝑝

=𝑜(𝜆1(𝑟)), (10)

as 𝑟 → +∞.

3. Auxiliary results

Let 𝑓 be a meromorphic in C* function not vanishing identically, 𝐹 (𝑧) = 𝑧−𝑚𝑓(𝑧), where
𝑓 and 𝑚 are determined as above. Let {𝑏𝑗} be the poles of 𝑓, 𝜎𝑗 = arg 𝑏𝑗. For 𝑘 ∈ Z we
denote ([10])

𝑛1
𝑘(𝑟, 𝑓) =

∑︁
1<|𝑏𝑗 |6𝑟

𝑒−𝑖𝑘𝜎𝑗 , 𝑛2
𝑘(𝑟, 𝑓) =

∑︁
1
𝑟
6|𝑏𝑗 |<1

𝑒−𝑖𝑘𝜎𝑗 , 𝑟 > 1,

and
𝑛𝑘(𝑟, 𝑓) =

∑︁
1
𝑟
6|𝑏𝑗 |6𝑟

𝑒−𝑖𝑘𝜎𝑗 , 𝑟 > 1,
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where every pole 𝑏𝑗 is counted according to its multiplicity. In particular, 𝑛0(𝑟, 𝑓) is the counting
function that appears in the definition of 𝑇0(𝑟, 𝑓). We assume 𝑛1

𝑘(1, 𝑓) = 𝑛2
𝑘(1, 𝑓) = 0 for all

𝑘 ∈ Z. Thus,
𝑛𝑘(𝑟, 𝑓) = 𝑛1

𝑘(𝑟, 𝑓) + 𝑛2
𝑘(𝑟, 𝑓) + 𝑛𝑘(T, 𝑓), 𝑘 ∈ Z, 𝑟 > 1,

where T = {𝑧 : |𝑧| = 1} and 𝑛𝑘(T, 𝑓) = 𝑛𝑘(1, 𝑓) =
∑︀

|𝑏𝑗 |=1

𝑒−𝑖𝑘𝜎𝑗 .

Remark 3. Note that |𝑛𝑖
𝑘(𝑟, 𝑓)| 6 𝑛𝑖

0(𝑟, 𝑓), 𝑖 = 1, 2, |𝑛𝑘(T, 𝑓)| 6 𝑛0(T, 𝑓), and consequently
|𝑛𝑘(𝑟, 𝑓)| 6 𝑛0(𝑟, 𝑓) for all 𝑘 ∈ Z and 𝑟 > 1.

Let

𝑁 𝑖
𝑘(𝑟, 𝑓) =

𝑟∫︁
1

𝑛𝑖
𝑘(𝑡, 𝑓)

𝑡
𝑑𝑡, 𝑖 = 1, 2, 𝑁𝑘(𝑟, 𝑓) =

𝑟∫︁
1

𝑛𝑘(𝑡, 𝑓)

𝑡
𝑑𝑡, 𝑘 ∈ Z, 𝑟 > 1. (11)

Since 𝐹 does not have zeros and poles on the unit circle T, we have that log𝐹 is holomorphic
in some annular neighbourhood of the unit circle, and therefore admits a Laurent series
expansion

log𝐹 (𝑧) =
∑︁
𝑘∈Z

𝛼𝑘𝑧
𝑘 (12)

in that neighbourhood.
To prove our main results, we need following auxiliary lemmas.

Lemma 1. The identities

𝑙𝑘(𝑟, 𝐹 ) = 𝛼𝑘𝑟
𝑘 + 𝑟𝑘

𝑟∫︁
1

𝑛1
𝑘(𝑡, 1/𝑓)− 𝑛1

𝑘(𝑡, 𝑓)

𝑡𝑘+1
𝑑𝑡, 𝑘 ̸= 0, 𝑟 > 1, (13)

𝑙0(𝑟, 𝐹 )− 𝑙0(1, 𝐹 ) = 𝑁1
0 (𝑟, 1/𝑓)−𝑁1

0 (𝑟, 𝑓), 𝑟 > 1, (14)

hold true.

Lemma 2. The identities

𝑙𝑘

(︂
1

𝑟
, 𝐹

)︂
= 𝛼𝑘𝑟

−𝑘 + 𝑟−𝑘

𝑟∫︁
1

𝑛2
𝑘

(︁
𝑡, 1

𝑓

)︁
− 𝑛2

𝑘(𝑡, 𝑓)

𝑡−𝑘+1
𝑑𝑡, 𝑘 ̸= 0, 𝑟 > 1, (15)

𝑙0

(︂
1

𝑟
, 𝐹

)︂
− 𝑙0(1, 𝐹 ) = 𝑁2

0

(︂
𝑟,

1

𝑓

)︂
−𝑁2

0 (𝑟, 𝑓), 𝑟 > 1, (16)

hold true.

Lemma 3. The identities

𝑎𝑘(𝑟, 𝐹 ) = −𝑖𝑘

𝑟∫︁
1

𝑐𝑘(𝑡, 𝑓)

𝑡
𝑑𝑡+

+
𝛼𝑘 − 𝛼−𝑘

2𝑖
− 𝑟−𝑘 − 1

2𝑘𝑖

(︂
𝑛𝑘

(︂
T,

1

𝑓

)︂
− 𝑛𝑘(T, 𝑓)

)︂
, 𝑘 ̸= 0, 𝑟 > 1,

(17)

𝑎𝑘

(︂
1

𝑟
, 𝐹

)︂
= 𝑖𝑘

𝑟∫︁
1

𝑐𝑘
(︀
1
𝑡
, 𝑓
)︀

𝑡
𝑑𝑡+

+
𝛼𝑘 − 𝛼−𝑘

2𝑖
+

𝑟−𝑘 − 1

2𝑘𝑖

(︂
𝑛𝑘

(︂
T,

1

𝑓

)︂
− 𝑛𝑘(T, 𝑓)

)︂
, 𝑘 ̸= 0, 𝑟 > 1.

(18)

hold true.
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Lemma 4. The identities

𝑐𝑘(𝑟, 𝑓) = 𝑖𝑘

𝑟∫︁
1

𝑎𝑘(𝑡, 𝐹 )

𝑡
𝑑𝑡+

𝛼𝑘 + 𝛼−𝑘

2
+

+𝑁1
𝑘

(︂
𝑟,

1

𝑓

)︂
−𝑁1

𝑘 (𝑟, 𝑓)−
𝑛𝑘

(︁
T, 1

𝑓

)︁
− 𝑛𝑘(T, 𝑓)

2𝑘𝑟𝑘
, 𝑘 ̸= 0, 𝑟 > 1,

(19)

𝑐𝑘

(︂
1

𝑟
, 𝐹

)︂
= −𝑖𝑘

𝑟∫︁
1

𝑎𝑘
(︀
1
𝑡
, 𝐹
)︀

𝑡
𝑑𝑡+

𝛼𝑘 + 𝛼−𝑘

2
+

+𝑁2
𝑘

(︂
𝑟,

1

𝑓

)︂
−𝑁2

𝑘 (𝑟, 𝑓)−
𝑛𝑘

(︁
T, 1

𝑓

)︁
− 𝑛𝑘(T)

2𝑘𝑟𝑘
, 𝑘 ̸= 0, 𝑟 > 1,

(20)

hold true.

For a holomorphic function 𝑓 , Lemmata 1 - 4 were proved in [11]. The presence of poles does
not complicate the proof essentially.

Lemma 5. The identities

𝑁1
𝑘 (𝑟, 𝑓) =𝑐𝑘(𝑟, 𝑓)− 𝑘2

𝑟∫︁
1

𝑑𝑡

𝑡

𝑡∫︁
1

𝑐𝑘(𝜏, 𝑓)

𝜏
𝑑𝜏 − 𝑐𝑘(1, 𝑓)−

− 𝑖𝑘 · 𝑎𝑘(1, 𝐹 ) log 𝑟 − 𝑛𝑘(T, 1/𝑓)− 𝑛𝑘(T, 𝑓)
2

log 𝑟, 𝑘 ̸= 0, 𝑟 > 1,

(21)

𝑁2
𝑘 (𝑟, 𝑓) =𝑐𝑘

(︂
1

𝑟
, 𝑓

)︂
− 𝑘2

𝑟∫︁
1

𝑑𝑡

𝑡

𝑡∫︁
1

𝑐𝑘
(︀
1
𝜏
, 𝑓
)︀

𝜏
𝑑𝜏 − 𝑐𝑘(1, 𝑓)+

+ 𝑖𝑘 · 𝑎𝑘(1, 𝐹 ) log 𝑟 −
𝑛𝑘

(︁
T, 1

𝑓

)︁
− 𝑛𝑘(T, 𝑓)

2
log 𝑟, 𝑘 ̸= 0, 𝑟 > 1.

(22)

hold true.

Proof. In view of (12) we have 𝛼𝑘 + 𝛼−𝑘 = 2𝑐𝑘(1, 𝐹 ) and 𝛼𝑘 − 𝛼−𝑘 = 2𝑖𝑎𝑘(1, 𝐹 ) for all 𝑘 ∈ Z.
Note that

𝑐𝑘(1, 𝐹 ) = 𝑐𝑘(1, 𝑓)−
∑︁
|𝑎𝑗 |=1

𝑐𝑘

(︂
1, 1− 𝑧

𝑎𝑗

)︂
+
∑︁
|𝑏𝑗 |=1

𝑐𝑘

(︂
1, 1− 𝑧

𝑏𝑗

)︂
, 𝑘 ∈ Z.

Bearing in mind that |𝑤| = 1, one can easily compute 𝑐𝑘(𝑡, 1− 𝑧
𝑤
) for 𝑡 ̸= 1. Then by using the

continuity of the Fourier coefficients we get that

𝑐𝑘(1, 𝐹 ) = 𝑐𝑘(1, 𝑓) +
1

2𝑘

(︂
𝑛𝑘

(︂
T,

1

𝑓

)︂
− 𝑛𝑘(T, 𝑓)

)︂
.

Replacing 𝑎𝑘(𝑡, 𝐹 ) in (17) by its representation (19), we arrive at obtain (21). Similarly, using
(18) in (20), one gets (22).

Lemma 6. Let 𝜆 be a function of moderate growth, 𝜆1 be defined by (1), 𝑓 be a function of
c.r.g. with respect to 𝜆, and 𝑐1𝑘, 𝑐

2
𝑘, 𝑐

*
𝑘 be given by Definitions 3, 4. Then

(i) if 𝑓 ∈ Λ∘,1
𝐻 , then for every 𝑘 ∈ Z there exist limits

lim
𝑟→+∞

𝑎𝑘(𝑟, 𝐹 )

𝜆1(𝑟)
= −𝑖𝑘𝑐1𝑘 and lim

𝑟→+∞

𝑎𝑘(
1
𝑟
, 𝐹 )

𝜆1(𝑟)
= 𝑖𝑘𝑐2𝑘;
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(ii) if 𝑓 ∈ Λ∘,2
𝐻 , then for every 𝑘 ∈ Z there exists

lim
𝑟→+∞

𝑎𝑘(𝑟, 𝐹 )− 𝑎𝑘(
1
𝑟
, 𝐹 )

𝜆1(𝑟)
= −𝑖𝑘𝑐*𝑘 .

Proof. (i) Let 𝑓 be a function of c.r.g.1 with respect to 𝜆.
If 𝑘 = 0 then from (14), (16) we obtain 𝑎0(𝑟, 𝐹 ) = 𝑎0(

1
𝑟
, 𝐹 ) = 𝑎0(1, 𝐹 ), and obviously

lim
𝑟→+∞

𝑎0(𝑟, 𝐹 )

𝜆1(𝑟)
= lim

𝑟→+∞

𝑎0(
1
𝑟
, 𝐹 )

𝜆1(𝑟)
= 0.

Since 𝑓 ∈ Λ∘,1
𝐻 , we have

𝑐𝑘(𝑟, 𝑓) = 𝑐1𝑘𝜆(𝑟) + 𝑜(𝜆(𝑟)), 𝑐𝑘

(︂
1

𝑟
, 𝑓

)︂
= 𝑐2𝑘𝜆(𝑟) + 𝑜(𝜆(𝑟)), 𝑟 → +∞, 𝑘 ∈ Z.

By (17) we get

𝑎𝑘(𝑟, 𝐹 ) = −𝑖𝑘𝑐1𝑘𝜆1(𝑟) + 𝑜(𝜆1(𝑟)) +
𝛼𝑘 − 𝛼−𝑘

2𝑖
− 𝑟−𝑘 − 1

2𝑘𝑖

(︂
𝑛𝑘

(︂
T,

1

𝑓

)︂
− 𝑛𝑘(T, 𝑓)

)︂
, 𝑘 > 0.

Hence,

lim
𝑟→+∞

𝑎𝑘(𝑟, 𝐹 )

𝜆1(𝑟)
= −𝑖𝑘𝑐1𝑘

for all integer 𝑘 > 0. Using the properties 𝑎−𝑘(𝑟, 𝐹 ) = 𝑎𝑘(𝑟, 𝐹 ) and 𝑐1−𝑘 = 𝑐1𝑘, we obtain that

lim
𝑟→+∞

𝑎𝑘(𝑟, 𝐹 )

𝜆1(𝑟)
= −𝑖𝑘𝑐1𝑘, 𝑘 ∈ Z.

Similarly, using (18), we have

lim
𝑟→+∞

𝑎𝑘(
1
𝑟
, 𝐹 )

𝜆1(𝑟)
= 𝑖𝑘𝑐2𝑘, 𝑘 ∈ Z.

(ii) Let now 𝑓 be a function of c.r.g.2 with respect to 𝜆. By (14) and (16) we obtain that
𝑎0(𝑟, 𝐹 )− 𝑎0(

1
𝑟
, 𝐹 ) = 0. It follows from (17), (18) that

𝑎𝑘(𝑟, 𝐹 )− 𝑎𝑘

(︂
1

𝑟
, 𝐹

)︂
= −𝑖𝑘𝑐*𝑘𝜆1(𝑟) + 𝑜(𝜆1(𝑟))−

𝑟−𝑘 − 1

𝑖𝑘

(︂
𝑛𝑘

(︂
T,

1

𝑓

)︂
− 𝑛𝑘(T, 𝑓)

)︂
, 𝑘 > 0.

Similarly as in case (i) this implies that

lim
𝑟→+∞

𝑎𝑘(𝑟, 𝐹 )− 𝑎𝑘(
1
𝑟
, 𝐹 )

𝜆1(𝑟)
= −𝑖𝑘𝑐*𝑘

for all integer 𝑘.
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Lemma 7. Let 𝑓 be a meromorphic function in C* with zeros {𝑎𝑗} and poles {𝑏𝑗}, and {𝛼𝑘}
be defined by (12). Then for 𝑘 ∈ Z∖{0} and 𝑟 > 1

𝑎𝑘(𝑟, 𝐹 ) =
1

2𝑖

(︀
𝛼𝑘𝑟

𝑘 − 𝛼−𝑘𝑟
−𝑘
)︀
−

𝑛1
𝑘

(︁
𝑟, 1

𝑓

)︁
− 𝑛1

𝑘(𝑟, 𝑓)

𝑖𝑘
+

+
1

2𝑖𝑘

∑︁
1<|𝑎𝑗 |6𝑟

(︃
𝑟𝑘

𝑎𝑘𝑗
+

𝑎𝑘𝑗
𝑟𝑘

)︃
− 1

2𝑖𝑘

∑︁
1<|𝑏𝑗 |6𝑟

(︃
𝑟𝑘

𝑏𝑘𝑗
+

𝑏𝑘𝑗
𝑟𝑘

)︃
,

(23)

𝑎𝑘

(︂
1

𝑟
, 𝐹

)︂
=

1

2𝑖

(︀
𝛼𝑘𝑟

−𝑘 − 𝛼−𝑘𝑟
𝑘
)︀
+

𝑛2
𝑘

(︁
𝑟, 1

𝑓

)︁
− 𝑛2

𝑘(𝑟, 𝑓)

𝑖𝑘
+

+
1

2𝑖𝑘

∑︁
1
𝑟
6|𝑎𝑗 |<1

(︂
(𝑎𝑗𝑟)

𝑘 +
1

(𝑎𝑗𝑟)𝑘

)︂
− 1

2𝑖𝑘

∑︁
1
𝑟
6|𝑏𝑗 |<1

(︂
(𝑏𝑗𝑟)

𝑘 +
1

(𝑏𝑗𝑟)𝑘

)︂
.

(24)

Proof. It follows from Remark 1 and Lemma 1 that

𝑎𝑘(𝑟, 𝐹 ) =
1

2𝑖
(𝛼𝑘𝑟

𝑘 − 𝛼−𝑘𝑟
−𝑘)+

+
1

2𝑖

𝑟∫︁
1

(︂
𝑟𝑘

𝑡𝑘+1
− 𝑡𝑘−1

𝑟𝑘

)︂(︂
𝑛1
𝑘

(︂
𝑡,
1

𝑓

)︂
− 𝑛1

𝑘(𝑡, 𝑓)

)︂
𝑑𝑡, 𝑘 ̸= 0, 𝑟 > 1.

(25)

We denote the integral in (25) by 𝐼1. Integrating by parts, we obtain

𝐼1 =− 1

2𝑖𝑘

𝑟∫︁
1

(︂
𝑛1
𝑘

(︂
𝑡,
1

𝑓

)︂
− 𝑛1

𝑘(𝑡, 𝑓)

)︂
𝑑

(︂
𝑟𝑘

𝑡𝑘
+

𝑡𝑘

𝑟𝑘

)︂
=

=−
(︂
𝑟𝑘

𝑡𝑘
+

𝑡𝑘

𝑟𝑘

)︂ 𝑛1
𝑘

(︁
𝑡, 1

𝑓

)︁
− 𝑛1

𝑘(𝑡, 𝑓)

2𝑖𝑘

⃒⃒⃒⃒
⃒
𝑡=𝑟

𝑡=1

+
1

2𝑖𝑘

𝑟∫︁
1

(︂
𝑟𝑘

𝑡𝑘
+

𝑡𝑘

𝑟𝑘

)︂
𝑑

(︂
𝑛1
𝑘

(︂
𝑡,
1

𝑓

)︂
− 𝑛1

𝑘(𝑡, 𝑓)

)︂
=

=−
𝑛1
𝑘

(︁
𝑟, 1

𝑓

)︁
− 𝑛1

𝑘(𝑟, 𝑓)

𝑖𝑘
+

1

2𝑖𝑘

𝑟∫︁
1

(︂
𝑟𝑘

𝑡𝑘
+

𝑡𝑘

𝑟𝑘

)︂
𝑑

(︂
𝑛1
𝑘

(︂
𝑡,
1

𝑓

)︂
− 𝑛1

𝑘(𝑡, 𝑓)

)︂
, 𝑘 ̸= 0, 𝑟 > 1.

Now, using a property of the Stieltjes integral [13], we represent the last integral as a sum and
get (23) for 𝑟 > 1. If 𝑟 = 1 then (23) is implied by Remark 1 and (12).

Similarly, in view of (15) and Remark 1, we get

𝑎𝑘(
1

𝑟
, 𝐹 ) =

1

2𝑖
(𝛼𝑘𝑟

−𝑘 − 𝛼−𝑘𝑟
𝑘)+

+
1

2𝑖

𝑟∫︁
1

(︂
𝑡𝑘−1

𝑟𝑘
− 𝑟𝑘

𝑡𝑘+1

)︂(︂
𝑛2
𝑘

(︂
𝑡,
1

𝑓

)︂
− 𝑛2

𝑘(𝑡, 𝑓)

)︂
𝑑𝑡, 𝑘 ̸= 0, 𝑟 > 1.

(26)

Again, denoting the integral in (26) by 𝐼2 and integrating by parts we obtain

𝐼2 =
1

2𝑖𝑘

𝑟∫︁
1

(𝑛2
𝑘(𝑡,

1

𝑓
)− 𝑛2

𝑘(𝑡, 𝑓)) 𝑑

(︂
𝑡𝑘

𝑟𝑘
+

𝑟𝑘

𝑡𝑘

)︂
=

=
𝑛2
𝑘

(︁
𝑟, 1

𝑓

)︁
− 𝑛2

𝑘(𝑟, 𝑓)

𝑖𝑘
− 1

2𝑖𝑘

𝑟∫︁
1

(︂
𝑡𝑘

𝑟𝑘
+

𝑟𝑘

𝑡𝑘

)︂
𝑑

(︂
𝑛2
𝑘

(︂
𝑡,
1

𝑓

)︂
− 𝑛2

𝑘(𝑡, 𝑓)

)︂
, 𝑘 ̸= 0, 𝑟 > 1.



GROWTH REGULARITY FOR THE ARGUMENTS. . . 131

Using the same property of the Stieltjes integral as before, we have (24) for 𝑟 > 1. If 𝑟 = 1 it
follows from Remark 1 and (12).

Remark 4. Note that 𝜆(𝑟) = 𝑂(𝜆1(𝑟)) as 𝑟 → +∞. Indeed,

𝜆1(𝑒𝑟) =

𝑒𝑟∫︁
1

𝜆(𝑡)

𝑡
𝑑𝑡 >

𝑒𝑟∫︁
𝑟

𝜆(𝑡)

𝑡
𝑑𝑡 > 𝜆(𝑟), 𝑟 > 1

and, taking into account that 𝜆 is a function of moderate growth,

𝜆1(2𝑟) =

2𝑟∫︁
1

𝜆(𝑡)

𝑡
𝑑𝑡 =

2∫︁
1

𝜆(𝑡)

𝑡
𝑑𝑡+

2𝑟∫︁
2

𝜆(𝑡)

𝑡
𝑑𝑡 =

2∫︁
1

𝜆(𝑡)

𝑡
𝑑𝑡+

𝑟∫︁
1

𝜆(2𝑡)

𝑡
𝑑𝑡 6

6

2∫︁
1

𝜆(𝑡)

𝑡
𝑑𝑡+𝑀

𝑟∫︁
1

𝜆(𝑡)

𝑡
𝑑𝑡 6 𝑀 ′𝜆1(𝑟), 𝑟 > 1.

Lemma 8. Let 𝜆 be a function of moderate growth, 𝜆1 be defined by (1), and 𝑓 be a holo-
morphic function of finite 𝜆-type. Then

(∃𝐴 > 0) (∀𝑟 > 1) (∀𝑘 ∈ Z) : |𝑎𝑘(𝑟, 𝐹 )|+ |𝑎𝑘(
1

𝑟
, 𝐹 )| 6 𝐴𝜆1(𝑟)

|𝑘|+ 1
. (27)

Proof. In view of (23), for 𝑘 ̸= 0

𝑎𝑘(2𝑟, 𝐹 )

2𝑘
− 𝑎𝑘(𝑟, 𝐹 ) =

1

2𝑘+1𝑖

(︀
𝛼𝑘(2𝑟)

𝑘 − 𝛼−𝑘(2𝑟)
−𝑘
)︀
− 1

2𝑖

(︀
𝛼𝑘𝑟

𝑘 − 𝛼−𝑘𝑟
−𝑘
)︀
−

−
𝑛1
𝑘(2𝑟,

1
𝑓
)− 𝑛1

𝑘(2𝑟, 𝑓)

2𝑘𝑖𝑘
+

𝑛1
𝑘(𝑟,

1
𝑓
)− 𝑛1

𝑘(𝑟, 𝑓)

𝑖𝑘
+

1

2𝑖𝑘

⎛⎝ ∑︁
𝑟<|𝑎𝑗 |62𝑟

𝑟𝑘

𝑎𝑘𝑗
−

∑︁
𝑟<|𝑏𝑗 |62𝑟

𝑟𝑘

𝑏𝑘𝑗

⎞⎠+

+
1

22𝑘+1𝑖𝑘

⎛⎝ ∑︁
1<|𝑎𝑗 |62𝑟

𝑎𝑗
𝑘

𝑟𝑘
−

∑︁
1<|𝑏𝑗 |62𝑟

𝑏𝑗
𝑘

𝑟𝑘

⎞⎠− 1

2𝑖𝑘

⎛⎝ ∑︁
1<|𝑎𝑗 |6𝑟

𝑎𝑗
𝑘

𝑟𝑘
−

∑︁
1<|𝑏𝑗 |6𝑟

𝑏𝑗
𝑘

𝑟𝑘

⎞⎠ .

Hence, in view of Remark 3

|𝑎𝑘(𝑟, 𝐹 )| 6 1

2𝑘
|𝑎𝑘(2𝑟, 𝐹 )|+ 1

2

(︂
1− 1

22𝑘

)︂
|𝛼−𝑘|
𝑟𝑘

+
𝑛1
0

(︁
2𝑟, 1

𝑓

)︁
+ 𝑛1

0(2𝑟, 𝑓)

2𝑘𝑘
+

+
𝑛1
0

(︁
𝑟, 1

𝑓

)︁
+ 𝑛1

0(𝑟, 𝑓)

𝑘
+

𝑛1
0

(︁
2𝑟, 1

𝑓

)︁
− 𝑛1

0

(︁
𝑟, 1

𝑓

)︁
2𝑘

+
𝑛1
0(2𝑟, 𝑓)− 𝑛1

0(𝑟, 𝑓)

2𝑘
+

+
𝑛1
0

(︁
2𝑟, 1

𝑓

)︁
+ 𝑛1

0(2𝑟, 𝑓)

2𝑘+1𝑘
+

𝑛1
0

(︁
𝑟, 1

𝑓

)︁
+ 𝑛1

0(𝑟, 𝑓)

2𝑘
, 𝑘 ̸= 0, 𝑟 > 1.

(28)

The fact that 𝑓 is of finite 𝜆-type implies [9] that

|𝑐𝑘(𝑟, 𝑓)|+
⃒⃒⃒⃒
𝑐𝑘

(︂
1

𝑟
, 𝑓

)︂⃒⃒⃒⃒
6

𝐵1𝜆(𝑟)

|𝑘|+ 1
, 𝑘 ∈ Z, (29)

for some 𝐵1 > 0 and for all 𝑟 > 1. Furthermore

(∃𝐵2 > 0) (∀𝑟 > 1) : 𝑛1
0(𝑟, 𝑓) + 𝑛2

0(𝑟, 𝑓) 6 𝑛0(𝑟, 𝑓) 6 𝐵2𝜆(𝑟). (30)
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First consider a positive integer 𝑘. In this case (17), (29), and (30) together with Remark 4
yield

|𝑎𝑘(2𝑟, 𝐹 )| 6𝑘

2𝑟∫︁
1

|𝑐𝑘(𝑡, 𝑓)|
𝑡

𝑑𝑡+
⃒⃒⃒𝛼𝑘 − 𝛼−𝑘

2𝑖
− 1

2𝑘𝑖
((2𝑟)−𝑘 − 1)𝑛𝑘(T)

⃒⃒⃒
6

6
𝑘

𝑘 + 1
𝐵1𝜆1(2𝑟) + |𝑎𝑘(1, 𝐹 )|+ 𝐵2𝜆(𝑟)

2𝑘
6 𝐶1𝜆1(𝑟)

(31)

for some 𝐶1 > 0 and for all 𝑟 > 1. Now using (30), (31) in (28), we obtain that there exists
𝐶2 > 0 such that

|𝑎𝑘(𝑟, 𝐹 )| 6 𝐶2𝜆1(𝑟)

|𝑘|+ 1
(32)

for all 𝑟 > 1 and 𝑘 > 0. As we have noticed in the proof of Lemma 6, 𝑎0(𝑟, 𝐹 ) is constant. Using

this fact and the property 𝑎−𝑘(𝑟, 𝐹 ) = 𝑎𝑘(𝑟, 𝐹 ) , we obtain that (32) holds for all integer 𝑘,
possibly with a constant different from 𝐶2.

Similarly, in view of (24),

𝑎𝑘(
1
2𝑟
, 𝐹 )

2𝑘
− 𝑎𝑘

(︂
1

𝑟
, 𝐹

)︂
=

1

2𝑘+1𝑖

(︀
𝛼𝑘(2𝑟)

−𝑘 − 𝛼−𝑘(2𝑟)
𝑘
)︀
− 1

2𝑖

(︀
𝛼𝑘𝑟

−𝑘 − 𝛼−𝑘𝑟
𝑘
)︀
+

+
𝑛2
𝑘

(︁
2𝑟, 1

𝑓

)︁
− 𝑛2

𝑘(2𝑟, 𝑓)

2𝑘𝑖𝑘
−

𝑛2
𝑘

(︁
𝑟, 1

𝑓

)︁
− 𝑛2

𝑘(𝑟, 𝑓)

𝑖𝑘
+

+
1

2𝑖𝑘

⎛⎝ ∑︁
1
2𝑟

6|𝑎𝑗 |< 1
𝑟

(𝑎𝑗𝑟)
𝑘 −

∑︁
1
2𝑟

6|𝑏𝑗 |< 1
𝑟

(𝑏𝑗𝑟)
𝑘

⎞⎠+

+
1

22𝑘+1𝑖𝑘

⎛⎝ ∑︁
1
2𝑟

6|𝑎𝑗 |<1

1

(𝑎𝑗𝑟)𝑘
−

∑︁
1
2𝑟

6|𝑏𝑗 |<1

1

(𝑏𝑗𝑟)𝑘

⎞⎠−

− 1

2𝑖𝑘

⎛⎝ ∑︁
1
𝑟
6|𝑎𝑗 |<1

1

(𝑎𝑗𝑟)𝑘
−

∑︁
1
𝑟
6|𝑏𝑗 |<1

1

(𝑏𝑗𝑟)𝑘

⎞⎠ , 𝑘 ̸= 0, 𝑟 > 1.

Therefore,

|𝑎𝑘(
1

𝑟
, 𝐹 )| 6 1

2𝑘

⃒⃒⃒⃒
𝑎𝑘

(︂
1

2𝑟
, 𝐹

)︂⃒⃒⃒⃒
+

1

2

(︂
1− 1

22𝑘

)︂
|𝛼𝑘|
𝑟𝑘

+
𝑛2
0

(︁
2𝑟, 1

𝑓

)︁
+ 𝑛2

0(2𝑟, 𝑓)

2𝑘𝑘

+
𝑛2
0

(︁
𝑟, 1

𝑓

)︁
− 𝑛2

0(𝑟, 𝑓)

𝑘
+

𝑛2
0

(︁
2𝑟, 1

𝑓

)︁
− 𝑛2

0

(︁
𝑟, 1

𝑓

)︁
2𝑘

+
𝑛2
0(2𝑟, 𝑓)− 𝑛2

0(𝑟, 𝑓)

2𝑘
+

+
𝑛2
0

(︁
2𝑟, 1

𝑓

)︁
+ 𝑛2

0(2𝑟, 𝑓)

2𝑘+1𝑘
+

𝑛2
0

(︁
𝑟, 1

𝑓

)︁
+ 𝑛2

0(𝑟, 𝑓)

2𝑘
, 𝑘 ̸= 0, 𝑟 > 1.

(33)

If 𝑘 is a positive integer then from (18), using (29), (30), and Remark 4 we obtain⃒⃒⃒⃒
𝑎𝑘

(︂
1

2𝑟
, 𝐹

)︂⃒⃒⃒⃒
6𝑘

2𝑟∫︁
1

⃒⃒
𝑐𝑘
(︀
1
𝑡
, 𝑓
)︀⃒⃒

𝑡
𝑑𝑡+

⃒⃒⃒𝛼𝑘 − 𝛼−𝑘

2𝑖
+

1

2𝑘𝑖
((2𝑟)−𝑘 − 1)𝑛𝑘(T)

⃒⃒⃒
6

6
𝑘

𝑘 + 1
𝐵1𝜆1(2𝑟) + |𝑎𝑘(1, 𝐹 )|+ 𝐵2𝜆(𝑟)

2𝑘
6 𝐶3𝜆1(𝑟)
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for some 𝐶3 > 0 and for all 𝑟 > 1. Again, using (30), the previous inequality and the property

𝑎−𝑘(
1
𝑟
, 𝐹 ) = 𝑎𝑘(

1
𝑟
, 𝐹 ) in (33), we get⃒⃒⃒⃒

𝑎𝑘

(︂
1

𝑟
, 𝐹

)︂⃒⃒⃒⃒
6

𝐶4𝜆1(𝑟)

|𝑘|+ 1

for all 𝑟 > 1 and 𝑘 ∈ Z.

4. Connection between the indicators of completely regularly growing
meromorphic function in C*

Let 𝑓 be a meromorphic in C* function of c.r.g. with respect to 𝜆. It does not matter what
type of c.r.g. the function 𝑓 actually is of, it is assumed to be of finite 𝜆-type in C* anyway.
This implies that the growth indicators, ℎ1 and ℎ2 in the case of c.r.g.1 or ℎ in the case of c.r.g.2,
belong to 𝐿2[0, 2𝜋]. For holomorphic functions 𝑓 this was proved in [10]. The assumption that
𝑓 is meromorphic in C* give rise to no significant changes in the proof of that result.
We note that by the definition, the indicators ℎ1, ℎ2, and ℎ are the growth indicators of

log |𝑓 | with respect to 𝜆. However, Lemmata 6 and 8 allow us to introduce the notion of the
growth indicators of arg𝐹 with respect to 𝜆1.

We denote

𝑎1𝑘= lim
𝑟→+∞

𝑎𝑘(𝑟, 𝐹 )

𝜆1(𝑟)
, 𝑎2𝑘= lim

𝑟→+∞

𝑎𝑘(
1
𝑟
, 𝐹 )

𝜆1(𝑟)
if 𝑓 ∈ Λ∘,1

𝐻 ,

𝑎*𝑘=lim
𝑟→+∞

𝑎𝑘(𝑟, 𝐹 )− 𝑎𝑘(
1
𝑟
, 𝐹 )

𝜆1(𝑟)
if 𝑓 ∈ Λ∘,2

𝐻 .

Using Lemma 8, we obtain

|𝑎1𝑘| 6
𝐴

|𝑘|+ 1
, |𝑎2𝑘| 6

𝐴

|𝑘|+ 1
, |𝑎*𝑘| 6

𝐴

|𝑘|+ 1
, 𝑘 ∈ Z. (34)

Thus, by the Riesz-Fischer Theorem [14, p. 79] there exist unique functions 𝑔1(𝜃,𝑓)=
∑︀
𝑘∈Z

𝑎1𝑘𝑒
𝑖𝑘𝜃,

𝑔2(𝜃, 𝑓) =
∑︀
𝑘∈Z

𝑎2𝑘𝑒
𝑖𝑘𝜃, or 𝑔(𝜃, 𝑓) =

∑︀
𝑘∈Z

𝑎*𝑘𝑒
𝑖𝑘𝜃, which belong to 𝐿2[0, 2𝜋]. We call these functions

the growth indicators of arg𝐹 with respect to 𝜆1.
By Lemma 6 we have

𝑎1𝑘 = −𝑖𝑘𝑐1𝑘, 𝑎2𝑘 = 𝑖𝑘𝑐2𝑘, 𝑎*𝑘 = −𝑖𝑘𝑐*𝑘, 𝑘 ∈ Z. (35)

Let

𝜆2(𝑟) =

∫︁ 𝑟

1

𝑑𝑡

𝑡

∫︁ 𝑡

1

𝜆(𝜏)

𝜏
𝑑𝜏, 𝑟 > 1

and Λ∘,1
𝐻 be the class of holomorphic functions of c.r.g.1 in C*. Using the inverse formulas for

the Fourier coefficients 𝑐𝑘(𝑟, 𝑓) + 𝑐𝑘
(︀
1
𝑟
, 𝑓
)︀
from [15] it was proved in [10, Theorem 3] that if

𝑓 ∈ Λ∘,1
𝐻 then the sum of the growth indicators ℎ1 + ℎ2 is 𝜔-trigonometrically convex [1] for

𝜔 ∈ [κ, 𝜌], where

κ2 = lim inf
𝑟→+∞

𝜆(𝑟)

𝜆2(𝑟)
, 𝜌2 = lim sup

𝑟→+∞

𝜆(𝑟)

𝜆2(𝑟)
.

The presence of the poles of 𝑓 does not complicate the proof essentially.
It turns out that for our purpose we need both ℎ1 and ℎ2 to possess the property of 𝜔-

trigonometrical convexity separately in the case 𝑓 ∈ Λ∘,1. And if 𝑓 ∈ Λ∘,2 we need this property
for ℎ as well. Analyzing the proof of Theorem 3 from [10], we conclude that the key role in
showing 𝜔-trigonometrical convexity is played by the inverse formulae for the Fourier coeffi-
cients. While such formulae from [15] for the sum 𝑐𝑘(𝑟, 𝑓) + 𝑐𝑘

(︀
1
𝑟
, 𝑓
)︀
can be obtained in the

case 𝑓 ∈ Λ∘,2, we need formulae (21) and (22) for the case 𝑓 ∈ Λ∘,1. So, once we have them, in
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the similar way as in [10] by taking a meromorphic in C* function 𝑓 either of c.r.g.1 or c.r.g.2,
and using the inverse formulae for the Fourier coefficients 𝑐𝑘(𝑟, 𝑓), 𝑐𝑘(

1
𝑟
, 𝑓) given by Lemma 5,

one can prove that the indicators ℎ1, ℎ2, or ℎ are 𝜔-trigonometrically convex for 𝜔 ∈ [κ, 𝜌] in
the appropriate case.

Each trigonometrically convex function is differentiable almost everywhere [1]. It follows from
(35) that the Fourier coefficients of the functions 𝑔1 and −ℎ′

1, 𝑔2 and ℎ′
2, 𝑔 and −ℎ′ coincide

and

𝑔1(𝜃, 𝑓) = −ℎ′
1(𝜃, 𝑓), 𝑔2(𝜃, 𝑓) = ℎ′

2(𝜃, 𝑓), 𝑔(𝜃, 𝑓) = −ℎ(𝜃, 𝑓) (36)

almost everywhere.

5. Proof of the main results

Proof of Theorem 1. Let 𝑔1, 𝑔2 be the functions defined in the previous section. The Fourier

coefficients of arg𝐹 (𝑟𝑒𝑖𝜃)
𝜆1(𝑟)

−𝑔1(𝜃, 𝑓),
arg𝐹 ( 1

𝑟
𝑒𝑖𝜃)

𝜆1(𝑟)
−𝑔2(𝜃, 𝑓) are

𝑎𝑘(𝑟,𝐹 )
𝜆1(𝑟)

−𝑎1𝑘 and
𝑎𝑘(

1
𝑟
,𝐹 )

𝜆1(𝑟)
−𝑎2𝑘 respectively,

𝑘 ∈ Z.
By the Parseval’s identity [14] we have⎧⎨⎩ 1

2𝜋

2𝜋∫︁
0

⃒⃒⃒⃒
arg𝐹 (𝑟𝑒𝑖𝜃)

𝜆1(𝑟)
− 𝑔1(𝜃, 𝑓)

⃒⃒⃒⃒2
𝑑𝜃

⎫⎬⎭
1
2

=

{︃∑︁
𝑘∈Z

⃒⃒⃒⃒
𝑎𝑘(𝑟, 𝐹 )

𝜆1(𝑟)
− 𝑎1𝑘

⃒⃒⃒⃒2}︃ 1
2

, 𝑟 > 1, (37)

and ⎧⎨⎩ 1

2𝜋

2𝜋∫︁
0

⃒⃒⃒⃒
arg𝐹 (1

𝑟
𝑒𝑖𝜃)

𝜆1(𝑟)
− 𝑔2(𝜃, 𝑓)

⃒⃒⃒⃒2
𝑑𝜃

⎫⎬⎭
1
2

=

{︃∑︁
𝑘∈Z

⃒⃒⃒⃒
𝑎𝑘(

1
𝑟
, 𝐹 )

𝜆1(𝑟)
− 𝑎2𝑘

⃒⃒⃒⃒2}︃ 1
2

, 𝑟 > 1. (38)

It follows from the convergence of the series
+∞∑︀
𝑘=1

1
𝑘2

that for any 𝜀 > 0 there exists 𝑘0 ∈ N such

that
+∞∑︁

𝑘=𝑘0+1

1

(𝑘 + 1)2
<

𝜀2

32𝐴2
, (39)

where 𝐴 is the constant from (27). Applying Minkowski inequality [16], and using (27), (39),
we obtain⎧⎨⎩∑︁

|𝑘|>𝑘0

⃒⃒⃒⃒
𝑎𝑘(𝑟, 𝐹 )

𝜆1(𝑟)
− 𝑎1𝑘

⃒⃒⃒⃒2⎫⎬⎭
1
2

6

⎧⎨⎩∑︁
|𝑘|>𝑘0

⃒⃒⃒⃒
𝑎𝑘(𝑟, 𝐹 )

𝜆1(𝑟)

⃒⃒⃒⃒2⎫⎬⎭
1
2

+

⎧⎨⎩∑︁
|𝑘|>𝑘0

|𝑎1𝑘|2
⎫⎬⎭

1
2

6

62

⎧⎨⎩∑︁
|𝑘|>𝑘0

𝐴2

(|𝑘|+ 1)2

⎫⎬⎭
1
2

= 2
√
2𝐴

{︃
+∞∑︁

𝑘=𝑘0+1

1

(|𝑘|+ 1)2

}︃ 1
2

<
𝜀

2
.

(40)

Similarly, ⎧⎨⎩∑︁
|𝑘|>𝑘0

⃒⃒⃒⃒
𝑎𝑘(

1
𝑟
, 𝐹 )

𝜆1(𝑟)
− 𝑎2𝑘

⃒⃒⃒⃒2⎫⎬⎭
1
2

<
𝜀

2
. (41)

By Lemma 6 there exist 𝑟0 > 1 such that⃒⃒⃒⃒
𝑎𝑘(𝑟, 𝐹 )

𝜆1(𝑟)
− 𝑎1𝑘

⃒⃒⃒⃒
<

𝜀

4𝑘0
,

⃒⃒⃒⃒
𝑎𝑘(

1
𝑟
, 𝐹 )

𝜆1(𝑟)
− 𝑎2𝑘

⃒⃒⃒⃒
<

𝜀

4𝑘0
(42)

for all 𝑟 > 𝑟0 and |𝑘| 6 𝑘0.
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Thus, for any 𝜀 > 0 and for 𝑟 > 𝑟0, in view of (37), (40), and (42), we get⎧⎨⎩ 1

2𝜋

2𝜋∫︁
0

⃒⃒⃒⃒
arg𝐹 (𝑟𝑒𝑖𝜃)

𝜆1(𝑟)
− 𝑔1(𝜃, 𝑓)

⃒⃒⃒⃒2
𝑑𝜃

⎫⎬⎭
1
2

=

⎧⎨⎩∑︁
|𝑘|6𝑘0

⃒⃒⃒⃒
𝑎𝑘(𝑟, 𝐹 )

𝜆1(𝑟)
− 𝑎1𝑘

⃒⃒⃒⃒2⎫⎬⎭
1
2

+

+

⎧⎨⎩∑︁
|𝑘|>𝑘0

⃒⃒⃒⃒
𝑎𝑘(𝑟, 𝐹 )

𝜆1(𝑟)
− 𝑎1𝑘

⃒⃒⃒⃒2⎫⎬⎭
1
2

<
√︀

2𝑘0 + 1
𝜀

4𝑘0
+

𝜀

2
<

𝜀

2
+

𝜀

2
= 𝜀.

Similarly, from (38), (41), and (42) it follows that for any 𝜀 > 0 and for 𝑟 > 𝑟0⎧⎨⎩ 1

2𝜋

2𝜋∫︁
0

⃒⃒⃒⃒
arg𝐹 (1

𝑟
𝑒𝑖𝜃)

𝜆1(𝑟)
− 𝑔2(𝜃, 𝑓)

⃒⃒⃒⃒2
𝑑𝜃

⎫⎬⎭
1
2

< 𝜀.

Together with (36) this proves (5), (6) for 𝑝 = 2. Furthermore, in view of (27), (34), and
(35), by applying Hausdorff-Young Theorem [14] we obtain (5), (6) for 𝑝 > 2. Taking into
account the monotonicity of the 𝑝𝑡ℎ integral means, we establish that relations (5), (6) hold for
all 𝑝 ∈ [1,+∞).

Proof of Theorem 2. One can prove this theorem by considering the Fourier coefficients of
arg𝐹 (𝑟𝑒𝑖𝜃)−arg𝐹 ( 1

𝑟
𝑒𝑖𝜃)

𝜆1(𝑟)
− 𝑔(𝜃, 𝑓), using appropriate part of Lemma 6, and arguing just as in the

proof of Theorem 1.

Proof of Theorems 3, 4. Relations (8), (9), (10) are implied immediately by Theorem 2 in [10]
and Theorems 1, 2 by Minkowski inequality [16] and Remark 4.
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