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ON SOLUTIONS OF CAUCHY PROBLEM FOR EQUATION

𝑢𝑥𝑥 �𝑄p𝑥q𝑢� 𝑃 p𝑢q � 0 WITHOUT SINGULARITIES IN A GIVEN

INTERVAL

G.L. ALFIMOV, P.P.KIZIN

Abstract. The paper is devoted to Cauchy problem for equation 𝑢𝑥𝑥�𝑄p𝑥q𝑢�𝑃 p𝑢q � 0,
where 𝑄p𝑥q is a 𝜋-periodic function. It is known that for a wide class of the nonlinearities
𝑃 p𝑢q the “most part” of solutions of Cauchy problem for this equation are singular, i.e.,
they tend to infinity at some finite point of the real axis. Earlier in the case 𝑃 p𝑢q � 𝑢3

this fact allowed us to propose an approach for a complete description of solutions to this
equation bounded on R. One of the ingredients in this approach is the studying of the
set 𝒰�

𝐿 introduced as the set of the points p𝑢�, 𝑢
1
�q in the initial data plane, for which the

solutions to the Cauchy problem 𝑢p0q � 𝑢�, 𝑢𝑥p0q � 𝑢1� are not singular in the segment
r0;𝐿s. In the present work we prove a series of statements on the set 𝒰�

𝐿 and on their
base, we classify all possible type of the geometry of such sets. The presented results of
the numerical calculations are in a good agreement with theoretical statements.

Keywords: ODE with periodic coefficients, singular solutions, nonlinear Schrödinger equa-
tion.
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1. Introduction

The differential equation
𝑢𝑥𝑥 �𝑄p𝑥q𝑢� 𝑃 p𝑢q � 0 (1)

arises in numerous problem of various physical nature. In particular, it describes stationary
distributions of a field in an inhomogeneous waveguide [1] and structures arising in Bose-
Einstein condensate [2]. Therefore, the issue on possible types of solutions to this equation is
of high interest for various physical applications.

Several years ago, the following fact was supposed to be used for studying the structures
described by equation (1) [3]. Under some restrictions for the nonlinearity 𝑃 p𝑢q, the “most”
part of the solutions to the Cauchy problem for equation (1) turns out to be singular, that is,
tending to infinity at some point of the real line. Therefore, the set of the solutions bounded
on whole real line and the most interesting for physical applications turns out to be “poorer”.
The general impression on this set can be obtained by numerical solving the Cauchy problem
for a large domain in the plane of the initial data p𝑢, 𝑢𝑥q. In the case, when 𝑄p𝑥q is a periodic
function, a more detailed study of this set is possible by means of the Poincaré map [4] generated
by equation (1). At that, to describe the set of non-singular solutions in terms of the Poincaré
map, on succeeds to apply the methods of symbolic dynamics.

In work [3] this approach was realized for the case, when 𝑃 p𝑢q � 𝑢3 and 𝑄p𝑥q � 𝜔�𝐴 cos 2𝑥,
when 𝐴 and 𝜔 are real parameters. It was shown that under three sufficient conditions there
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exists a homeomorphism between the set of all bounded solutions to equation (1) and the set of
all bi-infinite sequence formed by the symbols of some finite alphabet. By means of numerics,
there were found the domains in the plane of the parameters p𝜔,𝐴q, in which these conditions
are satisfied. Later this approach was applied to the case, when the nonlinearity is of the form
𝑅p𝑥q𝑢3, where 𝑅p𝑥q is also a periodic function [5].

One of main notions employed in realizing this approach, is the set of the initial data for the
Cauchy problem, p𝑢p0q, 𝑢𝑥p0qq, such that the corresponding solutions to equation (1) remain
bounded in some interval 𝑆. In work [3] this set was denoted by 𝒰�

𝐿 if 𝑆 � r0;𝐿s and 𝒰�
𝐿

if 𝑆 � r�𝐿; 0s. In these terms, the initial condition in the Cauchy problem for the solutions
defined on the whole line belong to the set 𝒰8 � 𝒰�

8 X 𝒰�
8. If 𝑄p𝑥q is a 𝜋-periodic function,

the structure of the set 𝒰8 can be described by means of the sets 𝒰�
𝜋 , 𝒰�

𝜋 and the actions of
the Poincaré map on them.

Thus, in the case when 𝑄p𝑥q is a 𝜋-periodic function, the issue on possible geometry of the
sets 𝒰�

𝜋 and 𝒰�
𝜋 is of high interest. The present work is devoted to studying of possible types

of these sets under rather typical assumptions for the nonlinearity 𝑃 p𝑢q.
The work has the following structure. In Section 2 we present the main definitions used in

the work and formulate the restrictions for the inhomogeneous term 𝑄p𝑥q and the nonlinear
term 𝑃 p𝑢q. In Section 3 we prove some technical statements. One of them is the statement
on the continuous dependence of the singularity point of the solution on the initial data in
the Cauchy problem. This statement specifies the classical statement on semi-continuity of the
end-points of the existence interval for a solution [6, Ch. 5] for a given class of equations. In
Section 4 the statements of Section 3 are employed for proving the main theorems of the work.
The main result of the paper is Theorem 3 presented in Section 4 banning the existence of
the “holes” in the sets 𝒰�

𝜋 and the existence of bounded connected components for these sets.
Section 5 is based on the results of Section 4 and is devoted to the describing of possible forms
of the set 𝒰�

𝜋 . In Section 6 we provide the results of numerical studies of the sets 𝒰�
𝜋 for some

particular nonlinearities 𝑃 p𝑢q being of interest for the applications. Finally, in Conclusion 7
we formulate the summary and give some directions of developing the obtained results.

2. Some definitions

Throughout the work we assume that the function 𝑄p𝑥q satisfies the following conditions:
pQ1q 𝑄p𝑥q P 𝐶1pRq;
pQ2q 𝑄p�𝑥q � 𝑄p𝑥q;
pQ3q 𝑄p𝑥� 𝜋q � 𝑄p𝑥q.
We shall assume the following restrictions for the function 𝑃 p𝑢q:
pP1q 𝑃 p𝑢q P 𝐶1pRq;
pP2q there exist 𝐶, 𝜆,𝐴 ¡ 0, such that 𝑃 p𝐴q ¡ 0 and as 𝑢 ¡ 𝐴, the inequality

𝑃𝑢p𝑢q ¡ 𝐶𝑢𝜆 (2)

holds true.

Remark. It follows from Condition (P2) that the constant 𝐶 in (2) can be chosen such that
together with (2), as 𝑢 ¡ 𝐴, the inequality

𝑃 p𝑢q ¡ 𝐶𝑢𝜆�1 (3)

holds true. In what follows we assume that 𝐶, 𝜆,𝐴 are such that the inequalities (2) and (3)
hold simultaneously.
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In what follows, in a series of statements we assume that
pP3q The function �𝑃 p�𝑢q satisfies Condition (P2).

We introduce definitions.

Definition 1. Singular solutions. A solution 𝑢p𝑥q to equation (1) is said to be singular if
there exists a value 𝑥 � 𝑥1 such that lim𝑥Ñ𝑥1 𝑢p𝑥q � �8. In this situation we say that 𝑢p𝑥q
collapses to �8 at the point 𝑥 � 𝑥1 if lim𝑥Ñ𝑥1 𝑢p𝑥q � �8 or 𝑢p𝑥q collapses to �8 at the point
𝑥 � 𝑥1 if lim𝑥Ñ𝑥1 𝑢p𝑥q � �8.

Definition 2. Functions ℎ�p𝑥, 𝑢, 𝑢1q. We introduce a function ℎ� : R3 Ñ R as follows:
ℎ� p𝑥0, 𝑢0, 𝑢10q � 𝑥1 � 𝑥0 if solution 𝑢p𝑥q to Cauchy problem (1) with initial data 𝑢p𝑥0q � 𝑢0
and 𝑢𝑥p𝑥0q � 𝑢10 collapses (no matter to �8 or to �8) at the point 𝑥 � 𝑥1, 𝑥1 ¡ 𝑥0. At that
we assume that ℎ�p𝑥0, 𝑢0, 𝑢10q � �8 if for initial data p𝑢0, 𝑢10q at the point 𝑥 � 𝑥0, the solution
to the Cauchy problem does not collapse at each 𝑥 ¡ 𝑥0. In the same way we introduce the
function ℎ� : R3 Ñ R letting ℎ� p𝑥0, 𝑢0, 𝑢10q � 𝑥0 � 𝑥1 if the solution 𝑢p𝑥q to Cauchy problem
for equation (1) with initial data 𝑢p𝑥0q � 𝑢0 and 𝑢𝑥p𝑥0q � 𝑢10 collapses at the point 𝑥 � 𝑥1,
𝑥1   𝑥0.

Example. Let 𝑄p𝑥q � 0 and 𝑃 p𝑢q � 𝑢3. It is obvious that such choice of 𝑄p𝑥q and 𝑃 p𝑢q
satisfies Conditions (Q1)-(Q3) and (P1)-(P2). The solution to Cauchy problem (1) with initial
data 𝑢p0q � 𝑢𝑥p0q �

?
2 is

𝑢p𝑥q �
?
2

1� 𝑥
.

Therefore, 𝑢p𝑥q collapses to �8 at the point 𝑥 � 1 and at that, ℎ�p0,?2,
?
2q � 1. On the

other hand, 𝑢p𝑥q is defined on the whole semi-axis 𝑥   0 and this is why ℎ�p0,?2,
?
2q � �8.

Let us mention some properties of the functions ℎ� p𝑥, 𝑢, 𝑢1q.
 By (Q3) we have ℎ� : S1 �R2 Ñ R, where S1 is a circle.
 By (Q2) we have ℎ�p0, 𝑢, 𝑢1q � ℎ�p0, 𝑢,�𝑢1q.
 Let 𝑢p𝑥q be a solution to equation (1), then for 𝛼 P R

ℎ�
�
𝑥0 � 𝛼, 𝑢p𝑥0 � 𝛼q, 𝑢𝑥p𝑥0 � 𝛼qq � ℎ�p𝑥0, 𝑢p𝑥0q, 𝑢𝑥p𝑥0q

�� 𝛼,

ℎ�
�
𝑥0 � 𝛼, 𝑢p𝑥0 � 𝛼q, 𝑢𝑥p𝑥0 � 𝛼qq � ℎ�p𝑥0, 𝑢p𝑥0q, 𝑢𝑥p𝑥0q

�� 𝛼.

In further exposition, a special role is played by the functions ℎ�p𝑥, 𝑢, 𝑢1q at 𝑥 � 0 considered
as functions on 𝑢 and 𝑢1. We introduce the notation

ℎ�0 p𝑢, 𝑢1q � ℎ�p0, 𝑢, 𝑢1q.
Definition 3. Functions 𝐻�p𝑢, 𝑢1,Λq. We let 𝐻�p𝑢0, 𝑢10,Λq � 𝑥1 if the solution 𝑢p𝑥q to the

Cauchy problem for the equation

𝑢𝑥𝑥 � Λ𝑢� 𝑃 p𝑢q � 0 (4)

with the initial data 𝑢p0q � 𝑢0, 𝑢𝑥p0q � 𝑢10 collapses at the point 𝑥 � 𝑥1, 𝑥1 ¡ 0. The function
𝐻�p𝑢0, 𝑢10,Λq is introduced in the same way, 𝐻�p𝑢0, 𝑢10,Λq � �𝑥1, if solution 𝑢p𝑥q to equation
(4) with initial conditions 𝑢p0q � 𝑢0, 𝑢𝑥p0q � 𝑢10 collapses at the point 𝑥 � 𝑥1, 𝑥1   0.

For further purposes it turns out to be important that the functions 𝐻�p𝑢, 𝑢1,Λq can be
expressed by quadratures (see Lemma 2) and are continuous.

Definition 4. Sets 𝒰�
𝐿 and 𝒰𝐿. We define sets 𝒰�

𝐿 and 𝒰𝐿 as follows:

𝒰�
𝐿 �  p𝑢�, 𝑢1�q �� ℎ�0 p𝑢�, 𝑢1�q ¡ 𝐿

(
,

𝒰�
𝐿 �  p𝑢�, 𝑢1�q �� ℎ�0 p𝑢�, 𝑢1�q ¡ 𝐿

(
,

𝒰𝐿 � 𝒰�
𝐿 X 𝒰�

𝐿 .
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In other words, the set 𝒰�
𝐿 consists of the points in the plane of the initial data p𝑢, 𝑢𝑥q, which

produce the solutions collapsing “later” that a given value 𝐿 (or not collapsing).

Let us mention some properties of sets 𝒰�
𝐿 .

 We denote by 𝐼 the symmetry mapping w.r.t. the axis 𝑢 in the plane p𝑢, 𝑢𝑥q. By the
evenness of the function 𝑄p𝑥q (Property (Q2)), the relation 𝒰�

𝐿 � 𝐼r𝒰�
𝐿 s is true.

 If 𝑃 p𝑢q is an odd function, then the sets 𝒰�
𝐿 and 𝒰�

𝐿 are mutually symmetric w.r.t. the
origin.

Definition 5. Poincaré map. We define a Poincaré map 𝑇 : R2 Ñ R2 generated by equation
(1) as follows (see [4, Ch 1]):

𝑇

�
𝑢0
𝑢10



�
�
𝑢p𝜋q
𝑢𝑥p𝜋q



,

where 𝑢p𝑥q is the solution to equation (1) with initial conditions 𝑢p0q � 𝑢0, 𝑢𝑥p0q � 𝑢10.

Let us mention some properties of the mapping 𝑇 and sets 𝒰�
𝜋 .

 𝑇 is a diffeomorphism conserving the area.
 𝑇 is defined only on the set 𝒰�

𝜋 . Therefore, the inverse mapping 𝑇�1 is defined on the set
𝒰�
𝜋 , at that,

𝑇𝒰�
𝜋 � 𝒰�

𝜋 , 𝑇�1𝒰�
𝜋 � 𝒰�

𝜋 .

 The mapping 𝐼𝑇 , where 𝐼 is the symmetry mapping w.r.t. the axis 𝑢, see above, is an
automorphism of the set 𝒰�

𝜋 .

Throughout the paper, the open ball of radius 𝜀 centered at the point p𝑢0, 𝑢10q is denoted by
𝑉𝜀 p𝑢0, 𝑢10q

𝑉𝜀 p𝑢0, 𝑢10q �
 p𝑢�, 𝑢1�q �� p𝑢� � 𝑢0q2 � p𝑢1� � 𝑢10q2   𝜀2

(
.

3. Properties of functions ℎ�p𝑥, 𝑢, 𝑢1q and ℎ�p𝑥, 𝑢, 𝑢1q
3.1. Limiting properties of function ℎ�0 p𝑢, 𝑢1q and ℎ�0 p𝑢, 𝑢1q. We define function𝐻0p𝑢,Λq
by the formula

𝐻0p𝑢,Λq �
�8»
𝑢

d𝜉a
𝐹 p𝑢, 𝜉q � Λ p𝜉2 � 𝑢2q , (5)

where

𝐹 p𝑢, 𝜉q � 2

𝜉»
𝑢

𝑃 p𝜂qd𝜂. (6)

Lemma 1. Let 𝐹 p𝑢, 𝜉q be given by formula (6) and 𝑃 p𝑢q satisfy Conditions (P1)-(P2). Then
for each Λ P R there exists a sufficiently large 𝐴1 ¡ 0 such that as 𝑢 ¡ 𝐴1, the function 𝐻0p𝑢,Λq
is well-defined and the identity

lim
𝑢Ñ�8

𝐻0p𝑢,Λq � 0

holds true.

Proof. We introduce the notation 𝑍p𝑢, 𝜉q � 𝐹 p𝑢, 𝜉q�Λ p𝜉2 � 𝑢2q. It is obvious that 𝑍p𝑢, 𝑢q � 0
and integral (5) has a singularity at the point 𝜉 � 𝑢. At the same time, by Property (P2),
for sufficiently large 𝑢 the inequality 𝑍𝜉p𝑢, 𝑢q � 2𝑃 p𝑢q � 2Λ𝑢 ¡ 0 holds true. Therefore, for
such values of 𝑢 the zero of function 𝑍p𝑢, 𝜉q at the point 𝜉 � 𝑢 is simple and the singularity
of integral (5) at the point 𝜉 � 𝑢 is integrable. Then we note that as 𝜉 ¡ 𝑢 and 𝜆 ¡ 0 the
inequality

𝜉2 � 𝑢2   2

𝑢𝜆p𝜆� 2q � p𝜉
2�𝜆 � 𝑢2�𝜆q
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holds true. Hence, first, for sufficiently large 𝑢 and as 𝜉 ¡ 𝑢, the function 𝑍p𝑢, 𝜉q is positive,
and second, the estimate

1a
𝑍p𝑢, 𝜉q  

?
𝜆� 2a

𝐶 p𝜉2�𝜆 � 𝑢2�𝜆q � Λp𝜆� 2qp𝜉2 � 𝑢2q  
1

𝐶1p𝑢,Λq
a
𝜉2�𝜆 � 𝑢2�𝜆

holds true, where

𝐶1p𝑢,Λq �
d

1

𝜆� 2
�
�
𝐶 � 2Λ

𝑢𝜆



.

By the change 𝜉 � 𝑢𝜁 we get

0   𝐻0p𝑢,Λq   1

𝐶1p𝑢,Λq𝑢𝜆{2
» �8

1

d𝜁a
𝜁2�𝜆 � 1

.

This inequality implies the statement of the lemma.

We introduce the notations

𝑚 � min
𝑥Pr0;𝜋s

𝑄p𝑥q, 𝑀 � max
𝑥Pr0;𝜋s

𝑄p𝑥q.

Lemma 2. Let 𝑄p𝑥q and 𝑃 p𝑢q satisfy Conditions (Q1)-(Q3) and (P1)-(P2), respectively.
Then there exists 𝐴2 ¡ 0 such that for the initial data in the Cauchy problem for equation (1)
located in the sector

𝑅�p𝐴2q � tp𝑢�, 𝑢1�q | 𝑢� ¥ 𝐴2, 𝑢
1
� ¥ 0u ,

the solution to equation (1) collapses at �8 and lim𝑢Ñ�8 ℎ
�
0 p𝑢, 𝑢1q � 0 uniformly in 𝑢1 and

the estimate
0   ℎ�0 p𝑢, 𝑢1q ¤ 𝐻0p𝑢,𝑀q (7)

holds true.

Proof. We take a point p𝑢0, 𝑢10q P 𝑅�p𝐴2q. The solution to the Cauchy problem for equation
(4), where we let Λ �𝑀 with initial data 𝑢p0q � 𝑢0, 𝑢𝑥p0q � 𝑢10 is written in the implicit form

𝑥 � �
𝑢»

𝑢0

d𝜉b
𝐹 p𝑢0, 𝜉q �𝑀 p𝜉2 � 𝑢20q � p𝑢10q2

, (8)

where the sign “+” or “-” at the integral corresponds to the sign of 𝑢10. Let 𝑢0 ¡ 𝐴1 in Lemma 1
and 𝑢10 ¥ 0. In this case the denominator in (8) does not vanish as 𝜉 ¡ 𝑢0 and the integral

𝑥1 �
�8»
𝑢0

d𝜉b
𝐹 p𝑢0, 𝜉q �𝑀 p𝜉2 � 𝑢20q � p𝑢10q2

(9)

converges. At that, the corresponding solution 𝑢p𝑥q to the Cauchy problem for equation (4)
collapses to �8, while the singularity point 𝑥1 satisfies the estimate

𝑥1 ¤
�8»
𝑢0

d𝜉a
𝐹 p𝑢0, 𝜉q �𝑀 p𝜉2 � 𝑢20q

� 𝐻0p𝑢0,𝑀q.

Let us estimate function ℎ�0 p𝑢, 𝑢1q at point p𝑢0, 𝑢10q. We rewrite equations (1) and (4) as

𝑢𝑥𝑥 � 𝑓p𝑥, 𝑢q � 0, 𝑓p𝑥, 𝑢q � 𝑃 p𝑢q �𝑄p𝑥q𝑢, (10)

𝑢𝑥𝑥 � q𝑓p𝑢q � 0, q𝑓p𝑢q � 𝑃 p𝑢q �𝑀𝑢. (11)

We consider the Cauchy problems 𝑢p0q � 𝑢0, 𝑢𝑥p0q � 𝑢10 for equations (10) and (11). We denote

the solutions to these problems respectively by 𝑢p𝑥q and q𝑢p𝑥q. By construction, 𝑓p𝑥, 𝑢q ¥ q𝑓p𝑢q
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for all 𝑥 and 𝑢 ¡ 0. By Property (P2), there exists 𝐴3 ¡ 0 such that for 𝑢 ¡ 𝐴3, the functionq𝑓p𝑢q is monotonically increasing. As 𝑢0 ¥ 𝐴2 ¡ maxt𝐴1, 𝐴3u and 𝑢10 ¥ 0, by the Comparison
Lemma (see Appendix A) we have 𝑢p𝑥q ¥ q𝑢p𝑥q as 𝑥 ¥ 0. It follows that first, 𝑢p𝑥q is singular,
and second, ℎ�0 p𝑢0, 𝑢10q ¤ 𝐻0p𝑢0,𝑀q. This proves the lemma.

Corollary. Assume that 𝑄p𝑥q and 𝑃 p𝑢q satisfy Conditions (Q1)-(Q3) and (P1)-(P2), re-
spectively. Then there exists 𝐴2 ¡ 0 such that for the initial data in the Cauchy problem for
equation (1) located in the sector

𝑅�p𝐴2q � tp𝑢�, 𝑢1�q | 𝑢� ¥ 𝐴2, 𝑢
1
� ¤ 0u

the estimate
0   ℎ�0 p𝑢, 𝑢1q ¤ 𝐻0p𝑢,𝑀q (12)

holds true.

Proof. The statement is implied by the invertibility of equation (1); this invertibility holds due
to Property (Q2).

Lemma 3. Assume that 𝑄p𝑥q and 𝑃 p𝑢q satisfy Conditions (Q1)-(Q3) and (P1), (P3), re-

spectively. Then there exists r𝐴2   0 such that for the initial data in the Cauchy problem for
equation (1) located in the sector

𝐿�p r𝐴2q � tp𝑢�, 𝑢1�q|𝑢� ¤ r𝐴2, 𝑢
1
� ¤ 0u,

the solution to equation (1) collapses to �8, and at that, lim𝑢Ñ�8 ℎ
�
0 p𝑢, 𝑢1q � 0 uniformly in

𝑢1.

Proof. The statement is implied by Lemma 2 by changing 𝑢Ñ �𝑢 in equation (1).

Corollary. Assume that 𝑄p𝑥q and 𝑃 p𝑢q satisfy Conditions (Q1)-(Q3) and (P1), (P3), re-

spectively. Then there exists r𝐴2   0 such that for the initial data in the Cauchy problem for
equation (1) located in the sector

𝐿�p r𝐴2q � tp𝑢�, 𝑢1�q|𝑢� ¤ r𝐴2, 𝑢
1
� ¥ 0u,

the solution to equation (1) collapses to �8, at that, lim𝑢Ñ�8 ℎ
�
0 p𝑢, 𝑢1q � 0 uniformly in 𝑢1.

The obtained results characterizing the behavior of the functions ℎ�0 p𝑢, 𝑢1q in the plane p𝑢, 𝑢𝑥q
as 𝑢Ñ �8 are schematically presented in Figure 1.

3.2. Continuity of functions ℎ�0 p𝑢, 𝑢1q and ℎ�0 p𝑢, 𝑢1q.
Lemma 4. Assume that solution 𝑢p𝑥q of equation (1) collapses to �8 at the point 𝑥 � 𝑥1

while approaching this point from the left. Then
(a) there exists a semi-neighbourhood p𝑥1 � Δ;𝑥1q of the point 𝑥 � 𝑥1 such that for 𝜉 P

p𝑥1 �Δ;𝑥1q the inequality

𝐻� p𝑢p𝜉q, 𝑢𝑥p𝜉q,𝑚p𝜉qq   𝑥1 � 𝜉 � ℎ� p𝜉, 𝑢p𝜉q, 𝑢𝑥p𝜉qq   𝐻� p𝑢p𝜉q, 𝑢𝑥p𝜉q,𝑀p𝜉qq , (13)

holds true, where
𝑚p𝜉q � min

𝑥Pr𝜉;𝑥1s
𝑄p𝑥q, 𝑀p𝜉q � max

𝑥Pr𝜉;𝑥1s
𝑄p𝑥q;

(b) For each 𝜉 P p𝑥1 � Δ;𝑥1q there exists a neighbourhood 𝑉𝜀p𝑢p𝜉q, 𝑢𝑥p𝜉qq such that in each
point of this neighbourhood the values

𝐻� p𝑢, 𝑢1,𝑚p𝜉qq , ℎ� p𝜉, 𝑢, 𝑢1q , 𝐻� p𝑢, 𝑢1,𝑀p𝜉qq
are finite and

𝐻� p𝑢, 𝑢1,𝑚p𝜉qq ¤ ℎ� p𝜉, 𝑢, 𝑢1q ¤ 𝐻� p𝑢, 𝑢1,𝑀p𝜉qq . (14)
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Figure 1. Behavior of the functions ℎ�0 p𝑢, 𝑢1q in the plane p𝑢, 𝑢𝑥q. The white
oval indicates conditions (P1), (P2) for 𝑃 p𝑢q. The grey oval indicates condi-
tions (P1), (P3). Dashed lines indicate the uniform convergence to zero for the
functions ℎ�0 p𝑢, 𝑢1q as 𝑢Ñ �8

Proof. (a) Let 𝜉 be some value, 𝜉 P p0;𝑥1q. Denote 𝑢0 � 𝑢p𝜉q, 𝑢10 � 𝑢𝑥p𝜉q. We write equation
(1) as

𝑢𝑥𝑥 � 𝑓p𝑥, 𝑢q � 0, 𝑓p𝑥, 𝑢q � 𝑃 p𝑢q �𝑄p𝑥q𝑢 (15)

and consider the following equations

𝑢𝑥𝑥 � p𝑓p𝜉, 𝑢q � 0, p𝑓p𝜉, 𝑢q � 𝑃 p𝑢q �𝑚p𝜉q𝑢, (16)

𝑢𝑥𝑥 � q𝑓p𝜉, 𝑢q � 0, q𝑓p𝜉, 𝑢q � 𝑃 p𝑢q �𝑀p𝜉q𝑢. (17)

We denote by p𝑢p𝑥q, q𝑢p𝑥q respectively the solutions to the Cauchy problems for (16), (17) with
the initial conditions 𝑢p𝜉q � 𝑢0, 𝑢𝑥p𝜉q � 𝑢10.
By assumption, solution 𝑢p𝑥q collapses to �8 at the point 𝑥 � 𝑥1. It means that 𝑢p𝑥q is

well-defined on 𝑥 P r𝜉;𝑥1q and moving 𝜉 to 𝑥1, we can achieve that the solution 𝑢p𝑥q on the
segment 𝑥 P r𝜉;𝑥1q is greater than 𝐴 in Condition (P2). Then the inequalityp𝑓p𝜉, 𝑢q ¥ 𝑓p𝑥, 𝑢q
holds true, and the function 𝑓p𝜉, 𝑢q is monotonically increasing in 𝑢. By the Comparison
Lemma (see Appendix A), for 𝑥 ¥ 𝜉 we have p𝑢p𝑥q ¥ 𝑢p𝑥q. This means that 𝐻� p𝑢0, 𝑢10,𝑚p𝜉qq
is finite, the solution p𝑢p𝑥q collapses to �8 and

𝐻� p𝑢0, 𝑢10,𝑚p𝜉qq ¤ ℎ� p𝜉, 𝑢0, 𝑢10q . (18)

Since lim𝜉Ñ𝑥1p𝑚p𝜉q �𝑀p𝜉qq � 0 and the function 𝐻� p𝑢, 𝑢1,Λq is continuous, we can choose
𝜉 close enough to 𝑥1 so that the solution q𝑢p𝑥q also collapses to �8. In this case the value
𝐻� p𝑢0, 𝑢10,𝑀p𝜉qq is also finite. We apply the Comparison Lemma to equations (15) and (17).
As a result, we conclude that as 𝑥 ¥ 𝜉, the inequalities q𝑢p𝑥q ¤ 𝑢p𝑥q and

ℎ� p𝜉, 𝑢0, 𝑢10q ¤ 𝐻� p𝑢0, 𝑢10,𝑀p𝜉qq (19)

hold true. Combining (18) and (19), we obtain the double inequality (13), which holds true for
all 𝜉 belonging to a sufficiently small left semi-neighbourhood 𝑥1.
(b) Since the function 𝐻� p𝑢, 𝑢1,Λq is continuous, it follows that 𝐻� p𝑢, 𝑢1,𝑀p𝜉qq is finite

not only at the point 𝑢0 � 𝑢p𝜉q, 𝑢10 � 𝑢𝑥p𝜉q, but also in some neighbourhood 𝑉𝜀p𝑢p𝜉q, 𝑢𝑥p𝜉qq.
Applying the Comparison Lemma to the solutions of the Cauchy problems with the initial data
in the neighbourhood 𝑉𝜀p𝑢p𝜉q, 𝑢𝑥p𝜉qq for equations (15), (16), (17), we obtain that all three
solutions collapse and the singularity points satisfy inequality (14).
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Corollary. If a solution 𝑢p𝑥q to equation (1) collapses to �8 at the point 𝑥 � 𝑥1 approaching
it from the left, the statement of Lemma 4 is still true up to swapping𝑚p𝜉q and𝑀p𝜉q in formulae
(13) and (14).

The proof of this statement is completely similar to the proof of Lemma 4.

Lemma 5. Let a point p𝑢0, 𝑢10q be such that ℎ�0 p𝑢0, 𝑢10q � 𝑥1   �8. Then ℎ�0 p𝑢, 𝑢1q is
continuous at the point p𝑢0, 𝑢10q.
Proof. The solution 𝑢p𝑥q to the Cauchy problem 𝑢p0q � 𝑢0, 𝑢𝑥p0q � 𝑢10 for equation (1) collapses
to �8 at the point 𝑥 � 𝑥1. By Lemma 4, Statement (a), there exists Δ such that for each
𝜉 P p𝑥1 �Δ;𝑥1q the inequality

𝐻� p𝑢p𝜉q, 𝑢𝑥p𝜉q,𝑚p𝜉qq ¤ ℎ� p𝜉, 𝑢p𝜉q, 𝑢𝑥p𝜉qq ¤ 𝐻� p𝑢p𝜉q, 𝑢𝑥p𝜉q,𝑀p𝜉qq (20)

holds true, where

𝑚p𝜉q � min
𝑥Pr𝜉;𝑥1s

𝑄p𝑥q, 𝑀p𝜉q � max
𝑥Pr𝜉;𝑥1s

𝑄p𝑥q.

By Statement (b) of Lemma 4, for each 𝜉 P p𝑥1 � Δ;𝑥1q there exists a neighbourhood
𝑉𝜀1p𝑢p𝜉q, 𝑢𝑥p𝜉qq such that for each point in this neighbourhood the estimate

�𝐻� p𝑢, 𝑢1,𝑀p𝜉qq ¤ �ℎ� p𝜉, 𝑢, 𝑢1q ¤ �𝐻� p𝑢, 𝑢1,𝑚p𝜉qq (21)

holds true. Summing (20) and (21), we obtain

𝐻� p𝑢p𝜉q, 𝑢𝑥p𝜉q,𝑚p𝜉qq �𝐻� p𝑢, 𝑢1,𝑀p𝜉qq ¤ℎ� p𝜉, 𝑢p𝜉q, 𝑢𝑥p𝜉qq � ℎ� p𝜉, 𝑢, 𝑢1q
¤𝐻� p𝑢p𝜉q, 𝑢𝑥p𝜉q,𝑀p𝜉qq �𝐻� p𝑢, 𝑢1,𝑚p𝜉qq .

Since lim𝜉Ñ𝑥1 p𝑚p𝜉q �𝑀p𝜉qq � 0 and by the continuity of the function 𝐻� p𝑢, 𝑢1,Λq, for each
𝛿 ¡ 0 there exist 𝜀2, 0   𝜀2   𝜀1, and 𝜂 P p𝑥1�Δ;𝑥1q such that for each point in 𝑉𝜀2p𝑢p𝜂q, 𝑢𝑥p𝜂qq
the estimates

� 𝛿   𝐻� p𝑢p𝜂q, 𝑢𝑥p𝜂q,𝑚p𝜂qq �𝐻� p𝑢, 𝑢1,𝑀p𝜂qq   𝛿,

� 𝛿   𝐻� p𝑢p𝜂q, 𝑢𝑥p𝜂q,𝑀p𝜂qq �𝐻� p𝑢, 𝑢1,𝑚p𝜂qq   𝛿

hold true. This means that for each point in 𝑉𝜀2p𝑢p𝜂q, 𝑢𝑥p𝜂qq the inequality��ℎ� p𝜂, 𝑢p𝜂q, 𝑢𝑥p𝜂qq � ℎ� p𝜂, 𝑢, 𝑢1q��   𝛿

holds true, that is, ℎ� p𝜂, 𝑢, 𝑢1q is well-defined in some neighbourhood of the point p𝑢p𝜂q, 𝑢𝑥p𝜂qq
and is a continuous function of 𝑢 and 𝑢1. We consider the mapping 𝒯𝜂 generated by the
shift along the trajectories of equation (1) mapping the point p𝑢p0q, 𝑢𝑥p0qq into the point
p𝑢p𝜂q, 𝑢𝑥p𝜂qq. This mapping is continuous and at that, the inverse mapping 𝒯 �1

𝜂 is also contin-
uous. Therefore, there exists a neighbourhood of the point p𝑢p0q, 𝑢𝑥p0qq,

𝑉𝜀 p𝑢p0q, 𝑢𝑥p0qq � 𝒯 �1
𝜂 𝑉𝜀2 p𝑢p𝜂q, 𝑢𝑥p𝜂qq ,

in which the function ℎ�0 p𝑢, 𝑢1q is well-defined and continuous.

Remark. Similar statement is true for the function ℎ�0 p𝑢, 𝑢1q. Namely, if a point p𝑢0, 𝑢10q is
such that ℎ�0 p𝑢0, 𝑢10q � 𝑥1   �8, then ℎ�0 p𝑢, 𝑢1q is finite in some neighbourhood 𝑉𝜀 p𝑢0, 𝑢10q and
is continuous at the point p𝑢0, 𝑢10q. The proof of this statement is completely similar to that of
Lemma 5.
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4. Properties of sets 𝒰�
𝐿 and 𝒰𝐿

Basing on the results of Section 3, we describe some properties of the sets 𝒰�
𝐿 , 0   𝐿   8.

Theorem 1. Assume that Conditions (Q1)-(Q3), (P1)-(P2) are satisfied and 𝐿 is such that
the sets 𝒰�

𝐿 are non-empty. Then

(a) 𝒰�
𝐿 are open sets;

(b) the boundary of 𝒰�
𝐿 consists of the points p𝑢�, 𝑢1�q such that ℎ�0 p𝑢�, 𝑢1�q � 𝐿.

Proof. Let us prove the theorem for 𝒰�
𝐿 ; the proof for 𝒰�

𝐿 is completely similar.
(a) Assume that 𝑝 � p𝑢�, 𝑢1�q P 𝒰�

𝐿 . This means that ℎ�0 p𝑢�, 𝑢1�q ¡ 𝐿. However, by the
continuity of ℎ�0 p𝑢, 𝑢1q, there exists the neighbourhood 𝑉𝜀p𝑢�, 𝑢1�q such that ℎ�0 p𝑢, 𝑢1q ¡ 𝐿 for
all points in this neighbourhood, that is, 𝑉𝜀p𝑢�, 𝑢1�q � 𝒰�

𝐿 and it means that the set 𝒰�
𝐿 is open.

(b) If the point 𝑝 � p𝑢�, 𝑢1�q belongs to the boundary 𝒰�
𝐿 , then there exists a sequence of

the points 𝑝𝑛 � p𝑢𝑛, 𝑢1𝑛q, 𝑝𝑛 P 𝒰�
𝐿 , converging to 𝑝. For each of the points 𝑝𝑛 the inequality

ℎ�0 p𝑢𝑛, 𝑢1𝑛q ¡ 𝐿 holds true. Therefore, ℎ�0 p𝑢�, 𝑢1�q ¥ 𝐿. But if ℎ�0 p𝑢�, 𝑢1�q ¡ 𝐿, then 𝑝 is an
internal point of the domain. Hence, ℎ�0 p𝑢�, 𝑢1�q � 𝐿 and this is the desired identity.

Theorem 2. Let 𝐿 be fixed, Conditions (Q1)-(Q3), (P1)-(P2) are satisfied and the sets 𝒰�
𝐿

are non-empty. Then there exists 𝐵 ¡ 0 such that the set 𝒰𝐿 and its closure are located in the
half-plane 𝑢 ¤ 𝐵.

Proof. By Lemma 2 there exists 𝐵1 ¡ 0 such that in the sector 𝑅�p𝐵1q the estimate (7)
is satisfied for ℎ�0 p𝑢, 𝑢1q, while in the sector 𝑅�p𝐵1q estimate (12) is true for ℎ�0 p𝑢, 𝑢1q. By
Lemma 1 there exists 𝐵2 ¡ 0 such that for each 𝑢 ¡ 𝐵2 the inequality 𝐻0p𝑢,𝑀q   𝐿 holds
true. We denote 𝐵 � maxt𝐵1, 𝐵2u. Then it is true that the sector 𝑅�p𝐵q contains no points
of the set 𝒰�

𝐿 , while the sector 𝑅�p𝐵q has no points of the set 𝒰�
𝐿 . Hence, the intersection

𝒰𝐿 � 𝒰�
𝐿 X𝒰�

𝐿 is located in the half-plane 𝑢 ¤ 𝐵 and its closure also located in this half-plane.
The proof is complete.

Now we are in position to formulate the main result of the work.

Theorem 3. Assume that Conditions (Q1)-(Q3) and (P1)-(P2) hold true and the set 𝒰�
𝜋 is

non-empty. Then

(a) the set 𝒰�
𝜋 consists of finitely many or countable many connected components 𝑉1, 𝑉2, . . .,

each of which is a domain, that is, an open connected set;
(b) each connected component 𝑉𝑘 is simply connected, that is, each closed contour can be

continuously contracted to a point without leaving 𝑉𝑘;
(c) each connected component 𝑉𝑘 is unbounded.

Proof. Since 𝒰�
𝜋 is an open set, it can be represented as the union of finitely many or countably

many non-intersecting domains 𝑉𝑘, 𝒰�
𝜋 � �

𝑘 𝑉𝑘 (see [7, Ch. 4, Thm. 17]), which are the
connected components of 𝒰�

𝜋 . This proves Statement (a).
Let us prove Statement (b). Consider one of the connected components, 𝑉 , and assume that

it is not simply connected. This means that there exists a closed Jordan contour Γ � 𝑉 , which
can not be continuously contracted into the point without leaving the component 𝑉 . We denote
by Δ1 the domain enveloped by Γ. We have that Δ1 contains a point not belonging to 𝑉 , that
is, such that ℎ�0 p𝑢, 𝑢1q ¤ 𝜋. We consider the set

Θ � tp𝑢�, 𝑢1�q P Δ1, ℎ
�
0 p𝑢�, 𝑢1�q ¡ 𝜋u, Θ � Δ1, Θ � 𝑉,

and its closure Θ. By the continuity of the function ℎ�0 p𝑢, 𝑢1q, in Θ there is a point 𝑃 � p𝑈,𝑈 1q P
Δ1 such that ℎ�0 p𝑈,𝑈 1q � 𝜋. At that, the point 𝑃 can be connected with some point 𝑁 P Γ by
a continuous curve 𝛼 P Θ.

Now we apply the Poincaré map 𝑇 to Γ, Θ and 𝛼. The 𝑇 -image of Γ is a closed Jordan
contour 𝑇Γ, which partitions R2 into the internal part, Δ2, and the external part, R2zΔ2. The
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Figure 2. To the proof of Statement (b) of Theorem 3

set Δ2 is bounded, the set R2zΔ2 is unbounded. The 𝑇 -image of 𝛼 is the curve 𝑇𝛼; one of its
ends lies in 𝑇Γ, while the other goes to infinity. The 𝑇 -image of Θ is the set 𝑇Θ located in the
exterior of the contour 𝑇Γ, R2zΔ2. It contains the curve 𝑇𝛼 and therefore, is unbounded.

We consider 𝑇Θ, the closure of 𝑇Θ. Let us show that

𝑇Θ � R2zΔ2. (22)

It is obvious that 𝑇Θ � R2zΔ2. Let us prove the opposite inclusion. Assume that there exists
a point 𝑞 such that 𝑞 P R2zΔ2, but 𝑞 R 𝑇Θ. We connect 𝑞 with an arbitrary point of the
contour 𝑇Γ by a finite curve 𝛽. On the curve 𝛽 there is a point r𝑞 � p𝑣�, 𝑣1�q being a boundary
point of 𝑇Θ. It means that in each neighbourhood r𝑞 there are points not belonging to 𝑇Θ,
and there exists a sequence of the points 𝑞𝑛 � p𝑣𝑛, 𝑣1𝑛q, 𝑞𝑛 P 𝑇Θ, converging to r𝑞. We consider
𝑇 -preimages of the points 𝑞𝑛, 𝑝𝑛 � 𝑇�1𝑞𝑛 � p𝑢𝑛, 𝑢1𝑛q. Since 𝑇 is a diffeomorphism, the sequence
t𝑝𝑛u also converges to some point r𝑝 � p𝑢�, 𝑢1�q. Since ℎ�0 p𝑢𝑛, 𝑢1𝑛q ¡ 𝜋, then ℎ�0 p𝑢�, 𝑢1�q ¥ 𝜋.
If ℎ�0 p𝑢�, 𝑢1�q � 𝜋, then 𝑞𝑛 Ñ 8, which does not hold. Therefore, ℎ�0 p𝑢�, 𝑢1�q ¡ 𝜋. But thenr𝑞 � 𝑇 r𝑝 and r𝑞 is an internal point of 𝑇Θ and not its boundary point. Thus, we have proved
(22).

Hence, we have

Θ � 𝑉 � 𝒰�
𝜋 ,

this is why

𝑇Θ � 𝑇𝑉 � 𝑇𝒰�
𝜋 � 𝒰�

𝜋

and

𝑇Θ � 𝒰�
𝜋 . (23)

We consider the set Θ0 � 𝐼
�
𝑇Θ

�X𝑇Θ, where 𝐼, as above, stands for the symmetry mapping

w.r.t. the axis 𝑢. By (22), each of the sets 𝐼
�
𝑇Θ

�
and 𝑇Θ is the plane without a bounded

domain, and this is why they include the exterior of some rather large circle. It follows that
Θ0 also includes the exterior of some circle. On the other hand, by (23)

Θ0 � 𝐼
�
𝒰�
𝜋

�X 𝒰�
𝜋 � 𝒰�

𝜋 X 𝒰�
𝜋 � 𝒰𝜋.

But by Theorem 2, the set 𝒰𝜋 lies in the left half-plane 𝑢 ¤ 𝐵 for some 𝐵. The proved
contradiction proves Statement (b).

Let us prove Statement (c). Assume that a connected component, 𝑉 , is bounded. We
consider an arbitrary Jordan contour Γ located inside 𝑉 . We denote by Δ1 � 𝑉 the domain
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Figure 3. Riemann sphere S2 � R2 Y t8u. On the sphere, the configuration of
the set 𝒰�

𝜋 is shown similar to Figure 5(c)

enveloped by Γ. We introduce the notation:

Θ � 𝑉 zΔ1.

Let us consider 𝑇Γ and 𝑇Θ. It is obvious that 𝑇Γ is a Jordan contour in R2. We denote
by Δ2 the domain enveloped by this contour. Concerning 𝑇Θ, Statement (22) turns out to be
true and the proof of (22) is completely similar to the corresponding proof in Statement (b).
As in Statement (b), we consider the set Θ0 � 𝐼

�
𝑇Θ

�X 𝑇Θ which, on one hand, includes the

exterior of some circle, and on the other hand, is contained in 𝒰𝜋 located in the left half-plane
𝑢 ¤ 𝐵 for some 𝐵. Thus, the proof of Statement (c) is complete.

Remark. Since the sets 𝒰�
𝜋 and 𝒰�

𝜋 are located symmetrically w.r.t. the axis 𝑢, Theorem 3
remains true if we replace 𝒰�

𝜋 by 𝒰�
𝜋 in its formulation.

Remark. Theorem 3 is also true for the sets 𝒰�
𝑘𝜋, where 𝑘 ¡ 1 is an integer number.

Remark. The above identity can be essentially simplified, if the boundaries of the set 𝒰�
𝜋

are sufficiently “good” curves. It seems that the boundaries of 𝒰�
𝜋 are indeed 𝐶1-smooth curves

in a rather general case, but at present, the authors do not know the proof of this fact.

5. Possible types of set 𝒰�
𝜋

Theorems 1, 2 and 3 allow us to describe possible topological types of the sets 𝒰�
𝜋 . In order

to do it, we make the following non-rigorous arguments. We consider the Riemann sphere
obtained by completing the plane p𝑢, 𝑢𝑥q by the infinity t8u, S2 � R2 Y t8u. We observe that
by Theorem 3:
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Figure 4. All possible configurations of the set 𝒰�
𝜋 for equation (1) as 𝑛 � 1, 2.

(a): 𝑛 � 1, 𝑘 � 1. (b): 𝑛 � 2, 𝑘 � 2. (c): 𝑛 � 2, 𝑘 � 1.

1. The set 𝒰�
𝜋 can not cover the point t8u.

2. Each of the connected component of 𝒰�
𝜋 touches the point t8u.

In order to classify all possible locations of the connected components of 𝒰�
𝜋 , we make use of

the following visualization. We consider a neighbourhood 𝑊 of the point t8u on S2 with the
boundary on the parallel “sufficiently close” to the point t8u. We assume that the intersection
of 𝒰�

𝜋 with 𝑊 is represented by several disjoint components, each of which touches t8u. On
the boundary of 𝑊 these components cut the arcs 𝛼1, 𝛼2, . . .. The amount of arcs 𝑛 can be
finite or infinite. The issue on possible configurations of 𝒰�

𝜋 is reduced to possible types of the
closures of the connected components of 𝒰�

𝜋 between the arcs 𝛼1, 𝛼2, . . . in S2z𝑊 . The amount
of connected components 𝑘 is not necessarily equal to 𝑛, see below.
Interpreting now S2z𝑊 as a circle of rather large radius, we locate 𝑛 arcs 𝛼1, 𝛼2, . . . on its

boundary, the circumference 𝛾. In the case 𝑛 � 1, on 𝛾 there is the only arc 𝛼1 and there is
the only possible configuration for 𝒰�

𝜋 shown schematically in Figure 4(a). If 𝑛 � 2, there are
two arcs 𝛼1 and 𝛼2 on 𝛾 and for 𝒰�

𝜋 , there are two possible topologically different configuration
shown in Figure 4(b,c).

On Figures 5 and 6, there are shown all possible topological configurations corresponding to
the cases 𝑛 � 3 and 𝑛 � 4. We note that on Figures 6(b) and 6(c), topologically different sets
𝒰�
𝜋 are shown, but their values p𝑛, 𝑘q � p4, 3q are same. In the same way, Figures 6(d) and 6(e)

present different configurations of 𝒰�
𝜋 with the same values p𝑛, 𝑘q � p4, 2q. The issue on the

amount of possible configurations for an arbitrary 𝑛 seems to be nontrivial. It is easy to show
that the lower bound for the amount of possible topological configurations for a given amount
of arcs 𝑛 is the the number of partitions of 𝑛 into the terms 𝑝p𝑛q. At the same time, each such
partition can generate several topologically different configurations.

6. Numerical study of the sets 𝒰�
𝜋 : examples

If 𝑄p𝑥q and 𝑃 p𝑢q are given, we can use numerics for studying the sets 𝒰�
𝜋 . It is natural to

base it on scanning the plane of the initial data p𝑢, 𝑢𝑥q in order to construct the 3D plot of the
function ℎ�0 p𝑢, 𝑢1q and to find the points in this plane, for which ℎ�0 p𝑢, 𝑢1q ¡ 𝜋. In the examples
we provide below the studying was made as follows. In the plane p𝑢, 𝑢𝑥q we introduce a grid of
size𝑀�𝑁 covering the rectangle r𝐴;𝐵s�r𝐶;𝐷s with a sufficiently small step 𝜏1 � p𝐵�𝐴q{𝑀
in 𝑢 and 𝜏2 � p𝐷 � 𝐶q{𝑁 in 𝑢𝑥, respectively. For each node of the grid p𝑢𝑖, 𝑢1𝑗q, 1 ¤ 𝑖 ¤ 𝑀 ,
1 ¤ 𝑗 ¤ 𝑁 , we solve the Cauchy problem for equation (1) with the initial data 𝑢p0q � 𝑢𝑖,
𝑢𝑥p0q � 𝑢1𝑗. If in the segment r0;𝜋s the solution to the Cauchy problem takes values greater
than some prescribed value 𝑢max, we assume that the point p𝑢𝑖, 𝑢1𝑗q does not belong to the
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Figure 5. All possible configuations of the set 𝒰�
𝜋 for equation (1) as 𝑛 � 3.

(a): 𝑘 � 3. (b): 𝑘 � 2. (c): 𝑘 � 1.

Figure 6. All possible configurations of the set 𝒰�
𝜋 for equation (1) as 𝑛 � 4.

(a): 𝑘 � 4. (b): 𝑘 � 3. (c): 𝑘 � 3. (d): 𝑘 � 2.
(e): 𝑘 � 2. (f): 𝑘 � 1.

set 𝒰�
𝜋 , otherwise, p𝑢𝑖, 𝑢1𝑗q is included in 𝒰�

𝜋 . The results obtained for 𝑢max � 105 and for

𝑢max � 107 were in a good agreement. The set 𝒰�
𝜋 is obtained from 𝒰�

𝜋 by the symmetric
mapping w.r.t. the axis 𝑢.
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Figure 7. The set 𝒰�
𝜋 for equation (24) found numerically. The parameters as

(a) 𝜇1 � 0, 𝜇2 � �2; (b) 𝜇1 � 1, 𝜇2 � 3; (c) 𝜇1 � 4, 𝜇2 � 10

In what follows we provide the results of the numerical studying of equation (1) for some types
of nonlinearity 𝑃 p𝑢q. In all cases the function 𝑄p𝑥q has the same form, 𝑄p𝑥q � 𝜇1 � 𝜇2 cos 2𝑥,
corresponding to a model 𝜋-periodic potential.

6.1. Nonlinearity 𝑃 p𝑢q � 𝑢3. The equation

𝑢𝑥𝑥 � p𝜇1 � 𝜇2 cos 2𝑥q𝑢� 𝑢3 � 0 (24)

arises in studying the stationary modes of the form

𝜓p𝑥, 𝑡q � 𝑒𝑖𝜇1𝑡𝑢p𝑥q (25)

with a real-valued function 𝑢p𝑥q in the Gross-Pitaevskii model

𝑖𝜓𝑡 � 𝜓𝑥𝑥 � p𝜇2 cos 2𝑥q𝜓 � |𝜓|2𝜓 � 0. (26)

The latter equation is one of the most demanded equations in the considered class since it
arises in various problems in the nonlinear optics and low temperature physics [1, 2]. Paper
[3] was devoted to classification of solution to equation (24). In particular, in [3] numerically
constructed sets 𝒰�

𝑘𝜋, 𝑘 � 1, 2, . . ., are given. The examples of the sets 𝒰�
𝜋 for three sets of

the parameters 𝑄p𝑥q are given in Figure 7. It is obvious that the configuration of these sets
correspond to the scheme in Figure 4(c), case 𝑛 � 2.

6.2. Nonlinearity 𝑃 p𝑢q � 𝑢3 � 𝜈{𝑢3, 𝜈 ¡ 0. The equation

𝑢𝑥𝑥 � p𝜇1 � 𝜇2 cos 2𝑥q𝑢� 𝑢3 � 𝜈

𝑢3
� 0, 𝜈 ¡ 0 (27)

also arises in studying the stationary modes for equation (26). In this case the stationary modes
are assumed to be complex-valued of the form 𝜓p𝑥, 𝑡q � 𝑒𝑖𝜇1𝑡�𝑖𝜙p𝑥q𝑢p𝑥q with real-valued 𝑢p𝑥q
and 𝜙p𝑥q. It is obvious that (24) is a limiting case of (27) as 𝜈 Ñ 0.
The considered nonlinearity does not satisfy condition (P1) and this is why, saying rigorously,

the above proven facts are not applicable to this nonlinearity. Nevertheless, the configuration
𝒰�
𝜋 given in Figure 8 corresponds to the scheme in Figure 4(b) (𝑛 � 2).

6.3. Nonlinearity 𝑃 p𝑢q � �𝑢3 � 𝜈𝑢5, 𝜈 ¡ 0. The equation

𝑢𝑥𝑥 � p𝜇1 � 𝜇2 cos 2𝑥q𝑢� 𝑢3 � 𝜈𝑢5 � 0, 𝜈 ¡ 0, (28)

arises, in particular, in the problems of the Bose-Einstein condensate theory while taking into
consideration three-particle interactions [9]. The examples of the sets 𝒰�

𝜋 for three sets of the
parameters 𝑄p𝑥q are given in Figure 9. The configuration of 𝒰�

𝜋 in Figure 9(a) corresponds to
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Figure 8. The set 𝒰�
𝜋 for equation (27) found numerically. The parameters are

(a) 𝜇1 � 0, 𝜇2 � �2, 𝜈 � 0.1; (b) 𝜇1 � 1, 𝜇2 � 3, 𝜈 � 0.1; (c) 𝜇1 � 4, 𝜇2 � 10, 𝜈 �
0.1

Figure 9. The set 𝒰�
𝜋 for equation (28) found numerically.

The parameters are (a) 𝜇1 � 0, 𝜇2 � �2, 𝜈 � 0.3; (b) 𝜇1 � 1, 𝜇2 � 3, 𝜈 � 0.3;
(c) 𝜇1 � 4, 𝜇2 � 10, 𝜈 � 0.3.

the scheme in Figrue 6(f) (the case 𝑛 � 4), Figures 9(b) and 9(c) correspond to the scheme in
Figure 4(c) (𝑛 � 2).

6.4. Nonlinearity 𝑃 p𝑢q � 𝑢2. To give a complete picture, we consider the equation

𝑢𝑥𝑥 � p𝜇1 � 𝜇2 cos 2𝑥q𝑢� 𝑢2 � 0. (29)

In this case, the nonlinearity differs from ones considered above since now it is not odd. The
examples of the sets 𝒰�

𝜋 for this case are given in Figure 10. It is interesting that by varying
parameters 𝜇1 and 𝜇2, we change essentially the geometry of the set 𝒰�

𝜋 . The configuration of
𝒰�
𝜋 in Figure 10(a) corresponds to the scheme in Figure 4(a), (𝑛 � 1), that in Figure 10(b)

corresponds to the scheme in Figure 4(c), (𝑛 � 2), that in Figure 10(c) corresponds to the
scheme in Figure 5(b) (𝑛 � 3).

7. Conclusion

In the work we study all possible configurations of the sets 𝒰�
𝐿 in the plane of the initial data

for equation (1). By the definition in Section 2, a points in the plane 𝑝 � p𝑢0, 𝑢10q belongs to
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Figure 10. The set 𝒰�
𝜋 for equation (29) found numerically. The parameters

are (a) 𝜇1 � 3, 𝜇2 � 20; (b) 𝜇1 � 3, 𝜇2 � 25; (c) 𝜇1 � 3, 𝜇2 � 30

𝒰�
𝐿 if and only if the solution to the Cauchy problem 𝑢p0q � 𝑢0, 𝑢𝑥p0q � 𝑢10 for (1) is extended

to the interval r0;𝐿s, 𝐿 ¡ 0. In the same way, a point in the plane 𝑝 � p𝑢0, 𝑢10q belongs to 𝒰�
𝐿

if and only if the solution to Cauchy problem 𝑢p0q � 𝑢0, 𝑢𝑥p0q � 𝑢10 for (1) is extended to the
interval r�𝐿; 0s, 𝐿 ¡ 0. The study of the sets 𝒰�

𝐿 turns out to be important for describing of
the set of solutions to (1) bounded on the whole real line. In particular, since the equation is
invariant w.r.t. the shift by 𝜋, in some cases we succeed to describe the set of the solutions
to (1) in terms of the dynamics generated by the Poincaré map on the set 𝒰𝜋 � 𝒰�

𝜋 X 𝒰�
𝜋 .

This is why in studying the bounded solutions to (1), the sets 𝒰�
𝜋 as well as related sets 𝒰�

𝑛𝜋,
𝑛 � 2, 3, . . . play a key role.
The main result of the work is Theorem 3. It imposes rather strict restrictions for the shape

of the set 𝒰�
𝜋 . On the base of Theorem 3, in this work we present possible shapes of the set 𝒰�

𝜋 .
The numerical calculations made for equation (1) with various types of nonlinearities allow us
to find the shapes of 𝒰�

𝜋 in several particular cases. In all considered cases the shapes of 𝒰�
𝜋

correspond to the geometries predicted by the developed theory.
However, the made study gives rise to new questions, which, in our opinion, deserve further

studying.
First, it is unknown whether all the predicted geometries of the set 𝒰�

𝜋 can be realized under
a proper choice of inhomogeneity 𝑄p𝑥q and nonlinearity 𝑃 p𝑢q. In particular, it is interesting
whether the shapes of 𝒰�

𝜋 with infinitely many connected components can be realized.
Second, the issue on possible shapes of the set 𝒰𝜋 is left unstudied. As it follows from work

[3], the most interesting situations are those when 𝒰𝜋 has an “island” structure, that is, consists
of finitely many or infinitely many curvilinear quadrilateral having no common points. It is
interesting to employ the results of the present work to identify such situations.

Third, for further purposes it can be useful to study the bifurcations of the sets 𝒰�
𝜋 under

variation of the parameters 𝑄p𝑥q and 𝑃 p𝑢q. In particular, in the numerical studying in Sub-
section 6.4 such bifurcation were found. In our opinion, it is interesting to study the issue on
existence or absence of a universal mechanism responsible for restructuring of 𝒰�

𝜋 under the
variation of the parameters.

Fourth, the further progress in studying the problems of such form can be related to the
following fact. The mapping 𝐼𝑇 (𝐼 is the reflection w.r.t. the axis 𝑢, 𝑇 is the Poincaré map,
see Section 2) is an automorphism of 𝒰�

𝜋 . Therefore, this mapping transforms the boundary of
𝒰�
𝜋 into itself. The study of mapping of the boundary under the action of 𝐼𝑇 can be useful for

many issues related with the symbolic dynamics determined by the Poincaré map.
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Finally, in our opinion, it is rather interesting to generalize the developed method for the
higher order equations.

A. Comparison Lemma

Lemma (Comparison Lemma [8]). Let functions 𝑢p𝑥q and 𝑧p𝑥q, 𝑥 P r𝑎; 𝑏s, solve the equa-
tions

𝑢𝑥𝑥 � 𝑓p𝑥, 𝑢q � 0, (30)

𝑧𝑥𝑥 � 𝑔p𝑥, 𝑧q � 0. (31)

Assume that

(a) 𝑓p𝑥, 𝜉q and 𝑔p𝑥, 𝜉q can be defined on r𝑎; 𝑏s�r𝐴;𝐵s and are locally Lipschitz in 𝜉, 𝜉 P r𝐴;𝐵s,
and 𝐴 and 𝐵 can be finite or infinite;

(b) 𝑔p𝑥, 𝜉q ¥ 𝑓p𝑥; 𝜉q as 𝑥 P r𝑎; 𝑏s, 𝜉 P r𝐴;𝐵s;
(c) 𝑓p𝑥, 𝜉q is monotonically non-decreasing w.r.t. variable 𝜉.

Let 𝐴   𝑢p𝑎q ¤ 𝑧p𝑎q   𝐵 and 𝑢𝑥p𝑎q ¤ 𝑧𝑥p𝑎q. Then 𝑢p𝑥q ¤ 𝑧p𝑥q and 𝑢𝑥p𝑥q ¤ 𝑧𝑥p𝑥q on the
whole interval r𝑎; 𝑏s or until 𝐴   𝑢p𝑥q ¤ 𝑧p𝑥q   𝐵

Remark. The monotonicity condition for 𝑓p𝑥, 𝜉q w.r.t. the variable 𝜉 can not be omitted.
Consider the case 𝑔p𝑥, 𝜉q � �𝜉, 𝑓p𝑥, 𝜉q � �𝜉 � 𝜉2. It is obvious that 𝑔p𝑥, 𝜉q ¥ 𝑓p𝑥, 𝜉q for
all 𝜉, but 𝑓p𝑥, 𝜉q is not monotonous. In Figure 11 we provide the graph of the difference
𝑤p𝑥q � 𝑢p𝑥q � 𝑧p𝑥q of the solutions to equation (30) and (31) with the same initial condition
𝑢p0q � 0, 𝑢𝑥p0q � 0.5. We see that 𝑤p𝑥q is negative in some neighbourhood 𝑥 � 0 but changes
sign for some 𝑥 P r8; 9s.

Figure 11. Comment on Comparison Lemma: the importance of the mono-
tonicity of 𝑓p𝑥, 𝜉q. The graph of 𝑤p𝑥q, the difference of solutions to the equations
𝑢𝑥𝑥�𝑢 � 0 and 𝑧𝑥𝑥� 𝑧� 𝑧2 � 0 with the same initial condition 𝑢p0q � 𝑧p0q � 0,
𝑢𝑥p0q � 𝑧𝑥p0q � 0.5
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