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SYMMETRY REDUCTION AND INVARIANT SOLUTIONS

FOR NONLINEAR FRACTIONAL DIFFUSION EQUATION

WITH A SOURCE TERM

S.YU. LUKASHCHUK

Abstract. We consider a problem on constructing invariant solutions to a nonlinear frac-
tional differential equations of anomalous diffusion with a source. On the base of an earlier
made group classification of the considered equation, for each case in the classification we
construct the optimal systems of one–dimensional subalgebras of Lie algebras of infinites-
imal operators of the point transformations group admitted by the equation. For each
one-dimensional subalgebra of each optimal system we find the corresponding form of the
invariant solution and made the symmetry reduction to an ordinary differential equation.
We prove that there are three different types of the reduction equations (factor equations):
a second order ordinary differential equation integrated by quadratures and two ordinary
nonlinear fractional differential equations. For particular cases of the latter we find exact
solutions.

Keywords: fractional diffusion equation, symmetry, optimal system of subalgebras, sym-
metry reduction, invariant solution.
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1. Introduction

We consider a nonlinear equation of anomalous diffusion

𝐷𝛼
𝑡 𝑢 = (𝑘(𝑢)𝑢𝑥)𝑥 + 𝑓(𝑢), 𝛼 ∈ (0, 2) (1)

with the fractional Riemann-Liouville time derivative [1, 2]:

𝐷𝛼
𝑡 𝑢 =

1

Γ(𝑛− 𝛼)

𝜕𝑛

𝜕𝑡𝑛

∫︁ 𝑡

0

𝑢(𝑥, 𝜏)

(𝑡− 𝜏)𝛼−𝑛+1
𝑑𝜏. (2)

Here Γ(𝑧) is the Gamma function and 𝑛 = [𝛼] + 1.
As 𝛼 ∈ (0, 1), equation (1) is known as a subdiffusion equation, while for 𝛼 ∈ (1, 2) this is

a diffusion-wave equation [3–6]. In the limiting case 𝛼 = 1 it becomes the classical diffusion
equation, and as 𝛼 = 2, this is the wave equation.

At present, the most studied case is when equation (1) has no source term (𝑓(𝑢) = 0) and
is linear (𝑘(𝑢) = 𝑐𝑜𝑛𝑠𝑡). The issues on solvability and uniqueness of the solutions to the
corresponding initial boundary value problems for such linear equations were studied by many
authors, who showed that usually, the solutions to these problems are expressed in terms of
Wright and Fox special functions [6–8].
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Nonlinear equations of anomalous diffusion were studied less intensively. This is due to
considerable complicacy of studying nonlinear integral-differential equations, whose particular
case is equation (1). Nevertheless, there is a series of general mathematical approaches allowing
one to construct exact solutions to nonlinear differential equations and one of such approaches
is the modern group analysis [9, 10].

The study of symmetry properties of fractional order equations is a rather complicated prob-
lem even for linear equations. The complicacy of the problem is first of all due to the properties
of the integral-differential operator of fractional differentiation and is related to its non-locality.
In contrast to the classical operator of integer differentiation, the actions of the fractional dif-
ferentiation operator on the product of two functions is presented not by a finite sum but an
infinite series, which is a so-called generalized Leibnitz rule [1]. A much more complicated form
is for the fractional derivatives of a composite function. Here in the general case one has to
deal with a four-multiple series [13]. As a result, the solving of generating equations for finding
the group of point transformation turns out to be quite effortful.

The general methods of the group transformations for fractional differential equations were
presented in works [13–18]. There were constructed the continuation formulae for the groups
of point transformations for fractional differential variables, the algorithm of finding linear-
autonomous symmetries for such equations was proposed and there were developed the al-
gorithms for constructing conservation laws by known symmetries on the base of fractional
differential generalization of Noether theorem.

The symmetry were first used for fractional differential equations of anomalous diffusion in
works [11,12]. There were constructed invariant solutions to the linear equations of subdiffusion
and to diffusion-wave equations with Riemann-Liouville derivatives corresponding to the group
of non-uniform dilatations. It was shown that the solutions are represented via Wright functions.

In work [14], the group classification of nonlinear equation (1) without source was made. It
was shown that such equation always admits a two-parametric group consisting of the group
of translations along 𝑥 and the group of non-uniform dilatations. This main group is extended
for four particular cases of the diffusion coefficient 𝑘(𝑢): 𝑘 = 𝑐𝑜𝑛𝑠𝑡, 𝑘 = 𝑢𝜎, 𝑘 = 𝑢2𝛼/(1−𝛼) and
𝑘 = 𝑢−4/3.

In work [19], the results on group classification of the classical (𝛼 = 1) diffusion equation with
source of form (1), were provided as well as the invariant solutions corresponding to optimal
systems of one-dimensional subalgebras for each case of group classification. The group classi-
fication for fractional differential equation (1) was made in work [20]. Some invariant solutions
to this equations were also constructed in this work. However, the problem on constructing
invariant solutions to this equations corresponding to optimal systems of subalgebras was just
mentioned in [20].

In the present work we provide the solution to this problem for all one-dimensional sub-
lagebras of finite-dimensional Lie algebras of infinitesimal operators of the groups of point
transformations admitted by equation (1). It was proved that under the symmetry reduction,
the original equation of anomalous diffusion is reduced to one of three ordinary differential equa-
tions called reduced equation or factor equations (in terms in Academician L.V. Ovsyannikov):
one second order equation integrated by quadratures and two ordinary fractional differential
equations, for which the admitted groups of linear autonomous symmetries were found and the
corresponding invariant solutions are constructed.

2. Optimal systems of one-dimensional subalgebras

Since (1) is a scalar equation with two independent variables, we can use only one- and two-
dimensional subalgebras for constructing invariant solutions. At that, the solutions constructed
by two-dimensional subalgebras are particular cases of solutions constructed on corresponding
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embedded one-dimensional subalgebras. This is why one-dimensional subalgebras are of the
main interest.

The group classification of equation (1) was first made in work [20], its results are provided
in the first three columns of Table 1. At that, the function 𝑔(𝑡, 𝑥) determining the infinite-
dimensional algebra 𝐿∞ is an arbitrary solution of the equation 𝐷𝛼

𝑡 𝑔 = 𝑔𝑥𝑥 in Case I.1 and I.2
and of the equation 𝐷𝛼

𝑡 𝑔 = 𝑔𝑥𝑥 + 𝛿𝑔 in Case I.3.
In the fourth column (𝐿) of Table 1 the type of the corresponding algebra of infinitesimal

operators is provided. Analysing Table 1, we see that the finite-dimensional part of Lie algebras
of the groups of the operators admitted by equation (1) is exhausted by six types of algebras, two
two-dimensional algebras, two three-dimensional algebras and two four-dimensional algebras:

1) 𝐿2 = 2𝐴1;
2) 𝐿2 = 𝐴2 : [𝑒1, 𝑒2] = 𝑒2;
3) 𝐿3 = 𝐴2 ⊕ 𝐴1 : [𝑒1, 𝑒2] = 𝑒2;
4) 𝐿3 = 𝐴3,8 : [𝑒1, 𝑒2] = 𝑒1, [𝑒2, 𝑒3] = 𝑒3, [𝑒3, 𝑒1] = 2𝑒2;
5) 𝐿4 = 2𝐴2 : [𝑒1, 𝑒2] = 𝑒2, [𝑒3, 𝑒4] = 𝑒4;
6) 𝐿4 = 𝐴3,8 ⊕ 𝐴1 : [𝑒1, 𝑒2] = 𝑒1, [𝑒2, 𝑒3] = 𝑒3, [𝑒3, 𝑒1] = 2𝑒2.

Here 𝑒𝑖 is the 𝑖th basis vector of the algebras and as usually, only nonzero commutator relations
are shown.

In the fourth column (𝐿) of Table 1 we also show the relation between the bases {𝑒𝑖} and
{𝑋𝑖}. For instance, in Case IV.5, the notation < 2

𝜔
(4 − 1), 1

𝜔
(1 + 3 − 4), 1

𝜔
(1 + 3), 2 > means

that we have the change of the basis:

𝑒1 =
2

𝜔
(𝑋4 −𝑋1), 𝑒2 =

1

𝜔
(𝑋1 +𝑋3 −𝑋4), 𝑒3 =

1

𝜔
(𝑋1 +𝑋3), 𝑒4 = 𝑋2.

For the algebras of smaller dimensions, the optimal systems of subalgebras are well-known.
For instance, for real Lie algebras of dimension three and four such optimal systems were
constructed in work [21]. The corresponding optimal systems of one-dimensional sublagebras
were used as a base in the present work. In the series of cases, to simplify the constructing
of invariant solutions, these systems were additionally transformed by means of the groups of
internal automorphisms of the algebras. We also took into consideration that equation (1) is
invariant w.r.t. the reflection 𝑥̄ = −𝑥. The final form of optimal systems of one-dimensional
subalgebras for the considered equation is given in the last column (Θ𝐿1) of Table 1. All
optimal systems are written in the basis {𝑋𝑖}. As usually, only the indices of the corresponding
operators are indicated, that is, the notation 2 + 𝛽3 means the subalgebra with the operator
𝑋2 + 𝛽𝑋3, where 𝛽 is an arbitrary real constant. By Table 1 we see that the dimension of the
corresponding optimal systems of one-dimensional subalgebras for equation (1) does not exceed
seven.

3. Symmetry reduction

For each case of each optimal system of one-dimensional subalgebras in Table 1 we found
the form of the corresponding invariant solution and made the symmetry reduction of equation
(1). The results are provided in Table 2. The reduction is made in such a way that the form of
the fractional Riemann-Liouville derivative is preserved. We note that such approach is not the
only possible one. In work [11], to construct the invariant solution on the group of non-uniform
dilatations, the reduction to an equation with a frational differential operator of Erdélyi-Kober
type was employed.
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Table 1: Group classification of equation (1) and optimal
systems of one-dimensional subalgebras
(Here 𝜀 = ±1, 𝛿 = ±1, 𝛽, 𝛾 ∈ R, 𝜌, 𝜆 > 0, 𝜔 = 2/

√
3)

𝑘(𝑢) 𝑓(𝑢) 𝑋 𝐿 Θ𝐿1

I. 𝑘 = 1 1. 𝑓 = 0 𝑋1 = 𝜕
𝜕𝑥
, 𝐿3 ⊕ 𝐿∞, 1. {1}

𝑋2 = 2
𝛼
𝑡 𝜕
𝜕𝑡

+ 𝑥 𝜕
𝜕𝑥
, 𝐿3 = 𝐴2 ⊕ 𝐴1 2. {1 + 3}

𝑋3 = 𝑢 𝜕
𝜕𝑢
, < −2, 1, 3 > 3. {2 + 𝛽3}

𝑋∞ = 𝑔(𝑡, 𝑥) 𝜕
𝜕𝑢

4. {3}
2. 𝑓 = 𝛿 𝑋1 = 𝜕

𝜕𝑥
, 𝐿3 ⊕ 𝐿∞ 1. {1}

𝑋2 = 2
𝛼
𝑡 𝜕
𝜕𝑡

+ 𝑥 𝜕
𝜕𝑥

+ 𝐿3 = 𝐴2 ⊕ 𝐴1 2. {1 + 3}
+ 2𝛿

Γ(1+𝛼)
𝑡𝛼 𝜕

𝜕𝑢
< −2, 1, 3 > 3. {2 + 𝛽3}

𝑋3 =
(︁
𝑢− 𝛿

Γ(𝛼+1)
𝑡𝛼
)︁

𝜕
𝜕𝑢
, 4. {3}

𝑋∞ = 𝑔(𝑡, 𝑥) 𝜕
𝜕𝑢

3. 𝑓 = 𝛿𝑢+ 𝜒 𝑋1 = 𝜕
𝜕𝑥
, 𝐿2 ⊕ 𝐿∞, 1. {1}

𝑋2 =[𝑢−𝜒𝑡𝛼𝐸𝛼,𝛼+1(𝛿𝑡
𝛼)] 𝜕

𝜕𝑢
, 𝐿2 = 2𝐴1 2. {𝛽1 + 2}

𝑋∞ = 𝑔(𝑡, 𝑥) 𝜕
𝜕𝑢

< 1, 2 >

4. 𝑓 = 𝛿𝑢𝛾 𝑋1 = 𝜕
𝜕𝑥
, 𝐿2 = 𝐴2 1. {1}

(𝛾 ̸= 0, 1) 𝑋2 = 2
𝛼
𝑡 𝜕
𝜕𝑡

+ 𝑥 𝜕
𝜕𝑥

+ 2
1−𝛾𝑢

𝜕
𝜕𝑢

< −2, 1 > 2. {2}
II. 𝑘 = 𝑢𝜎 1. 𝑓 = 0 𝑋1 = 𝜕

𝜕𝑥
, 𝐿3 = 𝐴2 ⊕ 𝐴1 1. {1}

(𝜎 ̸= 0, 𝑋2 = 2
𝛼
𝑡 𝜕
𝜕𝑡

+ 𝑥 𝜕
𝜕𝑥
, < −2, 1,−3 > 2. {1 + 3}

−4
3
, 2𝛼

1−𝛼) 𝑋3 = 𝜎
𝛼
𝑡 𝜕
𝜕𝑡
− 𝑢 𝜕

𝜕𝑢
3. {2 + 𝛽3}
4. {3}

2. 𝑓 = 𝛿𝑢𝛾 𝑋1 = 𝜕
𝜕𝑥
, 𝐿2 = 𝐴2 1. {1}

(𝛾 ̸= 𝜎 + 1) 𝑋2 = 2(1−𝛾)
𝛼(𝜎+1−𝛾)𝑡

𝜕
𝜕𝑡

+ 𝑥 𝜕
𝜕𝑥

+ < −2, 1 > 2. {2}
+ 2
𝜎+1−𝛾𝑢

𝜕
𝜕𝑢

3. 𝑓 = 𝛿𝑢𝜎+1 𝑋1 = 𝜕
𝜕𝑥
, 𝐿2 = 2𝐴1 1. {1}

𝑋2 = 𝜎
𝛼
𝑡 𝜕
𝜕𝑡
− 𝑢 𝜕

𝜕𝑢
< 1, 2 > 2. {𝛽1 + 2}

III. 𝑘 = 𝑢
2𝛼
1−𝛼 1. 𝑓 = 0 𝑋1 = 𝜕

𝜕𝑥
, 𝐿4 = 2𝐴2 1. {1}

𝑋2 = 𝑡 𝜕
𝜕𝑡

+ 𝛼−1
2
𝑢 𝜕
𝜕𝑢
, < −3, 1, 2, 4 > 2. {1 + 2}

𝑋3 = 𝑥 𝜕
𝜕𝑥

− 𝛼−1
𝛼
𝑢 𝜕
𝜕𝑢
, 3. {1 + 4}

𝑋4 = 𝑡2 𝜕
𝜕𝑡

+ (𝛼− 1)𝑡𝑢 𝜕
𝜕𝑢

4. {2}
5. {𝛽2 + 3}
6. {3 + 𝜀4}
7. {4}

2. 𝑓 = 𝛿𝑢𝛾 𝑋1 = 𝜕
𝜕𝑥
, 𝐿2 = 𝐴2 1. {1}

(𝛾 ̸= 1+𝛼
1−𝛼) 𝑋2 = 2(1−𝛾)(1−𝛼))

𝛼[1−𝛾+𝛼(1+𝛾)]𝑡
𝜕
𝜕𝑡

+ < −2, 1 > 2. {2}
+𝑥 𝜕

𝜕𝑥
+ 2(1−𝛼)

1−𝛾+𝛼(1+𝛾)𝑢
𝜕
𝜕𝑢
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Continuation of Table 1

𝑘(𝑢) 𝑓(𝑢) 𝑋 𝐿 Θ𝐿1

3. 𝑓 = 𝛿𝑢
1+𝛼
1−𝛼 𝑋1 = 𝜕

𝜕𝑥
, 𝐿3 = 𝐴2 ⊕ 𝐴1 1. {1}

𝑋2 = 𝑡 𝜕
𝜕𝑡

+ (𝛼−1)
2
𝑢 𝜕
𝜕𝑢
, < 2, 3, 1 > 2. {𝛽1 + 2}

𝑋3 = 𝑡2 𝜕
𝜕𝑡

+ (𝛼− 1)𝑡𝑢 𝜕
𝜕𝑢

3. {1 + 3}
4. {3}

IV. 𝑘 = 𝑢−
4
3 1. 𝑓 = 0 𝑋1 = 𝜕

𝜕𝑥
, 𝐿4 = 𝐴3,8 ⊕ 𝐴1 1. {1}

𝑋2 = 2
𝛼
𝑡 𝜕
𝜕𝑡

+ 3
2
𝑢 𝜕
𝜕𝑢
, < 1, 3,−4, 2 > 2. {1 + 2}

𝑋3 = 𝑥 𝜕
𝜕𝑥

− 3
2
𝑢 𝜕
𝜕𝑢
, 3. {1+𝛽2−4}

𝑋4 = 𝑥2 𝜕
𝜕𝑥

− 3𝑥𝑢 𝜕
𝜕𝑢

4. {2}
5. {𝜌2 + 3}

2. 𝑓 = 𝛿𝑢 𝑋1 = 𝜕
𝜕𝑥

𝐿3 = 𝐴3,8 1. {1}
𝑋2 = 𝑥 𝜕

𝜕𝑥
− 3

2
𝑢 𝜕
𝜕𝑢
, < 1, 2,−3 > 2. {2}

𝑋3 = 𝑥2 𝜕
𝜕𝑥

− 3𝑥𝑢 𝜕
𝜕𝑢

3. {1 − 3}
3. 𝑓 = 𝛿𝑢𝛾 𝑋1 = 𝜕

𝜕𝑥
, 𝐿2 = 𝐴2 1. {1}

(𝛾 ̸= −1
3
, 1) 𝑋2 = 6(1−𝛾)

𝛼(1+3𝛾)
𝑡 𝜕
𝜕𝑡
− 𝑥 𝜕

𝜕𝑥
+ < 2, 1 > 2. {2}

+ 6
1+3𝛾

𝑢 𝜕
𝜕𝑢

4. 𝑓 = 𝑢−
1
3 𝑋1 = 𝜕

𝜕𝑥
, 𝐿4 = 𝐴3,8 ⊕ 𝐴1 1. {1}

𝑋2 = 4𝑡 𝜕
𝜕𝑡

+ 3𝛼𝑢 𝜕
𝜕𝑢
, < 1

𝜔
3,− 1

𝜔
1, 2. {𝜌1 + 2}

𝑋3 = 𝑒𝜔𝑥 𝜕
𝜕𝑥

−
√

3𝑒𝜔𝑥𝑢 𝜕
𝜕𝑢
, − 1

𝜔
4, 2 > 3. {2 + 𝜀3}

𝑋4 = 𝑒−𝜔𝑥 𝜕
𝜕𝑥

+
√

3𝑒−𝜔𝑥𝑢 𝜕
𝜕𝑢

4. {𝛽2+3−4}
5. {3}

5. 𝑓 = −𝑢− 1
3 𝑋1 = 𝜕

𝜕𝑥
, 𝐿4 = 𝐴3,8 ⊕ 𝐴1 1. {1}

𝑋2 = 4𝑡 𝜕
𝜕𝑡

+ 3𝛼𝑢 𝜕
𝜕𝑢
, < 2

𝜔
(4 − 1), 2. {𝜌1 + 2}

𝑋3 = cos(𝜔𝑥) 𝜕
𝜕𝑥

+ 1
𝜔

(1 + 3 − 4), 3. {1 + 2 + 3}
+
√

3 sin(𝜔𝑥)𝑢 𝜕
𝜕𝑢
, 1

𝜔
(1 + 3), 2 > 4. {1 + 4}

𝑋4 = sin(𝜔𝑥) 𝜕
𝜕𝑥
− 5. {𝜆2 + 3}

−
√

3 cos(𝜔𝑥)𝑢 𝜕
𝜕𝑢

6. 𝑓 = 𝑢−
1
3 + 𝑋1 = 𝜕

𝜕𝑥
, 𝐿3 = 𝐴3,8 1. {1}

+𝜒𝑢 𝑋2 = 𝑒𝜔𝑥 𝜕
𝜕𝑥

−
√

3𝑒𝜔𝑥𝑢 𝜕
𝜕𝑢
, < 1

𝜔
2,− 1

𝜔
1, 2. {2}

𝑋3 = 𝑒−𝜔𝑥 𝜕
𝜕𝑥

+
√

3𝑒−𝜔𝑥𝑢 𝜕
𝜕𝑢
, − 1

𝜔
3 > 3. {2 − 3}

7. 𝑓 = 𝑋1 = 𝜕
𝜕𝑥
, 𝐿3 = 𝐴3,8 1. {1}

= −𝑢− 1
3 + 𝜒𝑢 𝑋2 = cos(𝜔𝑥) 𝜕

𝜕𝑥
+ < 2

𝜔
(3 − 1), 2. {1 + 3}

+
√

3 sin(𝜔𝑥)𝑢 𝜕
𝜕𝑢
, 1

𝜔
(1 + 2 − 3), 3. {2}

𝑋3 = sin(𝜔𝑥) 𝜕
𝜕𝑥
− 1

𝜔
(1 + 2) >

−
√

3 cos(𝜔𝑥)𝑢 𝜕
𝜕𝑢
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Table 2: Invariant solutions and the corresponding re-
duced equations for equation (1)
(Here 𝜀 = ±1, 𝛿 = ±1, 𝛽, 𝛾 ∈ R, 𝜌, 𝜆 > 0, 𝜔 = 2/

√
3)

𝑁𝑘 𝑁𝑓 𝑁Θ Solution Reduced equation

I 1 1 𝑢 = 𝜙(𝑡) 𝐷𝛼
𝑡 𝜙 = 0

2 𝑢 = 𝑒𝑥𝜙(𝑡) 𝐷𝛼
𝑡 𝜙 = 𝜙

3 𝑢 = 𝑥−𝛽𝜙(𝜏), 𝜏 = 𝑡𝑥−
2
𝛼 𝐷𝛼

𝜏 𝜙 = 4
𝛼2 𝜏

2𝜙′′ + 2
𝛼

( 2
𝛼

+ 1 + 2𝛽)𝜏𝜙′ + 𝛽(𝛽 + 1)𝜙

4 — —

2 1 𝑢 = 𝜙(𝑡) 𝐷𝛼
𝑡 𝜙 = 𝛿

2 𝑢 = 𝑒𝑥𝜙(𝑡) + 𝛿𝑡𝛼

Γ(1+𝛼)
𝐷𝛼
𝑡 𝜙 = 𝜙

3 𝑢 = 𝑥−𝛽𝜙(𝜏) + 𝛿𝑡𝛼

Γ(1+𝛼)
, 𝐷𝛼

𝜏 𝜙 = 4
𝛼2 𝜏

2𝜙′′ + 2
𝛼

( 2
𝛼

+ 1 + 2𝛽)𝜏𝜙′ + 𝛽(𝛽 + 1)𝜙

𝜏 = 𝑡𝑥−
2
𝛼

4 𝑢 = 𝛿𝑡𝛼

Γ(1+𝛼)
—

3 1 𝑢 = 𝜙(𝑡) 𝐷𝛼
𝑡 𝜙 = 𝛿𝜙+ 𝜒

2 𝑢 = 𝑒−𝛽𝑥𝜙(𝑡)+ 𝐷𝛼
𝜏 𝜙 = (𝛽2 + 𝛿)𝜙

+𝜒𝑡𝛼𝐸𝛼,𝛼+1(𝛿𝑡
𝛼), (𝛽 ̸= 0)

𝑢 = 𝜒𝑡𝛼𝐸𝛼,𝛼+1(𝛿𝑡
𝛼) (𝛽 = 0) —

4 1 𝑢 = 𝜙(𝑡) 𝐷𝛼
𝑡 𝜙 = 𝛿𝜙𝛾 (𝛾 ̸= 0, 1)

2 𝑢 = 𝑥−𝛽𝜙(𝜏), 𝜏 = 𝑡𝑥−
2
𝛼 , 𝐷𝛼

𝜏 𝜙 = 4
𝛼2 𝜏

2𝜙′′ + 2
𝛼

( 2
𝛼

+ 1 + 2𝛽)𝜏𝜙′+

𝛽 = 2
1−𝛾 (𝛾 ̸= 0, 1) +𝛽(𝛽 + 1)𝜙+ 𝛿𝜙𝛾

II 1 1 𝑢 = 𝜙(𝑡) 𝐷𝛼
𝑡 𝜙 = 0

2 𝑢 = 𝑒−𝑥𝜙(𝜏), 𝜏 = 𝑡𝑒−
𝜎
𝛼
𝑥 𝐷𝛼

𝜏 𝜙 = 𝜎2

𝛼2 𝜏
2𝜙𝜎𝜙′′ + 𝜎3

𝛼2 𝜏
2𝜙𝜎−1(𝜙′)2+

+𝜎
𝛼

[︀
𝜎
𝛼

+ 2(1 + 𝜎)
]︀
𝜏𝜙𝜎𝜙′ + (𝜎 + 1)𝜙𝜎+1

3 𝑢 = 𝑥−𝛽𝜙(𝜏), 𝜏 = 𝑡𝑥𝜈 , 𝐷𝛼
𝜏 𝜙 = 𝜈2𝜏 2𝜙𝜎𝜙′′ + 𝜎𝜈2𝜏 2𝜙𝜎−1(𝜙′)2+

𝜈 = −𝛽𝜎+2
𝛼
, +𝜈[𝜈 − 1 − 2𝛽(𝜎 + 1)]𝜏𝜙𝜎𝜙′+

+𝛽[1 + 𝛽(1 + 𝜎)]𝜙𝜎+1

4 𝑢 = 𝑡−
𝛼
𝜎𝜙(𝑥) 𝜙𝜙′′ + 𝜎(𝜙′)2 − Γ(1−𝛼/𝜎)

Γ(1−𝛼−𝛼/𝜎)𝜙
2−𝜎 = 0

2 1 𝑢 = 𝜙(𝑡) 𝐷𝛼
𝑡 𝜙 = 𝛿𝜙𝛾

2 𝑢 = 𝑥−𝛽𝜙(𝜏), 𝜏 = 𝑡𝑥𝜈 , 𝐷𝛼
𝜏 𝜙 = 𝜈2𝜏 2𝜙𝜎𝜙′′ + 𝜎𝜈2𝜏 2𝜙𝜎−1(𝜙′)2+

𝜈 = −𝛽𝜎+2
𝛼
, 𝛽 = − 2

𝜎+1−𝛾 +𝜈[𝜈 − 1 − 2𝛽(𝜎 + 1)]𝜏𝜙𝜎𝜙′+

+𝛽[1 + 𝛽(1 + 𝜎)]𝜙𝜎+1 + 𝛿𝜙𝛾

3 1 𝑢 = 𝜙(𝑡) 𝐷𝛼
𝑡 𝜙 = 𝛿𝜙𝜎+1

2 𝑢 = 𝑒−
𝑥
𝛽𝜙(𝜏), 𝜏 = 𝑡𝑒𝜈𝑥, 𝐷𝛼

𝜏 𝜙 = 𝜈2𝜏 2𝜙𝜎𝜙′′ + 𝜎𝜈2𝜏 2𝜙𝜎−1(𝜙′)2+

𝜈 = − 𝜎
𝛼𝛽

(𝛽 ̸= 0) +𝜈
[︁
𝜈 − 2(𝜎+1)

𝛽

]︁
𝜏𝜙𝜎𝜙′ +

(︁
𝜎+1
𝛽2 + 𝛿

)︁
𝜙𝜎+1

𝑢 = 𝑡−
𝛼
𝜎𝜙(𝑥) (𝛽 = 0) 𝜙𝜙′′ + 𝜎(𝜙′)2 + 𝛿𝜙2 − Γ(1−𝛼/𝜎)

Γ(1−𝛼−𝛼/𝜎)𝜙
2−𝜎 = 0
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𝑁𝑘 𝑁𝑓 𝑁Θ Solution Reduced equation

III 1 1 𝑢 = 𝜙(𝑡) 𝐷𝛼
𝑡 𝜙 = 0

2 𝑢 = 𝑒
𝛼−1
2
𝑥𝜙(𝜏), 𝐷𝛼

𝜏 𝜙 = 𝜏 2𝜙𝜎𝜙′′ + 𝜎𝜏 2𝜙𝜎−1(𝜙′)2+

𝜏 = 𝑡𝑒−𝑥, 𝜎 = 2𝛼
1−𝛼 +(𝛼 + 2)𝜏𝜙𝜎𝜙′ + 1−𝛼2

4
𝜙𝜎+1

3 𝑢 = (1 + 𝑡𝑥)𝛼−1𝜙(𝜏), 𝐷𝛼
𝜏 𝜙 = 𝜏 4𝜙𝜎𝜙′′ + 𝜎𝜏 4𝜙𝜎−1(𝜙′)2+

𝜏 = 𝑡
1+𝑡𝑥

, 𝜎 = 2𝛼
1−𝛼 +2(𝛼 + 2)𝜏 3𝜙𝜎𝜙′ + (1 − 𝛼)(2 + 𝛼)𝜏 2𝜙𝜎+1

4 𝑢 = 𝑡
𝛼−1
2 𝜙(𝑥) 𝜙𝜙′′ + 2𝛼

1−𝛼(𝜙′)2 − Γ(1/2+𝛼/2)
Γ(1/2−𝛼/2)𝜙

4𝛼−2
𝛼−1 = 0

5 𝑢 = 𝑥𝜈𝜙(𝜏), 𝜏 = 𝑡𝑥−𝛽, 𝐷𝛼
𝜏 𝜙 = 𝛽2𝜏 2𝜙𝜎𝜙′′ + 𝜎𝛽2𝜏 2𝜙𝜎−1(𝜙′)2+

𝜈 = 2−𝛼𝛽
𝜎
, 𝜎 = 2𝛼

1−𝛼 +𝛽[𝛽 + 1 − 2𝛾(𝜎 + 1)]𝜏𝜙𝜎𝜙′+

+𝜈[𝜈(𝜎 + 1) − 1]𝜙𝜎+1

6 𝑢 = 𝑥
2
𝜎𝜙(𝜏)× 𝐷𝛼

𝜏 𝜙 = 𝜏 4𝜙𝜎𝜙′′ + 𝜎𝜏 4𝜙𝜎−1(𝜙′)2+

×(1 − 𝜀𝜏 ln(𝑥))1−𝛼, +𝛼+2
𝛼

(2𝛼𝜏 − 𝜀)𝜏 2𝜙𝜎𝜙′+

𝜏 = 𝑡
1+𝜀𝑡 ln(𝑥)

, 𝜎 = 2𝛼
1−𝛼 +1−𝛼

𝛼2 [1 − 𝛼(𝛼 + 2)𝜀𝜏 + 𝛼2(𝛼 + 2)𝜏 2]𝜙𝜎+1

7 𝑢 = 𝑡𝛼−1𝜙(𝑥) 𝜙𝜙′′ + 2𝛼
1−𝛼(𝜙′)2 = 0

2 1 𝑢 = 𝜙(𝑡) 𝐷𝛼
𝑡 = 𝛿𝜙𝛾

2 𝑢 = 𝑥−𝛽𝜙(𝜏), 𝜏 = 𝑡𝑥𝜈 , 𝐷𝛼
𝜏 𝜙 = 𝜈2𝜏 2𝜙𝜎𝜙′′ + 𝜎𝜈2𝜏 2𝜙𝜎−1(𝜙′)2+

𝜈 = −𝛽𝜎+2
𝛼
, 𝛽 = − 2

𝜎+1−𝛾 , +𝜈[𝜈 − 1 − 2𝛽(𝜎 + 1)]𝜏𝜙𝜎𝜙′+

𝜎 = 2𝛼
1−𝛼

(︀
𝛾 ̸= 1+𝛼

1−𝛼

)︀
+𝛽[1 + 𝛽(1 + 𝜎)]𝜙𝜎+1 + 𝛿𝜙𝛾

3 1 𝑢 = 𝜙(𝑡) 𝐷𝛼
𝑡 𝜙 = 𝛿𝜙

1+𝛼
1−𝛼

2 𝑢 = 𝑒
1−𝛼
2
𝜈𝑥𝜙(𝜏), 𝜏 = 𝑡𝑒𝜈𝑥, 𝐷𝛼

𝜏 𝜙 = 𝜈2𝜏 2𝜙𝜎𝜙′′ + 𝜎𝜈2𝜏 2𝜙𝜎−1(𝜙′)2+

𝜈 = − 1
𝛽
, 𝜎 = 2𝛼

1−𝛼 (𝛽 ̸= 0) +(𝛼 + 2)𝜈2𝜏𝜙𝜎𝜙′ +
(︁
𝛿 + 1−𝛼2

4
𝜈2
)︁
𝜙𝜎+1

𝑢 = 𝑡
𝛼−1
2 𝜙(𝑥) (𝛽 = 0) 𝜙𝜙′′ + 2𝛼

1−𝛼(𝜙′)2 + 𝛿𝜙2 − Γ(1/2+𝛼/2)
Γ(1/2−𝛼/2)𝜙

2−4𝛼
1−𝛼 = 0

3 𝑢 = (1 + 𝑡𝑥)𝛼−1𝜙(𝜏), 𝐷𝛼
𝜏 𝜙 = 𝜏 4𝜙𝜎𝜙′′ + 𝜎𝜏 3𝜙𝜎−1(𝜙′)2+

𝜏 = 𝑡
1+𝑡𝑥

, 𝜎 = 2𝛼
1−𝛼 +2(𝛼 + 2)𝜏 3𝜙𝜎𝜙′+

+[𝛿 − (𝛼− 1)(𝛼 + 2)𝜏 2]𝜙𝜎+1

4 𝑢 = 𝑡𝛼−1𝜙(𝑥) 𝜙𝜙′′ + 2𝛼
1−𝛼(𝜙′)2 + 𝛿𝜙2 = 0

IV 1 1 𝑢 = 𝜙(𝑡) 𝐷𝛼
𝑡 𝜙 = 0

2 𝑢 = 𝑒
3
2
𝑥𝜙(𝜏), 𝜏 = 𝑡𝑒−

2
𝛼
𝑥 𝐷𝛼

𝜏 𝜙 = 4
𝛼2 𝜏

2𝜙− 4
3𝜙′′ − 16

3𝛼2 𝜏
2𝜙− 7

3 (𝜙′)2+

+ 2
𝛼

(︀
1 + 2

𝛼

)︀
𝜏𝜙− 4

3𝜙′ − 3
4
𝜙− 1

3

3 𝑢 = (1+𝑥)
3
4𝛽− 3

2

(1−𝑥)
3
4𝛽+3

2
𝜙(𝜏), 𝐷𝛼

𝜏 𝜙 = 4𝛽2

𝛼2 𝜏
2𝜙− 4

3𝜙′′ − 16
3
𝛽2

𝛼2 𝜏
2𝜙− 7

3 (𝜙′)2+

𝜏 = 𝑡
(︀
1−𝑥
1+𝑥

)︀ 𝛽
𝛼 +2𝛽2

𝛼2 (𝛼 + 2)𝜏𝜙− 4
3𝜙′ +

(︁
3 − 𝛽2

4

)︁
𝜙− 1

3

4 𝑢 = 𝑡
3
4
𝛼𝜙(𝑥) 𝜙𝜙′′ − 4

3
(𝜙′)2 − Γ(1+3𝛼/4)

Γ(1−𝛼/4) 𝜙
10
3 = 0

5 𝑢 = 𝑥
3
2
(𝜌−1)𝜙(𝜏), 𝐷𝛼

𝜏 𝜙 = 4𝜌2

𝛼2 𝜏
2𝜙− 4

3𝜙′′ − 16
3
𝜌2

𝛼2 𝜏
2𝜙− 7

3 (𝜙′)2+

𝜏 = 𝑡𝑥−2 𝜌
𝛼 + 𝜌

𝛼

(︀
4𝜌
𝛼

+ 2 − 𝜌
)︀
𝜏𝜙− 4

3𝜙′ − 3
4
(1 + 𝜌)𝜙− 1

3
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𝑁𝑘 𝑁𝑓 𝑁Θ Solution Reduced equation

2 1 𝑢 = 𝜙(𝑡) 𝐷𝛼
𝑡 𝜙 = 𝛿𝜙

2 𝑢 = 𝑥−
3
2𝜙(𝑡) 𝐷𝛼

𝑡 𝜙 = 3
4
𝜙− 1

3 + 𝛿𝜙

3 𝑢 = (1 − 𝑥2)−
3
2𝜙(𝑡) 𝐷𝛼

𝑡 𝜙 = 3𝜙− 1
3 + 𝛿𝜙

3 1 𝑢 = 𝜙(𝑡) 𝐷𝛼
𝑡 𝜙 = 𝛿𝜙𝛾

2 𝑢 = 𝑥−𝛽𝜙(𝜏), 𝜏 = 𝑡𝑥𝜈 , 𝐷𝛼
𝜏 𝜙 = 𝜈2𝜏 2𝜙− 4

3𝜙′′ − 4
3
𝜈2𝜏 2𝜙− 7

3 (𝜙′)2+

𝜈 = 6(1−𝛾)
𝛼(1+3𝛾)

, 𝛽 = 6
1+3𝛾

+𝜈
(︀
2
3
𝑏− 1 + 𝜈

)︀
𝜏𝜙− 4

3𝜙′+
(︁
𝑏− 𝑏2

3

)︁
𝜙− 1

3 +𝛿𝜙𝛾

4 1 𝑢 = 𝜙(𝑡) 𝐷𝛼
𝑡 𝜙 = 𝜙−1/3

2 𝑢 = 𝑡
3
4
𝛼𝜙(𝑥) (𝜌 = 0) 𝜙𝜙′′ − 4

3
(𝜙′)2 + 𝜙2 − Γ(1+3𝛼/4)

Γ(1−𝛼/4) 𝜙
10
3 = 0

𝑢 = 𝑒−
3𝛼
𝜌
𝑥𝜙(𝜏), 𝜏 = 𝑡𝑒

4
𝜌
𝑥 𝐷𝛼

𝜏 𝜙 = 16
𝜌2
𝜏 2𝜙− 4

3𝜙′′ − 64
3𝜌2
𝜏 2𝜙− 7

3 (𝜙′)2+

(𝜌 > 0) + 8
𝜌2

(𝛼 + 2)𝜏𝜙− 4
3𝜙′ +

(︁
1 − 3𝛼2

𝜌2

)︁
𝜙− 1

3

3 𝑢 = 𝑒−
3
2
𝜔𝑥−3𝛼𝜓(𝑥)𝜙(𝜏), 𝐷𝛼

𝜏 𝜙 = 𝜏 2𝜙− 4
3𝜙′′ − 4

3
𝜏 2𝜙− 7

3 (𝜙′)2+

𝜏 = 𝑡𝑒4𝜓(𝑥), 𝜓(𝑥) = 𝜀
𝜔
𝑒−𝜔𝑥 +(1 + 2𝛼)𝜏𝜙− 4

3𝜙′ − 3𝛼2𝜙− 1
3

4 𝑢 = 𝜓− 3
4
𝛼 sinh− 3

2 (𝜔𝑥)𝜙(𝜏), 𝐷𝛼
𝜏 𝜙 = 16𝛽2𝜏 2𝜙− 4

3𝜙′′ − 64
3
𝛽2𝜏 2𝜙− 7

3 (𝜙′)2+

𝜏 = 𝑡𝜓(𝑥), +8𝛽2(𝛼 + 2)𝜏𝜙− 4
3𝜙′ + (1 − 3𝛼2𝛽2)𝜙− 1

3

𝜓 =
[︀
tanh

(︀
𝜔𝑥
2

)︀]︀− 4𝛽
𝜔

5 𝑢 = 𝑒−
3
2
𝜔𝑥𝜙(𝑡) 𝐷𝛼

𝑡 𝜙 = 0

5 1 𝑢 = 𝜙(𝑡) 𝐷𝛼
𝑡 𝜙 = −𝜙− 1

3

2 𝑢 = 𝑡
3
4
𝛼𝜙(𝑥) (𝜌 = 0) 𝜙𝜙′′ − 4

3
(𝜙′)2 − 𝜙2 − Γ(1+3𝛼/4)

Γ(1−𝛼/4) 𝜙
10
3 = 0

𝑢 = 𝑒
3𝛼
𝜌
𝑥𝜙(𝜏), 𝐷𝛼

𝜏 𝜙 = 16
𝜌2
𝜏 2𝜙− 4

3𝜙′′ − 64
3𝜌2
𝜙− 7

3 𝜏 2(𝜙′)2+

𝜏 = 𝑡𝑒−
4
𝜌
𝑥 (𝜌 > 0) + 8

𝜌2
(𝛼 + 2)𝜏𝜙− 4

3𝜙′ −
(︁

1 + 3𝛼2

𝜌2

)︁
𝜙− 1

3

3 𝑢 = 𝜓− 3
4
𝛼(𝑥) cos−

3
2 (𝜔𝑥)𝜙(𝜏), 𝐷𝛼

𝜏 𝜙 = 4𝜏 2𝜙− 4
3𝜙′′ − 16

3
𝜏 2𝜙− 7

3 (𝜙′)2+

𝜏 = 𝑡𝜓(𝑥), 𝜓 = 𝑒−
4
𝜔
tan(𝜔𝑥/2) +2(𝛼 + 2)𝜏𝜙− 4

3𝜙′ − 3
4
𝛼2𝜙− 1

3

4 𝑢 = sin−3
(︀
𝜔𝑥
2

+ 𝜋
4

)︀
𝜙(𝑡) 𝐷𝛼

𝑡 𝜙 = 0

5 𝑢 = 𝜓− 3
4
𝛼(𝑥) cos−

3
2 (𝜔𝑥)𝜙(𝜏), 𝐷𝛼

𝜏 𝜙 = 16𝜆2𝜏 2𝜙− 4
3𝜙′′ − 64

3
𝜆2𝜏 2𝜙− 7

3 (𝜙′)2+

𝜏 = 𝑡𝜓(𝑥), +8𝜆2(𝛼 + 2)𝜏𝜙− 4
3𝜙′ + (1 − 3𝛼2𝜆2)𝜙− 1

3

𝜓(𝑥) = tan− 4𝜆
𝜔

(︀
𝜔𝑥
2

+ 𝜋
4

)︀
,

6 1 𝑢 = 𝜙(𝑡) 𝐷𝛼
𝑡 𝜙 = 𝜙− 1

3 + 𝜒𝜙

2 𝑢 = 𝑒−
3
2
𝜔𝑥𝜙(𝑡) 𝐷𝛼

𝑡 𝜙 = 𝜒𝜙

3 𝑢 = sinh− 3
2 (𝜔𝑥)𝜙(𝑡) 𝐷𝛼

𝑡 𝜙 = 𝜙− 1
3 + 𝜒𝜙

7 1 𝑢 = 𝜙(𝑡) 𝐷𝛼
𝑡 𝜙 = −𝜙− 1

3 + 𝜒𝜙

2 𝑢 = sin−3
(︀
𝜔𝑥
2

+ 𝜋
4

)︀
𝜙(𝑡) 𝐷𝛼

𝑡 𝜙 = 𝜒𝜙

3 𝑢 = cos−
3
2 (𝜔𝑥)𝜙(𝑡) 𝐷𝛼

𝑡 𝜙 = 𝜙− 1
3 + 𝜒𝜙

Nevertheless, the keeping of the fractional differentiation operator under the reduction seems
to be reasonable since it gives an opportunity to consider various types of reduced equations
from the same position. The type of fractional derivative (2) is kept, in particular, under the
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following change of the variables:

𝑢(𝑥, 𝑡) = 𝑓(𝑥)𝜙(𝜏), 𝜏 = 𝑡𝑔(𝑥),

where 𝑓(𝑥), 𝑔(𝑥) are arbitrary functions. Then

𝐷𝛼
𝑡 𝑢 = 𝑓(𝑥)𝑔𝛼(𝑥)𝐷𝛼

𝜏 𝜙(𝜏).

The most part of the cases in Table 2 corresponds to such change of the variables.
Another type of the change of variables allowing to keep the type of the fractional differen-

tiation operator under the symmetry reduction is

𝑢(𝑥, 𝑡) = 𝑓(𝑥)𝜙(𝜏), 𝜏 =
𝑡

1 + 𝑡𝑔(𝑥)
,

which corresponds to the projective group of point transformations. In this case

𝐷𝛼
𝑡 𝑢 = 𝑓(𝑥)(1 + 𝜏𝑔(𝑥))1−𝛼𝐷𝛼

𝜏 𝜙(𝜏).

Such change of variables corresponds to cases III.1.3, III.1.6 and III.3.3 of Table 2, in which
the one-dimensional subalgebras include the generator of projective transformation

𝑋 = 𝑡2
𝜕

𝜕𝑡
+ (𝛼− 1)𝑡𝑢

𝜕

𝜕𝑡
.

Table 2 implies

Proposition 1. The symmetry reduction of nonlinear fractional differential equaiton of
anomalous diffusion (1) corresponding to optimal systems of one-dimensional subalgebras of
Lie algebras of infinitesimal operators of the group of point transformations of this equation
provided in Table 1 leads to the equation of one of the following forms:

𝜙𝜙′′ + 𝜎(𝜙′)2 + 𝛿𝜙2 + 𝜀
Γ(1 − 𝛼/𝜎)

Γ(1 − 𝛼− 𝛼/𝜎)
𝜙2−𝜎 = 0, 𝜎 /∈ [0, 𝛼]; (3)

𝐷𝛼
𝜏 𝜙 = 𝐴𝜏 2(𝜙𝜎𝜙′)′ +𝐵𝜏𝜙𝜎𝜙′ + 𝐶𝜙𝜎+1 + 𝛿𝜙𝛾; (4)

𝐷𝛼
𝜏 𝜙 = 𝜏 4(𝜙

2𝛼
1−𝛼𝜙′)′ + (2 + 𝛼)

[︁
2𝜏 − 𝜀

𝛼

]︁
𝜏 2𝜙

2𝛼
1−𝛼𝜙′+

+ (1 − 𝛼)(2 + 𝛼)

[︂
𝜏 2 − 𝜀

𝛼
𝜏 +

𝜀2

𝛼2(2 + 𝛼)
+

𝛿

(1 − 𝛼)(2 + 𝛼)

]︂
𝜙

1+𝛼
1−𝛼 . (5)

Here 𝛼 ∈ (0, 1) ∪ (1, 2); 𝜙 = 𝜙(𝜏); 𝛿 = 0, ±1; 𝜀 = 0, 1.

4. Solutions of reduced equations

As the result of the made symmetry reduction, the problem on constructing invariant solu-
tions to equations (1) is reduced to the problem on finding solutions to ordinary differential
equations (3)–(5).

Equation (3) is integrated by quadratures:∫︁
𝑑𝜙√︀

𝜓(𝜙,𝐶1)
= 𝜏 ± 𝐶2, (6)

where

𝜓(𝜙,𝐶1) =

⎧⎪⎪⎨⎪⎪⎩
𝐶1𝜙

−2𝜎 +
𝑎

2 + 𝜎
𝜙2−𝜎 − 𝛿

1 + 𝜎
𝜙2, (𝜎 ̸= −1) ∪ (𝛿 ̸= 0), 𝜎 ̸= −2;

𝐶1𝜙
2 + 𝑎𝜙3 − 2𝛿𝜙2 ln(𝜙), 𝜎 = −1, 𝛿 ̸= 0;

𝐶1𝜙
4 + 𝑎𝜙4 ln(𝜙) + 𝛿𝜙2, 𝜎 = −2.

Here 𝑎 = 2Γ(1 − 𝛼/𝜎)/Γ(1 − 𝛼− 𝛼/𝜎), 𝐶1 and 𝐶2 are integration constants.
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The general solutions to nonlinear ordinary fractional differential equations (4) and (5) are
unknown at present. We can construct either the general solution to linear (𝜎 = 0) equation
of form (4) as well as some invariant solutions to nonlinear equations (4) and (5).

In accordance with Table 2, as 𝜎 = 0, one can choose the following linear particular cases of
equation (4):

𝐷𝛼
𝜏 𝜙 = 0; (7)

𝐷𝛼
𝜏 𝜙 = 𝜆𝜙+ 𝛿, 𝜆 ∈ R, 𝛿 = ±1; (8)

𝛼2𝐷𝛼
𝜏 𝜙 = 4𝜏 2𝜙′′ + 2 (2𝛼𝛽 + 𝛼 + 2) 𝜏𝜙′ + 𝛼2𝛽(𝛽 + 1)𝜙, 𝛽 ∈ R. (9)

The general solutions to equations (7) and (8) are well-known [1] and they are of the form

𝜙(𝜏) =
𝑛∑︁
𝑘=1

𝐶𝑘𝜏
𝛼−𝑘, 𝜙(𝜏) =

𝑛∑︁
𝑘=1

𝐶𝑘𝜏
𝛼−𝑘𝐸𝛼,𝛼+1−𝑘(𝜆𝜏

𝛼) + 𝛿𝜏𝛼𝐸𝛼,𝛼+1(𝜆𝜏
𝛼),

respectively, where 𝐶𝑘 are arbitrary constants, 𝑛 = [𝛼] + 1 and 𝐸𝜌,𝜇(𝑧) =
∑︀∞

𝑛=0
𝑧𝑛

Γ(𝜌𝑛+𝜇)
(𝑧 ∈ C)

is a function of Mittag-Leffler type.
The general solution to equation (9) can be represented in terms of the Wright function

𝜑(𝜌, 𝜇; 𝑧) =
∑︀∞

𝑛=0
𝑧𝑛

𝑛!Γ(𝜌𝑛+𝜇)
, (𝑧 ∈ C):

𝜙(𝜏) = 𝜏−
𝛼𝛽
2

[︀
𝐶1𝜑

(︀
−𝛼/2, 1 − 𝛼𝛽/2; 𝜏−

𝛼
2

)︀
+ 𝐶2𝜑

(︀
−𝛼/2, 1 − 𝛼𝛽/2;−𝜏−

𝛼
2

)︀]︀
,

where 𝐶1 and 𝐶2 are arbitrary constants. In the particular case 𝛽 = 0, this solution was
constructed first in work [11].

Invariant solutions to nonlinear equations (4) and (5) can be constructed by the methods of
group analysis. In accordance with Table 2, we select two main particular forms of nonlinear
(𝜎 ̸= 0) equation (4): 𝐴 = 𝐵 = 𝐶 = 0, 𝛿 ̸= 0 and 𝐴 ̸= 0, 𝛿 = 0. In the first case (4) becomes

𝐷𝛼
𝜏 𝜙 = 𝛿𝜙𝛾, 𝛿 ̸= 0, 𝛾 ̸= 0, 1. (10)

This equation is a particular case of the equation 𝐷𝛼+1
𝜏 𝜙 = 𝑓(𝜏, 𝜙,𝐷𝛼

𝜏 𝜙), whose group classifi-
cation in the class of linear autonomous symmetries of the form

𝑋 = 𝜉(𝜏)
𝜕

𝜕𝜏
+ [𝜂0(𝜏) + 𝜂1(𝜏)𝜙]

𝜕

𝜕𝜙

was given in work [16]. The results of this classification implies

Proposition 2. Nonlinear equation (10) for 𝛼 ∈ (0, 1) ∪ (1, 2) and 𝛾 ∈ R, 𝛾 ̸= 0, 1 admits
a one-parametric group of dilatations with the operator

𝑋1 = (1 − 𝛾)𝜏
𝜕

𝜕𝜏
+ 𝛼𝜙

𝜕

𝜕𝜙
. (11)

In the particular case 𝛾 = (1 + 𝛼)/(1 − 𝛼) the group is extended by the projective point
transformation with the operator

𝑋2 = 𝜏 2
𝜕

𝜕𝜏
+ (𝛼− 1)𝜏𝜙

𝜕

𝜕𝜙
. (12)

The operator 𝑋1 in (11) is associated the invariant solution to equation (10):

𝜙(𝜏) = 𝑎𝜏 𝜈 , 𝑎 =

[︂
𝛿

Γ(1 + 𝜈)

Γ(1 + 𝛾𝜈)

]︂− 𝜈
𝛼

, 𝜈 =
𝛼

1 − 𝛾
. (13)

This solution exists as 𝛾 /∈ [1, 1 + 𝛼], (𝜈 > −1), under additional conditions

𝛾 ̸= 1

1 − 𝛼
, 𝛼 ∈ (1, 2); 𝛾 ̸= 1 + 𝑛

1 + 𝑛− 𝛼
, 𝑛 = [𝛼], 𝛼 ∈ (1, 2) ∪ (1, 2),

corresponding to non-vanishing of the coefficient 𝑎 at the infinity and zero, respectively.
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As 𝛾 = (1 + 𝛼)/(1 − 𝛼), by means of the operator 𝑋2 (12), via solution (13) we get an
one-parametric family of the solutions:

𝜙(𝜏) = 𝑎[𝜏(1 − 𝑏𝜏)]
𝛼−1
2 , 𝑎 =

[︂
𝛿

𝜋
cos

𝜋𝛼

2
Γ2

(︂
1 + 𝛼

2

)︂]︂ 1−𝛼
2𝛼

,

where 𝑏 is an arbitrary constant. As 𝛼 ∈ (0, 1), this solution is the general solution to the
corresponding equation.

Now we consider equation (4) as 𝛿 = 0 and 𝐴 ̸= 0. Its group classification is made in
work [22]. The following proposition holds.

Proposition 3. As 𝛿 = 0 and 𝐴 ̸= 0, nonlinear (𝜎 ̸= 0) equation (4) admits the one-
parametric group of point dilatation transformations with the operator

𝑋1 = −𝜎𝜏 𝜕
𝜕𝜏

+ 𝛼𝜙
𝜕

𝜕𝜙
. (14)

In the particular case 𝜎 = −2, 𝐵 = 2𝛼𝐴, 𝐶 = 𝛼(1−𝛼)𝐴, by the projective point transformation
with the operator 𝑋2 in (12) the group is extended to a two-parametric one.

Operator (14) generates an invariant solution to equation (4):

𝜙(𝜏) = 𝑎𝜏−
𝛼
𝜎 , 𝑎 =

[︂
𝜎2

𝛼(𝛼 + 𝜎 + 𝛼𝜎)𝐴− 𝛼𝜎𝐵 + 𝜎2𝐶

Γ (1 − 𝛼/𝜎)

Γ (1 − 𝛼− 𝛼/𝜎)

]︂ 1
𝜎

. (15)

This solution exists for 𝜎 /∈ [0, 𝛼], 𝜎 ̸= 𝛼/(1− 𝛼) as 𝛼 ∈ (0, 1)∪ (1, 2) and for 𝜎 ̸= 𝛼/(2− 𝛼) as
𝛼 ∈ (1, 2) as well as under obvious additional conditions:

𝜎 ̸= 𝛼

2𝐶

[︁
𝐵 − (1 + 𝛼)𝐴±

√︀
[(1 + 𝛼)𝐴−𝐵]2 − 4𝐴𝐶

]︁
, 𝐶 ̸= 0;

𝜎 ̸= 𝛼𝐴

𝐵 − (1 + 𝛼)𝐴
, 𝐶 = 0, 𝐵 ̸= (1 + 𝛼)𝐴.

In the particular case 𝜎 = −2, 𝐵 = 2𝛼𝐴, 𝐶 = 𝛼(1−𝛼)𝐴, the operator 𝑋2 in (12) corresponds
to the invariant solution of equation (4) 𝜙(𝜏) = 𝑎𝜏𝛼−1 with an arbitrary constant 𝑎. Also as
𝐴 > 0, by means of this operator, via solution (15) we construct a one-parametric (with an
arbitrary constant 𝑏) family of solutions to equation (4):

𝜙(𝜏) = 𝑎𝜏
𝛼
2 (1 − 𝑏𝜏)

𝛼
2
−1, 𝑎 =

√︃
(2 − 𝛼)𝜋𝐴

2 sin(𝜋𝛼/2)Γ2(𝛼/2)
.

Finally, we consider equation (5). We have

Proposition 4. For each 𝜀 and 𝛿, equation (5) admits one-parametric group of linear au-
tonomous symmetries with the operator 𝑋2 in (12). As 𝜀 = 0 and 𝛿 = 0, the group is extended
to a two-parametric one by the dilatation transformation with the operator

𝑋1 = 2𝛼𝜏
𝜕

𝜕𝜏
+ (𝛼− 1)(𝛼 + 2)𝜙

𝜕

𝜕𝜙
.

As a result, for 𝜀 = 𝛿 = 0 and each 𝛼 ∈ (0, 1) ∪ (1, 2), and for 𝜀 = 1, 𝛿 = −1 and
𝛼 = (

√
5 − 1)/2, equation (5) has the invariant solution 𝜙(𝜏) = 𝑎𝜏𝛼−1 with an arbitrary

constant 𝑎 corresponding to the operator 𝑋2. In the case 𝜀 = 0 and 𝛿 = 0, by the operators 𝑋1

and 𝑋2, we construct one more one-parametric family of invariant solutions:

𝜙(𝜏) = 𝑎𝜏 𝜈(1 − 𝑏𝜏)𝛼−1−𝜈 , 𝑎 =

[︂
Γ(𝜈 + 2 − 𝛼)

Γ(𝜈)

]︂ 𝜈
𝛼+2

, 𝜈 =
(𝛼− 1)(𝛼 + 2)

2𝛼
,

where 𝑏 is an arbitrary constant.
The issue on finding general solutions to nonlinear ordinary differential equations (4) and (5)

remains open.
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The constructed solutions to the reduced equations allow one to recover the corresponding
exact solutions of the original equation of anomalous diffusion (1).
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