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PERTURBATION OF A SURJECTIVE CONVOLUTION

OPERATOR

I.KH. MUSIN

Abstract. Let 𝜇 ∈ ℰ ′(R𝑛) be a compactly supported distribution such that its support is a
convex set with a non-empty interior. Let 𝑋2 be a convex domain in R𝑛, 𝑋1 = 𝑋2+supp𝜇.
Let the convolution operator 𝐴 : ℰ(𝑋1) → ℰ(𝑋2) acting by the rule (𝐴𝑓)(𝑥) = (𝜇 * 𝑓)(𝑥) is
surjective. We obtain a sufficient condition for a linear continuous operator 𝐵 : ℰ(𝑋1) →
ℰ(𝑋2) ensuring the surjectivity of the operator 𝐴+𝐵.

Keywords: convolution operator, distribution, Fourier-Laplace transform, entire func-
tions.
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1. Introduction

1.1. On the problem and the main result. Given an open set 𝑋 in R𝑛, by ℰ(𝑋) we
denote the space of infinitely differentiable on 𝑋 functions with the topology defined by the
system of the semi-norms

‖𝑓‖𝐾,𝑁 = sup
𝑥∈𝐾,|𝛼|6𝑁

|(𝐷𝛼𝑓)(𝑥)|, 𝐾 b 𝑋,𝑁 ∈ Z+.

The strongly dual space ℰ*(𝑋) for the space ℰ(𝑋) consists of generalized functions compactly
supported in 𝑋.

If 0 ̸= 𝜇 ∈ ℰ*(R𝑛), 𝑋1, 𝑋2 are two non-empty open sets in R𝑛 such that

𝑋2 + supp𝜇 ⊂ 𝑋1, (1)

then the convolution 𝜇 * 𝑓 of a distribution 𝜇 and the function 𝑓 ∈ ℰ(𝑋1) introduced by the
rule

(𝜇 * 𝑓)(𝑥) = 𝜇(𝑓(𝑥 + 𝑦)), 𝑥 ∈ 𝑋2,

belongs to ℰ(𝑋2).
L. Ehrenpreis [1] and B. Malgrange [2] established that 𝑃 (𝐷)(ℰ(R𝑛)) = ℰ(R𝑛) for each non-

zero polynomial 𝑃 of 𝑛 variables. For a generalized function 𝜇 ∈ ℰ*(R𝑛), 𝜇 ̸= 0, L. Ehrenpreis
[3] proved that the convolution operator 𝑓 → 𝜇 * 𝑓 acting from ℰ(R𝑛) into ℰ(R𝑛) is surjective
if and only if 𝜇 is invertible, which means that its Fourier-Laplace transform 𝜇̂ defined by the
rule

𝜇̂(𝑧) = 𝜇(𝑒⟨−𝑖𝑧,𝜉⟩), 𝑧 ∈ C𝑛,

decays slowly, that is, there exists 𝑎 > 0 such that for each 𝜉 ∈ R𝑛 there exists a point 𝜂 ∈ R𝑛,
for which ‖𝜉 − 𝜂‖ 6 𝑎 ln(2 + ‖𝜉‖) and |𝜇̂(𝜂)| > (𝑎 + ‖𝜉‖)−𝑎. In the general case, the problem
on surjectivity of the convolution operator was given by L. Hörmander [4]–[6]. He proved that
the convolution equation 𝜇 * 𝑓 = 𝑔 has a solution 𝑓 ∈ ℰ(𝑋1) for each 𝑔 ∈ ℰ(𝑋2) if and only if 𝜇
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is invertible and the pair (𝑋1, 𝑋2) is 𝜇-convex for the supports. We recall that a pair (𝑋1, 𝑋2)
of open sets 𝑋1, 𝑋2 in R𝑛 satisfying condition (1) is called 𝜇-convex for the supports [4, Def.
3.2], [5, Def. 3.2] if

dist (supp 𝜈,R𝑛 ∖𝑋2) = dist (supp𝜇 * 𝜈,R𝑛 ∖𝑋1)

for each 𝜈 ∈ ℰ*(𝑋2). Here 𝜇 * 𝜈 is the convolution of generalized functions 𝜇 and 𝜈 defined by
the formula

(𝜇 * 𝜈)(𝑓) = 𝜇(𝜈(𝑓(𝑥 + 𝑦))), 𝑓 ∈ ℰ(𝑋1),

dist (𝐴,𝐵) = inf{‖𝑥− 𝑦‖ : 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵}, ‖ · ‖ is the Euclidean norm in R𝑛.
L. Hörmander showed [7, Thm. 5.4, Cor. 5.4] that if 𝜇1, 𝜇2 ∈ ℰ ′(R𝑛) have disjoint singular

supports and 𝜇1 decays slowly, then 𝜇1 + 𝜇2 decays slowly as well. Later the direct proof of
this result by L. Hörmander was given by V. Abramchuk [8, Thm. 1]. Thus, if 𝜇1, 𝜇2 ∈ ℰ ′(R𝑛)
have disjoint singular supports and 𝜇1 defines a surjective convolution operator ℰ(R𝑛), then
the convolution operator associated with 𝜇1 + 𝜇2 is also surjective.

Later there was not so many works devoted to the perturbations of the convolution operators
in the spaces of infinitely differentiable functions. Among such works, we should mention rather
recent results by C. Fernandez, A. Galbis and D. Jornet [9], who studied the behavior of the
perturbations of the convolution operators in the space of ultra-differentiable functions in the
sense of Braun, Meise and Taylor [10]. At that, the results of works [11], [12] on surjectivity of
the convolution operators in these spaces were employed essentially.

In the present work the problem on surjectivity of the perturbed convolution operators is stud-
ied on the space of infinitely differentiable functions on convex domains in R𝑛. The formulation
of the problem differ from ones considered in [7], [8]. The formulation was essentially influenced
by the studies by S.G. Merzlyakov [13] devoted to the perturbations of convolution operators
in the spaces of holomorphic functions. Namely, let us fix a generalized function 𝜇 ∈ ℰ ′(R𝑛),
whose support is a convex set with a non-empty interior. Let 𝑋2 be a convex domain in R𝑛,
𝑋1 = 𝑋2 + supp𝜇. We note that in this case the pair (𝑋1, 𝑋2) is 𝜇-convex for the supports.
This is implied by the theorem on the supports [6, Thm. 4.3.3] and the fact that for each convex
domain Ω ⊂ R𝑛 and each compact set 𝐾 ⊂ Ω we have dist (𝐾,R𝑛 ∖ Ω) = dist (ch𝐾,R𝑛 ∖ Ω).
Here ch𝐾 is the convex hull of the compact set 𝐾. Assume that the convolution operator
𝐴 : ℰ(𝑋1) → ℰ(𝑋2) acting by the rule (𝐴𝑓)(𝑥) = (𝜇 * 𝑓)(𝑥) is surjective (that is, 𝜇 is invert-
ible). We consider the linear operator 𝐵 : ℰ(𝑋1) → ℰ(𝑋2) such that for each compact set 𝐾2

in 𝑋2 there exist a convex compact subset 𝑉 in the interior of the support of 𝜇 (denoted by
supp𝜇) and a number 𝑁1 ∈ Z+ such that for each 𝜀 > 0 less than the distance between 𝐾2 and
the boundary of 𝑋2 and for each 𝑁2 ∈ Z+ there exists a number 𝑐 = 𝑐(𝜀,𝑁2) > 0 such that

‖𝐵𝑓‖𝐾𝜀
2 ,𝑁2

6 𝑐‖𝑓‖𝐾2+𝑉,𝑁1
, 𝑓 ∈ ℰ(𝑋1). (2)

Here 𝐾𝜀
2 is an 𝜀-swelling of the compact set 𝐾2.

The main result of the work is the following theorem.

Theorem. The operator 𝐴 + 𝐵 : ℰ(𝑋1) → ℰ(𝑋2) is surjective.

1.2. Structure of the work. In Section 2 we provide two auxiliary results. The first
is a principle of Phragmén-Lindelöf principle (Proposition 1). The second is the Hörmander
division theorem [14, Cor. 2.6]. Here we also recall the definitions of two types of locally convex
spaces in [15]. The main result is proved in Section 3. In Section 4 we provide an example of
the operator 𝐵.

1.3. Some notations. Given 𝑢 = (𝑢1, . . . , 𝑢𝑛) ∈ R𝑛 (C𝑛), 𝑣 = (𝑣1, . . . , 𝑣𝑛) ∈ R𝑛 (C𝑛), we
let ⟨𝑢, 𝑣⟩ = 𝑢1𝑣1 + · · · + 𝑢𝑛𝑣𝑛 and ‖𝑢‖ stands for the Euclidean norm in R𝑛(C𝑛).

For 𝛼 = (𝛼1, . . . , 𝛼𝑛) ∈ Z𝑛, |𝛼| = 𝛼1 + . . . + 𝛼𝑛, 𝐷𝛼 is the corresponding partial derivative.
If Ω ⊂ R𝑛, then Ω, int Ω, 𝜕Ω, ch Ω is the closure, the interior, the boundary and the convex

hull of Ω, respectively. Given 𝜀 > 0, we let Ω𝜀 = {𝑥 ∈ R𝑛 : ‖𝑥− 𝑦‖ 6 𝜀 for some 𝑦 ∈ Ω}.
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For 𝑟 > 0 we let 𝐷(𝑟) = {𝑥 ∈ R𝑛 : ‖𝑥‖ < 𝑟}.
The support function 𝐻𝐾 of a convex compact set 𝐾 ⊂ R𝑛 is introduced by the formula

𝐻𝐾(𝑦) = max
𝑡∈𝐾

⟨𝑦, 𝑡⟩, 𝑦 ∈ R𝑛.

𝐻(C𝑛) is the space of entire functions in C𝑛.
The strongly dual space for a locally convex space 𝐸 is denoted by 𝐸*.

2. Auxiliary information and results

2.1. Auxiliary results. In the proof of Theorem the following two results will be useful.

Proposition 1. Let 𝑏 be a non-negative convex positive homogeneous of degree 1 function
in C𝑛 and 𝑔 ∈ 𝐻(C𝑛). Assume that for each 𝜀 > 0 there exists a constant 𝑐𝜀 > 0 such that

|𝑔(𝑧)| 6 𝑐𝜀 exp (𝑏(𝑧) + 𝜀‖𝑧‖), 𝑧 ∈ C𝑛,

and for some 𝑀 > 0 and 𝑁 ∈ Z+

|𝑔(𝑥)| 6 𝑀(1 + ‖𝑥‖)𝑁 , 𝑥 ∈ R𝑛.

Then
|𝑔(𝑧)| 6 2

𝑁
2 𝑀(1 + ‖𝑧‖)2𝑁 exp(𝑏(𝑖Im 𝑧)), 𝑧 ∈ C𝑛.

This statement is an easy corollary of Lemma 1 given below and in fact, it was proved in [16].
In order to formulate it, we define a space 𝒫𝑎(𝑇𝐶) as follows. Let 𝐶 be an open convex cone
in R𝑛 with the vertex at the origin and 𝑎 be a non-negative convex positive homogeneous of
order 1 function in R𝑛 + 𝑖𝐶. Then 𝒫𝑎(𝑇𝐶) is the space of function 𝑓 holomorphic in the tubular
domain 𝑇𝐶 = R𝑛 + 𝑖𝐶 and satisfying the condition: for each 𝜀 > 0 there exists a constant
𝑐 = 𝑐𝜀,𝑓 > 0 such that

|𝑓(𝑧)| 6 𝑐 exp (𝑎(𝑧) + 𝜀‖𝑧‖), 𝑧 ∈ R𝑛 + 𝑖𝐶.

Lemma 1. Let 𝑔 ∈ 𝒫𝑎(𝑇𝐶) and for 𝜉 ∈ R𝑛 we have lim
𝑧→𝜉
𝑧∈𝑇𝐶

|𝑔(𝑧)| 6 𝑀.

Then
|𝑔(𝑥 + 𝑖𝑦)| 6 𝑀 exp(𝑎(𝑖𝑦)), 𝑥 + 𝑖𝑦 ∈ 𝑇𝐶 .

Remark. It was assumed in [16, Lm.] that 𝐶 is an acute cone. The analysis of the proof of
Lemma shows that this condition for 𝐶 is needless.

The following result was obtained by L. Hörmander [14, Cor. 2.6].

Proposition 2. For 𝑗 = 1, 2, 3 let 𝑢𝑗 ∈ ℰ ′(R𝑛),

𝐻𝑗(𝜂) = 𝑠𝑢𝑝{⟨𝑥, 𝜂⟩, 𝑥 ∈ supp𝑢𝑗},
and let 𝑈𝑗 be the Fourier-Laplace transform of 𝑢𝑗. Assume that 𝑈2 = 𝑈3

𝑈1
is an entire function.

Then 𝐻2 = 𝐻3 − 𝐻1 is the support function of some convex compact set in R𝑛 and for each
𝜀 > 0

|𝑈2(𝜁)| 6 𝐶𝜀 exp(𝐻2(𝐼𝑚𝜁) + 𝜀‖𝜁‖), 𝜁 ∈ C𝑛,

where 𝐶𝜀 > 0 is a constant.

2.2. Two definitions. We recall the definitions of (𝑀*)-space and (𝐿𝑁*)-space in [15].

Definition 1. The space represented as the projective limit of the sequence of norm spaces
𝑆𝑛, 𝑛 ∈ N, w.r.t. linear continuous mappings 𝑔𝑚𝑛 : 𝑆𝑛 → 𝑆𝑚, 𝑚 < 𝑛, such that 𝑔𝑛,𝑛+1 are
completely continuous for 𝑛 is called space (𝑀*).

Definition 2. A locally convex space 𝐸 represented as an inductive limit of an increasing
sequence of normed spaces 𝐸𝑘 such that the unit ball of the space 𝐸𝑘 is relatively compact in
𝐸𝑘+1 for each 𝑘 ∈ N is called space (𝐿𝑁*).
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2.3. Some more notations and information. If 𝑋 is an open set in R𝑛 and (𝐾𝑚)∞𝑚=1 is a
sequence of compact subsets in 𝑋 such that 𝐾𝑚 ⊂ int 𝐾𝑚+1 (𝑚 = 1, 2, . . .) and 𝑋 = ∪∞

𝑘=1𝐾𝑚,
then by 𝐶𝑚(𝐾𝑚) we denote the normed space of functions 𝑓 smooth up to the order 𝑚 in 𝐾𝑚

with the norm ‖𝑓‖𝐾𝑚,𝑚. We note that ℰ(𝑋) is a projective limit of the spaces 𝐶𝑚(𝐾𝑚). At

that, ℰ(𝑋) is dense in each 𝐶𝑚(𝐾𝑚) and the embeddings 𝑖𝑚 : 𝐶𝑚+1(𝐾𝑚+1) → 𝐶𝑚(𝐾𝑚) are
completely continuous. Therefore, ℰ(𝑋) is an (𝑀*)-space. Then ℰ*(𝑋) is an (𝐿𝑁*)-space and
ℰ*(Ω) is the inductive limit of the spaces (𝐶𝑚(𝐾𝑚))* [15, Thm. 5].

3. Proof of Theorem

The theorem will be proved if we show that the image of the operator 𝐴 + 𝐵 is closed and
dense in ℰ(𝑋2).

Let us show first that the image of the operator 𝐴 + 𝐵 is closed in ℰ(𝑋2). Since ℰ(𝑋1)
and ℰ(𝑋2) are Frechét spaces, then the closedness of the operator 𝐴 + 𝐵 is equivalent to the
closedness of the image of the adjoint operator (𝐴 + 𝐵)* [17, 8.6.13, Thm.]. Since ℰ*(𝑋1) is
an (𝐿𝑁*)-space, to prove the closedness of the image of the operator (𝐴 + 𝐵)*, it is sufficient
to show that the image of the operator (𝐴 + 𝐵)* is sequentially closed [15, Prop. 8]. This
is why assume that the functionals 𝑆𝑘 ∈ ℰ*(𝑋2) are such that the sequence ((𝐴 + 𝐵)*𝑆𝑘)∞𝑘=1

converges to 𝐹 ∈ ℰ*(𝑋1) in ℰ*(𝑋1). For each 𝑚 ∈ N, let 𝑋2,𝑚 be its open bounded convex
subset 𝑋2 such that 𝑋2,𝑚 ⊂ 𝑋2,𝑚+1, 𝑋2 = ∪∞

𝑚=1𝑋2,𝑚. We let 𝑋1,𝑚 = 𝑋2,𝑚 + supp𝜇. Then
𝑋1,𝑚 ⊂ 𝑋1,𝑚+1, 𝑋1 = ∪∞

𝑚=1𝑋1,𝑚. By the properties of (𝐿𝑁*)-spaces [15, Thm. 2, Cor. 1],
there exists 𝑝 ∈ N such that the functionals 𝐹𝑘 := (𝐴 + 𝐵)*𝑆𝑘 and 𝐹 belong to (𝐶𝑝(𝑋1,𝑝))

*

and the sequence (𝐹𝑘)∞𝑘=1 converges to 𝐹 in (𝐶𝑝(𝑋1,𝑝))
*. Thus, the supports of the functionals

𝐹𝑘 and 𝐹 lie in 𝑋1,𝑝 and the order of the distributions 𝐹𝑘 and 𝐹 does not exceed 𝑝.

Let 2𝑟𝑝 := dist (𝑋2,𝑝, 𝜕𝑋2,𝑝+1), 𝑋2 := 𝑋2,𝑝 + 𝐷(𝑟𝑝) and 𝑋1 := 𝑋2 + supp𝜇. We observe

that 𝑋1 and 𝑋2 are bounded open convex sets in R𝑛 an the pair (𝑋1, 𝑋2) is 𝜇-convex for the
supports. We denote by 𝐴 the convolution operator 𝑓 ∈ ℰ(𝑋1) → 𝜇 * 𝑓 . It is obvious that 𝐴
acts from ℰ(𝑋1) into ℰ(𝑋2) linearly and continuously and if 𝑓 ∈ ℰ(𝑋1), then 𝐴𝑓 = 𝐴𝑓 . By
the above cited result by L. Hörmander [5], 𝐴(ℰ(𝑋1)) = ℰ(𝑋2).

Then, employing inequality (2), we continue uniquely the operator 𝐵 to a linear continuous
operator 𝐵̃ acting from ℰ(𝑋1) into ℰ(𝑋2). We note that for each convex compact set 𝐾̃2 ⊂ 𝑋2

there exist a compact set𝑉 ⊂ int (supp𝜇) and a number 𝑁1 ∈ Z+ such that for each 𝜀 ∈
(0, dist (𝐾̃2, 𝜕𝑋2)) and for each 𝑁2 ∈ Z+ there exists a number 𝑐 = 𝑐(𝜀,𝑁2) > 0 such that

‖𝐵̃𝑓‖𝐾̃𝜀
2 ,𝑁2

6 𝑐‖𝑓‖𝐾̃2+𝑉,𝑁1
, 𝑓 ∈ ℰ(𝑋1).

Letting 𝐾̃2 = 𝑋2,𝑝, we confirm that 𝐵̃ is a compact operator from ℰ(𝑋1) into ℰ(𝑋2). By [17,

Thm. 9.6.7], the image of the operator 𝐴 + 𝐵̃ is closed in ℰ(𝑋2). Therefore, the image of the
operator (𝐴 + 𝐵̃)* is closed in ℰ*(𝑋1).

Let 𝑋2,𝑗 = 𝑋2,𝑝 + 𝐷( 𝑗
𝑗+1

𝑟𝑝) for each 𝑗 ∈ N. Then 𝑋1 = ∪∞
𝑗=1(𝑋̃2,𝑗 + supp𝜇). We observe

that for some 𝑚 ∈ N the supports of the functionals 𝐹 , 𝐹𝑘 = (𝐴 + 𝐵)*𝑆𝑘 (𝑘 = 1, 2, . . .) lie in

𝑋̃2,𝑚 + supp𝜇.
Mow we take an arbitrary functional 𝑆𝑘 and we are going to show that the convex hull 𝑊𝑘

of its support is located in 𝑋̃2,𝑚+2. We suppose the opposite. Then there exists a point 𝜉 in

𝑊𝑘 not belonging to 𝑋̃2,𝑚+2. There exists a hyperplane in R𝑛 separating 𝑋̃2,𝑚+2 and 𝜉. This
is why we can find a point 𝑦0 ∈ R𝑛 such that

𝐻𝑊𝑘
(𝑦0) > 𝐻

𝑋̃2,𝑚+2
(𝑦0). (3)
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We denote the order of the distribution 𝑆𝑘 by 𝑁2,𝑘. We choose 𝛿1 > 0 so small that 𝑊 𝛿1
𝑘 b 𝑋2.

Then there exists a constant 𝑎𝛿1,𝑘 > 0 such that

|(𝐵*𝑆𝑘)(𝑓)| = |𝑆𝑘(𝐵𝑓)| 6 𝑎𝛿,𝑘‖𝐵𝑓‖
𝑊

𝛿1
𝑘 ,𝑁2,𝑘

, 𝑓 ∈ ℰ(𝑋1).

By the assumption for 𝐵, there exists a convex compact set 𝑉 ⊂ int (supp𝜇) and a number
𝑁1 ∈ Z+ such that for the chosen 𝛿1 > 0 there exists a constant 𝑐𝛿1,𝑘 > 0 such that

|(𝐵*𝑆𝑘)(𝑓)| 6 𝑐𝛿1,𝑘‖𝑓‖𝑊𝑘+𝑉,𝑁1
, 𝑓 ∈ ℰ(𝑋1).

For each 𝑧 ∈ C𝑛 this follows that

| ̂(𝐵*𝑆𝑘)(𝑧)| 6 𝑐𝛿1,𝑘(1 + ‖𝑧‖)𝑁1 exp(𝐻𝑊𝑘
(Im 𝑧) + 𝐻𝑉 (Im 𝑧)). (4)

Taking into consideration that for some 𝑑 > 0

𝐻𝑉 (𝑥) 6 𝐻supp𝜇(𝑥) − 𝑑‖Im𝑥‖, 𝑥 ∈ R𝑛,

by (4) we obtain that

| ̂(𝐵*𝑆𝑘)(𝑧)| 6 𝑐𝛿1,𝑘(1 + ‖𝑧‖)𝑁1𝑒𝐻𝑊𝑘
(Im 𝑧)+𝐻supp𝜇(Im 𝑧)−𝑑‖Im 𝑧‖ (5)

for all 𝑧 ∈ C𝑛. Since 𝐹𝑘 ∈ ℰ*(𝑋1), supp𝐹𝑘 ⊂ 𝑋̃2,𝑚 + supp𝜇 and the order of the distribution
𝐹𝑘 does not exceed 𝑝, then for each 𝛿 > 0 there exists a constant 𝑚𝛿,𝑘 > 0 such that

|𝐹𝑘(𝑧)| 6 𝑚𝛿,𝑘(1 + ‖𝑧|)𝑝 exp(𝐻
𝑋̃2,𝑚

(Im 𝑧) + 𝐻supp𝜇(Im 𝑧) + 𝛿‖Im 𝑧‖) (6)

for all 𝑧 ∈ C𝑛. Employing estimates (5) and (6) with 𝛿 = 𝑟𝑝
2(𝑚+1)(𝑚+2)

, we obtain that

|(̂𝐴*𝑆𝑘)(𝑧)| 6 𝑎(1 + ‖𝑧|)𝑏𝑒
𝐻

ch (𝑊𝑘∪𝑋̃2,𝑚+1)+supp𝜇
(Im 𝑧)−𝛾‖Im 𝑧‖

(7)

for all 𝑧 ∈ C𝑛, where 𝛾 = min(𝑑, 𝛿), 𝑎 = max(𝑐𝛿1,𝑘,𝑚𝛿,𝑘) and 𝑏 = max(𝑝,𝑁1). We choose a

number 𝛾1 ∈ (0, 𝛾) and we find a convex compact set Ω𝑘 ⊂ int (ch (𝑊𝑘 ∪ 𝑋̃2,𝑚+1)) such that

𝐻
ch (𝑊𝑘∪𝑋̃2,𝑚+1)

(𝑦) −𝐻Ω𝑘
(𝑦) 6 𝛾1‖𝑦‖, 𝑦 ∈ R𝑛.

Then by (7) we have

|(̂𝐴*𝑆𝑘)(𝑧)| 6 𝑎(1 + ‖𝑧|)𝑏𝑒𝐻Ω𝑘+supp𝜇(Im 𝑧),

We note that by Paley-Wiener-Schwartz theorem [6, Thm. 7.3.1] this means that the support
of 𝐴*𝑆𝑘 is contained in Ω𝑘 + supp𝜇. Taking into consideration the identity

(̂𝐴*𝑆𝑘)(𝑧) = 𝑆𝑘(𝑧)𝜇̂(𝑧), 𝑧 ∈ C𝑛,

and Proposition 2, we obtain that 𝐻supp (𝐴*𝑆𝑘) −𝐻supp𝜇 is the support function of some convex
compact set 𝐺𝑘 ⊂ R𝑛 and for each 𝜀 > 0 there exists a number 𝐶𝜀 > 0 such that

|𝑆𝑘(𝑧)| 6 𝐶𝜀 exp(𝐻𝐺𝑘
(Im 𝑧) + 𝜀‖𝑧‖), 𝑧 ∈ C𝑛. (8)

By Paley-Wiener-Schwartz theorem [6, Thm. 7.3.1], for some 𝑀𝑘 > 0 we have

|𝑆𝑘(𝑥)| 6 𝑀𝑘(1 + ‖𝑥‖)𝑁2,𝑘 , 𝑥 ∈ R𝑛.

Employing Proposition 1, by this inequality and (8) we obtain that

|𝑆𝑘(𝑧)| 6 𝑀𝑘(1 + ‖𝑧‖)2𝑁2,𝑘𝑒𝐻𝐺𝑘
(𝐼𝑚𝑧), 𝑧 ∈ C𝑛.

Employing Paley-Wiener-Schwarz theorem [6, Thm. 7.3.1] once again, we obtain that the
support of 𝑆𝑘 is contained in 𝐺𝑘. Therefore, for all 𝑦 ∈ R𝑛 we have

𝐻𝑊𝑘
(𝑦) 6 𝐻𝐺𝑘

(𝑦) = 𝐻supp (𝐴*𝑆𝑘)(𝑦) −𝐻supp𝜇(𝑦) 6 𝐻Ω𝑘+supp𝜇(𝑦) −𝐻supp𝜇(𝑦) = 𝐻Ω𝑘
(𝑦).

In view of Ω𝑘 ⊂ int (ch (𝑊𝑘 ∪ 𝑋̃2,𝑚+1)) this follows that

𝐻𝑊𝑘
(𝑦) < max(𝐻𝑊𝑘

(𝑦), 𝐻
𝑋̃2,𝑚+1

(𝑦)), 𝑦 ∈ R𝑛.
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But this is impossible due to (3). Thus, for each 𝑘 ∈ N, the convex hull 𝑊𝑘 of the support of

the functional 𝑆𝑘 (𝑘 = 1, 2, . . .) is contained in 𝑋̃2,𝑚+2.

Let 𝜂 ∈ ℰ(R𝑛) be a function with a support in 𝑋̃2,𝑚+4 such that 0 6 𝜂(𝑥) 6 1 for all 𝑥 ∈ R𝑛

and 𝜂(𝑥) = 1 for 𝑥 ∈ 𝑋̃2,𝑚+3. For each 𝑘 ∈ N we define the functional 𝑆𝑘 on ℰ(𝑋2) by the rule

𝑆𝑘(𝑓) = 𝑆𝑘(𝜂𝑓), 𝑓 ∈ ℰ(𝑋2). It is obvious that 𝑆𝑘 ∈ ℰ*(𝑋2) and 𝑆𝑘(𝑓) = 𝑆𝑘(𝑓), 𝑓 ∈ ℰ(𝑋2). We
note that since for each 𝑓 ∈ ℰ(𝑋1) (𝐴 + 𝐵)(𝑓) = (𝐴 + 𝐵̃)(𝑓), then the functionals (𝐴 + 𝐵)*𝑆𝑘

and (𝐴+ 𝐵̃)*𝑆𝑘 (𝑘 = 1, 2, . . .) coincide on ℰ(𝑋1). Taking into consideration that ℰ(𝑋1) is dense
in ℰ(𝑋̃1), we obtain that (𝐴 + 𝐵̃)*𝑆𝑘 is the unique continuation of the functional (𝐴 + 𝐵)*𝑆𝑘

on ℰ(𝑋̃1).
Let us show that the functionals (𝐴 + 𝐵̃)*𝑆𝑘 converge in ℰ*(𝑋̃1). We first note that the

sequence ((𝐴 + 𝐵̃)*𝑆𝑘)∞𝑘=1 is fundamental in ℰ*(𝑋̃1). Indeed, let ℬ be an arbitrary bounded

domain in ℰ(𝑋̃1) and

ℬ∘ = {𝐹 ∈ ℰ*(𝑋̃1) : |𝐹 (𝑓)| 6 1 ∀𝑓 ∈ ℬ}
are its polar. We take a function 𝜔 ∈ ℰ(R𝑛) with the support in 𝑋̃2,𝑚+4 + supp𝜇 such that

0 6 𝜔(𝑥) 6 1 for all 𝑥 ∈ R𝑛 and 𝜔(𝑥) = 1 for 𝑥 ∈ 𝑋̃2,𝑚+3 + supp𝜇. Since the supports of

the functionals 𝑆𝑘 lie in 𝑋̃2,𝑚+2, the supports of the functionals (𝐴 + 𝐵̃)*𝑆𝑘 are contained in

𝑋̃2,𝑚+2 + supp𝜇. This is why for each 𝑓 ∈ ℰ(𝑋̃1) and all 𝑘,𝑚 ∈ N we have that

((𝐴 + 𝐵̃)*𝑆𝑘)(𝑓) − ((𝐴 + 𝐵̃)*𝑆𝑚)(𝑓) = ((𝐴 + 𝐵̃)*𝑆𝑘)(𝜔𝑓) − ((𝐴 + 𝐵̃)*𝑆𝑚)(𝜔𝑓).

We can consider 𝜔𝑓 as an element of ℰ(𝑋1) by letting (𝜔𝑓)(𝑥) = 0 for 𝑥 ∈ 𝑋1 ∖ (𝑋̃2,𝑚+4 + supp𝜇).
Then

((𝐴 + 𝐵̃)*𝑆𝑘)(𝑓) − ((𝐴 + 𝐵̃)*𝑆𝑚)(𝑓) = ((𝐴 + 𝐵)*𝑆𝑘)(𝜔𝑓) − ((𝐴 + 𝐵)*𝑆𝑚)(𝜔𝑓).

We note that the set 𝜔ℬ = {𝜔𝑓 : 𝑓 ∈ ℬ} is bounded in ℰ(𝑋1). Since the sequence ((𝐴 +
𝐵)*𝑆𝑘)∞𝑘=1 converges in ℰ*(𝑋1), it is fundamental in ℰ*(𝑋1). This is why there exists 𝑁 ∈ N such
that for all natural numbers 𝑘,𝑚 > 𝑁 and 𝑔 ∈ 𝜔ℬ we have |((𝐴+𝐵)*𝑆𝑘)(𝑔)−((𝐴+𝐵)*𝑆𝑚)(𝑔)| 6
1. Therefore, for all natural numbers 𝑘,𝑚 > 𝑁 and 𝑓 ∈ ℬ we obtain

|((𝐴 + 𝐵̃)*𝑆𝑘)(𝑓) − ((𝐴 + 𝐵̃)*𝑆𝑚)(𝑓)| 6 1.

This means that for all natural numbers 𝑘,𝑚 > 𝑁 and 𝑓 ∈ ℬ we get (𝐴+𝐵̃)*𝑆𝑘−((𝐴+𝐵̃)*𝑆𝑚 ∈
ℬ∘. Thus, we have proved that the sequence ((𝐴+𝐵̃)*𝑆𝑘)∞𝑘=1 is fundamental in ℰ*(𝑋̃1). Finally,

since ℰ*(𝑋̃1) is complete, we obtain that the sequence ((𝐴+𝐵̃)*𝑆𝑘)∞𝑘=1 converges to some ℰ*(𝑋̃1)

in 𝑇 ∈ ℰ*(𝑋̃1). But (𝐴 + 𝐵̃)*(ℰ*(𝑋̃2)) is closed in ℰ*(𝑋̃1). Therefore, there exists a functional
𝑆 ∈ ℰ*(𝑋̃2) such that 𝑇 = (𝐴 + 𝐵̃)*𝑆. Let 𝑆 be the restriction of 𝑆 on ℰ(𝑋2). Then for each
𝑓 ∈ ℰ(𝑋1) we have 𝑇 (𝑓) = 𝑇 (𝑓). Indeed,

𝑇 (𝑓) = lim
𝑘→∞

((𝐴 + 𝐵̃)*(𝑆𝑘))(𝑓) = lim
𝑘→∞

𝑆𝑘((𝐴 + 𝐵̃)𝑓) = lim
𝑘→∞

𝑆𝑘((𝐴 + 𝐵)𝑓)

= lim
𝑘→∞

𝑆𝑘((𝐴 + 𝐵)𝑓) = lim
𝑘→∞

((𝐴 + 𝐵)*𝑆𝑘)(𝑓) = 𝑇 (𝑓).

Together with the following chain of the identities

𝑇 (𝑓) = lim
𝑘→∞

((𝐴 + 𝐵̃)*(𝑆𝑘))(𝑓) = ((𝐴 + 𝐵̃)*(𝑆))(𝑓) = 𝑆((𝐴 + 𝐵̃)𝑓)

=𝑆((𝐴 + 𝐵)𝑓) = 𝑆((𝐴 + 𝐵)𝑓) = ((𝐴 + 𝐵)*𝑆)(𝑓)

this implies that 𝑇 = (𝐴+𝐵)*𝑆. Thus, the image of the operator (𝐴+𝐵)* is closed in ℰ*(𝑋1).
Therefore, the image of the operator 𝐴 + 𝐵 is closed in ℰ(𝑋2).

Now we are going to prove that the image of the operator 𝐴 + 𝐵 is dense in ℰ(𝑋2). This
will be done once we prove that an arbitrary functional 𝑆 ∈ ℰ*(𝑋2) such that 𝑆((𝐴+𝐵)𝑓) = 0
for all 𝑓 ∈ ℰ(𝑋1) is the zero functional. We assume the opposite. Then the support of 𝑆 is
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non-empty. Let 𝑁 be the order of the distribution 𝑆 and 𝛿 > 0 is so small that (supp𝑆)𝛿 b 𝑋2.
Then there exists a constant 𝑐𝛿 > 0 such that

|𝑆(𝑔)| 6 𝑐𝛿‖𝑔‖(supp𝑆)𝛿,𝑁 , 𝑔 ∈ ℰ(𝑋2).

By inequality (2) this yields that there exists a convex compact set 𝑉 ⊂ int (supp𝜇), a number
𝑁1 ∈ Z+ depending on ch (supp𝑆) and a constant 𝐶𝛿 > 0 such that for each 𝑓 ∈ ℰ(𝑋1)

|(𝐵*𝑆)(𝑓)| 6 𝐶𝛿‖𝑓‖ch (supp𝑆)+𝑉,𝑁1
.

Therefore, the support of the functional 𝐵*𝑆 is contained in ch (supp𝑆) + 𝑉 . On the other
hand, the identity 𝐵*𝑆 = −𝜇 * 𝑆 and the theorem on supports [6, Thm. 4.3.3],

ch (supp𝐵*𝑆) = ch (supp𝑆) + supp𝜇.

Thus, ch (supp𝑆) + supp𝜇 ⊂ ch (supp𝑆) + 𝑉. But this inclusion is impossible since the convex
compact set 𝑉 is contained in the interior of the support of 𝜇. Therefore, the assumption that
𝑆 is a non-zero functional is wrong. Thus, 𝑆 = 0. This means that the image of 𝐴+𝐵 is dense
in ℰ(𝑋2). This completes the proof of the theorem.

4. Example of operator 𝐵

Let 𝜇 ∈ ℰ ′(R𝑛) is the invertible distribution and supp𝜇 = 𝐷(1). The distribution with
such properties can be constructed, see, for instance [8, Thms. 1, 3, 4]. Let 𝑋2 = 𝐷(1),
𝑋1 = 𝐷(2), and 𝐴 : ℰ(𝑋1) → ℰ(𝑋2) be the convolution operator acting by the rule (𝐴𝑓)(𝑥) =

(𝜇 * 𝑓)(𝑥), 𝑥 ∈ 𝑋1. We take the function 𝑏 ∈ ℰ(R2𝑛) with the support in 𝐷(1
4
) × 𝐷(1

4
). We

define the operator 𝐵 : ℰ(𝑋1) → ℰ(𝑋2) by the rule

(𝐵𝑓)(𝑥) =

∫︁
R𝑛

𝑏(𝑥, 𝜉)𝑓(𝑥 + 𝜉) 𝑑𝜉, ‖𝑥‖ 6
1

4
,

(𝐵𝑓)(𝑥) = 0,
1

4
< ‖𝑥‖ < 1.

Let 𝐾 be a convex compact set in 𝑋2 and 𝛾 := dist (𝐾, 𝜕𝑋2). Let us show that there exists a
convex compact set 𝑉 ⊂ int (supp𝜇) such that for all 𝜀 ∈ (0, 𝛾) and 𝑁2 ∈ Z+ there exists a
constant 𝑐 = 𝑐(𝜀,𝑁2) > 0 such that

‖𝐵𝑓‖𝐾𝜀,𝑁2
6 𝑐‖𝑓‖𝐾+𝑉,0 , 𝑓 ∈ ℰ(𝑋1).

It is obvious that for each 𝜀 ∈ (0, 𝛾) and each 𝑁2 ∈ Z+ there exists a constant 𝐶 > 0 depending
on 𝑏 and 𝑁2 such that for each 𝑓 ∈ ℰ(𝑋1) we have

‖𝐵𝑓‖𝐾𝜀,𝑁2
= ‖𝐵𝑓‖

𝐾𝜀∩𝐷( 1
4
),𝑁2

6 𝐶1‖𝑓‖(𝐾𝜀∩𝐷( 1
4
))+𝐷( 1

4
),0
. (9)

If 𝛾 ∈ (0, 3
4
), by (9) we get

‖𝐵𝑓‖𝐾𝜀,𝑁2
6 𝐶1‖𝑓‖𝐾𝛾+𝐷( 1

4
),0

= 𝐶1‖𝑓‖𝐾+𝐷(𝛾+ 1
4
),0

Therefore, in this case we can let 𝑉 = 𝐷(𝛾 + 1
4
). If 𝛾 ∈ [3

4
, 1], then 𝐾 ⊂ 𝐷(1

4
) and by (9) we

obtain

‖𝐵𝑓‖𝐾𝜀,𝑁2
6 𝐶1‖𝑓‖𝐷( 1

2
),0

6 𝐶1‖𝑓‖𝐾+𝐷( 3
4
),0
.

Thus, as 𝛾 ∈ [3
4
, 1], we can let 𝑉 = 𝐷(3

4
).

Thus, by Theorem the operator 𝐴 + 𝐵 : ℰ(𝑋1) → ℰ(𝑋2) is surjective.
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