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PERTURBATION OF A SURJECTIVE CONVOLUTION
OPERATOR

I.LKH. MUSIN

Abstract. Let p € &'(R™) be a compactly supported distribution such that its support is a
convex set with a non-empty interior. Let X5 be a convex domain in R", X; = Xs-+supp p.
Let the convolution operator A : £(X1) — £(X2) acting by the rule (Af)(z) = (ux* f)(z) is
surjective. We obtain a sufficient condition for a linear continuous operator B : £(X1) —
E(X2) ensuring the surjectivity of the operator A + B.

Keywords: convolution operator, distribution, Fourier-Laplace transform, entire func-
tions.
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1. INTRODUCTION

1.1. On the problem and the main result. Given an open set X in R", by £(X) we
denote the space of infinitely differentiable on X functions with the topology defined by the
system of the semi-norms

[fllxy = sup |[(Df)(z)], K€ X,N€Z,.
zeK,|a|<N
The strongly dual space £*(X) for the space £(X) consists of generalized functions compactly
supported in X.
If0# pe & (R"), Xq, Xy are two non-empty open sets in R™ such that

Xo +supp p C X1, (1)

then the convolution p * f of a distribution p and the function f € £(X;) introduced by the
rule

(nx f)(@) = p(f(z +y)), v e Xy
belongs to £(X5).

L. Ehrenpreis [I] and B. Malgrange [2] established that P(D)(E(R™)) = E(R") for each non-
zero polynomial P of n variables. For a generalized function p € £*(R™), u # 0, L. Ehrenpreis
[3] proved that the convolution operator f — p* f acting from E(R™) into £(R™) is surjective
if and only if p is invertible, which means that its Fourier-Laplace transform /i defined by the
rule

ilz) = p(e=9), z e Cm,
decays slowly, that is, there exists a > 0 such that for each £ € R™ there exists a point n € R",
for which ||¢ — || < aln(2+ ||£]]) and |@(n)| = (a + ||€||)~*. In the general case, the problem
on surjectivity of the convolution operator was given by L. Hormander [4]-[6]. He proved that
the convolution equation p* f = g has a solution f € £(X;) for each g € £(X5) if and only if p
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is invertible and the pair (X;, X») is p-convex for the supports. We recall that a pair (Xi, X»)
of open sets X7, X5 in R" satisfying condition is called p-convex for the supports [4, Def.
3.2], [5 Def. 3.2] if

dist (supp v, R" \ X3) = dist (supp p * v, R" \ Xj)

for each v € £*(X,). Here u * v is the convolution of generalized functions p and v defined by
the formula

(wxv)(f) = pv(f(z+y))), fel(X),
dist (A, B) = inf{||z —y|| : x € A,y € B}, || - | is the Euclidean norm in R".

L. Hormander showed [7, Thm. 5.4, Cor. 5.4] that if uy, puo € E'(R™) have disjoint singular
supports and g decays slowly, then py + po decays slowly as well. Later the direct proof of
this result by L. Hérmander was given by V. Abramchuk [8, Thm. 1]. Thus, if gy, u2 € E'(R")
have disjoint singular supports and p; defines a surjective convolution operator £(R™), then
the convolution operator associated with p; + po is also surjective.

Later there was not so many works devoted to the perturbations of the convolution operators
in the spaces of infinitely differentiable functions. Among such works, we should mention rather
recent results by C. Fernandez, A. Galbis and D. Jornet [9], who studied the behavior of the
perturbations of the convolution operators in the space of ultra-differentiable functions in the
sense of Braun, Meise and Taylor [10]. At that, the results of works [I1], [I2] on surjectivity of
the convolution operators in these spaces were employed essentially.

In the present work the problem on surjectivity of the perturbed convolution operators is stud-
ied on the space of infinitely differentiable functions on convex domains in R™. The formulation
of the problem differ from ones considered in [7], [§]. The formulation was essentially influenced
by the studies by S.G. Merzlyakov [I3] devoted to the perturbations of convolution operators
in the spaces of holomorphic functions. Namely, let us fix a generalized function u € £'(R"),
whose support is a convex set with a non-empty interior. Let X5 be a convex domain in R",
X7 = X5 + supp . We note that in this case the pair (X7, X5) is p-convex for the supports.
This is implied by the theorem on the supports [0, Thm. 4.3.3] and the fact that for each convex
domain 2 C R™ and each compact set K C € we have dist (K, R™ \ Q) = dist (ch K, R™ \ ).
Here ch K is the convex hull of the compact set K. Assume that the convolution operator
A E(Xy) — £(Xs) acting by the rule (Af)(x) = (u* f)(x) is surjective (that is, p is invert-
ible). We consider the linear operator B : £(X;) — £(X2) such that for each compact set Ky
in X, there exist a convex compact subset V' in the interior of the support of u (denoted by
supp p) and a number Ny € Z, such that for each € > 0 less than the distance between K5 and
the boundary of X, and for each Ny € Z, there exists a number ¢ = ¢(g, N3) > 0 such that

||Bf||K5,N2 < C||f||K2+V,N17 fe&(Xy). (2)

Here K3 is an e-swelling of the compact set K.
The main result of the work is the following theorem.

Theorem. The operator A+ B : E(X) — E(Xy) is surjective.

1.2. Structure of the work. In Section 2 we provide two auxiliary results. The first
is a principle of Phragmén-Lindel6f principle (Proposition 1). The second is the Hérmander
division theorem [14, Cor. 2.6]. Here we also recall the definitions of two types of locally convex
spaces in [15]. The main result is proved in Section 3. In Section 4 we provide an example of
the operator B.

1.3. Some notations. Given u = (uy,...,u,) € R" (C"), v = (vy,...,v,) € R" (C"), we
let (u,v) = ujvy + -+ + u,v, and |lul| stands for the Euclidean norm in R™(C").

For a = (aq,...,ap) € Z", || = oy + ... + a, D* is the corresponding partial derivative.

If Q C R”, then Q, intQ, 09, ch is the closure, the interior, the boundary and the convex
hull of €, respectively. Given € > 0, we let Q° = {z € R": ||z — y|| < ¢ for some y € Q}.
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For r > 0 we let D(r) ={x € R": ||z| < r}.

The support function Hg of a convex compact set K C R" is introduced by the formula
Hi(y) = max{y,7), y € R".

H(C™) is the space of entire functions in C™.

The strongly dual space for a locally convex space F is denoted by E*.

2. AUXILIARY INFORMATION AND RESULTS
2.1. Auxiliary results. In the proof of Theorem the following two results will be useful.

Proposition 1. Let b be a non-negative convex positive homogeneous of degree 1 function
in C" and g € H(C™). Assume that for each € > 0 there exists a constant c. > 0 such that

9(2)] < ccexp (b(2) +€l|z]]), z € €,
and for some M >0 and N € Z
l9(@)] < M1+ ||2[)Y, = € R™

Then N
9(2)] <22 M(1+ [|2]))*" exp(b(ilm 2)), z € C".

This statement is an easy corollary of Lemma 1 given below and in fact, it was proved in [16].
In order to formulate it, we define a space P,(T¢) as follows. Let C' be an open convex cone
in R™ with the vertex at the origin and a be a non-negative convex positive homogeneous of
order 1 function in R"+4iC. Then P,(T¢) is the space of function f holomorphic in the tubular
domain T = R™ + ¢C' and satisfying the condition: for each ¢ > 0 there exists a constant
¢ = c..y > 0 such that

[F(2)] < cexp (a(z) +el2]]), 2 € R* +:iC.
Lemma 1. Let g € P,(T¢) and for € € R™ we have EIEI lg(2)| < M.

z2€T

Then
|g9(z +iy)| < M exp(a(iy)), =+ iy € Tc.

Remark. [t was assumed in [16, Lm.] that C' is an acute cone. The analysis of the proof of
Lemma shows that this condition for C is needless.

The following result was obtained by L. Hérmander [14, Cor. 2.6].
Proposition 2. For j =1,2,3 let u; € £&'(R"),

Hj(n) = sup{{z,n), = € suppu;},
and let U; be the Fourier-Laplace transform of uj. Assume that Uy = g—i’ s an entire function.
Then Hy = Hs — Hy is the support function of some convexr compact set in R"™ and for each
e>0
U2(Q)] < Czexp(Ha(Img) +€][C]]), ¢ € C”,

where C. > 0 is a constant.
2.2. Two definitions. We recall the definitions of (M*)-space and (LN*)-space in [15].

Definition 1. The space represented as the projective limit of the sequence of norm spaces
Sp, n € N, w.r.t. linear continuous mappings Gmn : Sp —+ Sm, m < n, such that g, ,+1 are
completely continuous for n is called space (M*).

Definition 2. A locally convexr space E represented as an inductive limit of an increasing
sequence of normed spaces Ey such that the unit ball of the space Ey is relatively compact in

Eyi1 for each k € N is called space (LN*).
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2.3. Some more notations and information. If X is an open set in R" and (K,,,)5°_; is a
sequence of compact subsets in X such that K, C int K11 (m=1,2,...) and X = U2, K,,,
then by C™(K,,) we denote the normed space of functions f smooth up to the order m in K,,
with the norm || f[|g. . We note that £(X) is a projective limit of the spaces C™(K,). At
that, £(X) is dense in each C™(K,,) and the embeddings i,, : C"(K,,+1) — C™(K,,) are
completely continuous. Therefore, £(X) is an (M*)-space. Then £*(X) is an (LN*)-space and
E*(Q) is the inductive limit of the spaces (C™(K,,))* [15, Thm. 5.

3. PROOF OF THEOREM

The theorem will be proved if we show that the image of the operator A + B is closed and
dense in £(X5).

Let us show first that the image of the operator A + B is closed in £(X5). Since £(X;)
and £(X3) are Frechét spaces, then the closedness of the operator A + B is equivalent to the
closedness of the image of the adjoint operator (A + B)* [I7, 8.6.13, Thm.]. Since £*(X;) is
an (LN*)-space, to prove the closedness of the image of the operator (A + B)*, it is sufficient
to show that the image of the operator (A + B)* is sequentially closed [I5, Prop. 8]. This
is why assume that the functionals Sy € £*(X3) are such that the sequence ((A + B)*Sk)%,
converges to F' € £*(X;) in £*(X;). For each m € N, let X,,, be its open bounded convex
subset X, such that ng C Xomi1, Xo = Ufnozlygvm. We let X, = Xa,, +supppu. Then
le C Ximy1, X1 = Uy, le By the properties of (LN*)-spaces [15, Thm. 2, Cor. 1],
there exists p € IN such that the functionals Fy := (A + B)*S; and F belong to (CP(X,))*
and the sequence (F)$2, converges to F in (CP(X,,))*. Thus, the supports of the functionals
F, and F lie in X, p and the order of the distributions F}, and F' does not exceed p.

Let 2rp = dist (Xgp,(?Xng) X, = Xop + D(r,) and X, = X + supp p. We observe
that X; and X, are bounded open convex sets in R" an the pair (Xl, X2) is p-convex for the
supports. We denote by A the convolution operator f € & (Xl) — wx f. It is obvious that A
acts from &(X;) into £(X) linearly and continuously and if f € £(X;), then Af = Af. By
the above cited result by L. Hormander [5], A(£(X})) = £(Xa).

Then, employing inequality (2), we continue uniquely the operator B to a linear continuous
operator B acting from £(X;) into £(X5). We note that for each convex compact set Ky C X5
there exist a compact setV C int (supp ) and a number N; € Z. such that for each ¢ €
(0, dist (K5, 0X,)) and for each N, € Z there exists a number ¢ = ¢(g, N;) > 0 such that

HBfo(gNg < CHf”R'2+V,N17 S 5(X1)~

Letting Ky = X5, we confirm that B is a compact operator from £(X,) into £(X,). By [I7,
Thm. 9.6.7], the image of the operator A + B is closed in £(X5). Therefore, the image of the
operator (A + B)* is closed in £4(X,).

Let Xp; = Xpp 4+ D(5457p) for cach j € N. Then X, = Uz (Xg’j + supp ). We observe
that for some m € IN the supports of the functionals F, F}, = (A + B)*Sk (k=1,2,...) lie in
X 2,m T SUpPD U.

Mow we take an arbitrary functional Sy and we are going to show that the convex hull W,
of its support is located in X, m+2. We suppose the opposite. Then there exists a point & in

Wi not belonging to X 2.m+2. There exists a hyperplane in R" separating X 2.m+2 and &. This
is why we can find a point 3y € R™ such that

Hyw, (yo) > Hz  (y0). (3)

X2 m+2
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We denote the order of the distribution Si by Ny ;. We choose d; > 0 so small that W,fl € Xs.
Then there exists a constant as, ;, > 0 such that

((B*Sk) (N = 9B < askl|Bfllyo y, - F € EX).

By the assumption for B, there exists a convex compact set V' C int (supp p) and a number
Ny € Z.; such that for the chosen d; > 0 there exists a constant cs, , > 0 such that

((B*Sk) ()] < csi il fllwrvn, [ € EX).
For each z € C" this follows that
|(B*51)(2)] < s, (1 + [121)™ exp(Hyp, (Im z) + Hy (Im 2)). (4)
Taking into consideration that for some d > 0
Hy(z) < Hyypp () — d||Imz||, z € R",
by (4) we obtain that

(B750) ()] < €, (L[] o2 (5)

for all z € C". Since F € £*(X), supp Fj. C Ezm + supp i and the order of the distribution
F}, does not exceed p, then for each 0 > 0 there exists a constant m;; > 0 such that

|Fo(2)] < mag(1+ [|2)? exp(Hy,  (Im 2) + Hyuppu(Im 2) + 6| Im ) (6)
for all z € C". Employing estimates (5) and (6) with § = m, we obtain that

— - Im z)—~|/Im z
1(A*S)(2)] < a(l + ||Z|) e ch(wkuxzmﬂprsu;)pu( )= Tm z|| (7)

for all z € C", where v = min(d, ), a = max(cs, y, msx) and b = max(p, N1). We choose a
number 7y, € (0,7) and we find a convex compact set €, C int (ch (W, U Xg,,41)) such that
ooy ®) ~ Hon0) ol € B
Then by (7) we have
1(A*S)(2)] < a(l + ”Z‘)beHQk+suppu(ImZ),

We note that by Paley-Wiener-Schwartz theorem [0, Thm. 7.3.1] this means that the support
of A*S}, is contained in € + supp p. Taking into consideration the identity

(A°8)(2) = Si(2)jil2), = € C",

and Proposition 2, we obtain that Hgup,p, a+s,) — Hsuppp 1 the support function of some convex
compact set GG, C R™ and for each £ > 0 there exists a number C, > 0 such that

19:(2)] < Ceexp(Hg, (Im 2) +¢||2]|), z € C™. (8)
By Paley-Wiener-Schwartz theorem [6, Thm. 7.3.1], for some M;, > 0 we have
|Sk()] < My(1+ [|z[)™>*, = € R™.
Employing Proposition , by this inequality and (8) we obtain that
1Sk(2)] < Mi(1+ ||z]|)N2rettardma) 2 e Cn.

Employing Paley-Wiener-Schwarz theorem [6, Thm. 7.3.1] once again, we obtain that the
support of Sy, is contained in G. Therefore, for all y € R™ we have

Hy, (y) < HGk(y> = Hupp (A*Sk)(?/) - Hsuppu(y) < HQk+suppu(?/) - Hsuppu(y) = Hgq, (y)
In view of Q. C int (ch (W, U §Q’m+1>) this follows that
HWk (y) < maX<HWk (y)’ H}2,m+1 (y))’ (RS R".
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But this is impossible due to . Thus, for each k € N, the convex hull W), of the support of
the functional Si, (k =1,2,...) is contained in X27m+2.
Let 7 € £(R™) be a function with a support in X4 such that 0 < n(z) < 1 for all 2 € R®

and n(z) = 1 for © € Xy,,13. For each k € IN we define the functional Sy, on £(X5) by the rule
Si(f) = Se(nf), f € E(Xy). Tt is obvious that Sy, € £*(X5) and Si(f) = Sk(f), f € £(X3). We
note that since for each f € £(X;) (A+ B)(f) = (A+ B)(f), then the functionals (4 + B)*S}
and (A+B) Sp(k=1,2,. ..) coincide on (X7 ). Taking into consideration that £(X}) is dense
in £(X;), we obtain that (A + B)*S}, is the unique continuation of the functional (A + B)*Sj
on £(X,).

Let us show that the functionals (A + B)*S) converge in £*(X;). We first note that the
sequence ((A + B)*S;)$, is fundamental in £*(X;). Indeed, let B be an arbitrary bounded
domain in £(X;) and

B°={Fec&(X):|F(f)|<1VfeB}
are its polar. We take a function w € £(R") with the support in X 92,m+4 + supp p such that
0 Sw(z) < 1lforallz € R" and w(z) =1 for z € Xomys 4+ supp p. Since the supports of

the functionals Sk lie in X 2.m+2, the supports of the functionals (A + B) Sk are contained in
X, m+2 +supp p. This is why for each f € 5(X1) and all £,m € IN we have that

(A+B)S)(f) = (A+ B)"Sw)(f) = (A+ B)"Sp)(wf) = (A + B)"S)(wf).

We can consider w f as an element of £(X) by letting (wf)(z) = 0forz € X; \ (Xg,m+4 + supp p).
Then

(A+B)S)(f) = (A+ B)"Su)(f) = (A+ B)"Se)(wf) — (A + B)*S)(wf).
We note that the set wB = {wf : f € B} is bounded in £(X;). Since the sequence ((A +
B)*Sy)52, converges in £%(X1), it is fundamental in £%(X). This is why there exists N € IN such

that for all natural numbers k,m > N andg € wB we have |((A+B)*Sk)(9)—((A+B)*Sn)(g)] <
1. Therefore, for all natural numbers k,m > N and f € B we obtain

(A+B) Si)(f) = (A+ B)"Su)(f) < 1.

This means that for all natural numbers k,m > N and f € B we get (A+B)* Sk—((A—i-B) S €
B°. Thus, we have proved that the sequence ((A+ B)* Sk) 7y is fundamental in £*(X,). Finally,
since 5*(X1) is complete, we obtain that the sequence ((A+B)*S;)32, converges to some £*(X;)
inT e S*(Xl) But (A + B)* (5*(X2)) is closed in £*(X;). Therefore, there exists a functional
S € £%(X,) such that T = (A + B)*S. Let S be the restriction of S on £(X5). Then for each
f € £(X1) we have T(f) = T(f). Indeed,

7(f) = lim (A + B (S0)(f) = lim Su((A+ B)f) = lim Su((4+ B)S)

k—o00
= lim S((A+ B)f) = lim ((A+ B)"Sp)(f) = T(f).
k—o0 k—o0
Together with the following chain of the identities
T(f) = lim ((A+ BY'(S)(f) = (A + B (8)(f) = 5(A + B))
=S((A+B)f) = S(A+B)f) = (A+ B)S)(f)
this implies that 7" = (A+ B)*S. Thus, the image of the operator (A+ B)* is closed in £*(X3).
Therefore, the image of the operator A+ B is closed in £(X5).
Now we are going to prove that the image of the operator A + B is dense in £(X3). This

will be done once we prove that an arbitrary functional S € £*(X3) such that S((A+B)f) =0
for all f € £(X7) is the zero functional. We assume the opposite. Then the support of S is
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non-empty. Let N be the order of the distribution S and § > 0 is so small that (supp S)° € X».
Then there exists a constant ¢s > 0 such that

‘S<g)‘ < C5H9H(supp$)5,N7 g€ 5<X2)

By inequality this yields that there exists a convex compact set V' C int (supp i), a number
Ny € Z., depending on ch (supp S) and a constant Cs > 0 such that for each f € £(X7)

’(B*S)(f)’ < CKSHchh(suppS)+V,N1'

Therefore, the support of the functional B*S is contained in ch (suppS) + V. On the other
hand, the identity B*S = —u % S and the theorem on supports [6, Thm. 4.3.3],

ch (supp B*S) = ch (supp S) + supp p.

Thus, ch (supp S) + supp i C ch (supp S) + V. But this inclusion is impossible since the convex
compact set V' is contained in the interior of the support of p. Therefore, the assumption that
S is a non-zero functional is wrong. Thus, S = 0. This means that the image of A+ B is dense
in £(X3). This completes the proof of the theorem.

4. EXAMPLE OF OPERATOR B

Let p € &'(R™) is the invertible distribution and supppu = D(1). The distribution with
such properties can be constructed, see, for instance [8, Thms. 1, 3, 4]. Let Xy, = D(1),
X7 =D(2),and A: E(X;) — £(X3) be the convolution operator acting by the rule (Af)(z) =

e

(1= f)(z), = € X;. We take the function b € £(R?") with the support in D(1) x D(3).
define the operator B : £(X;) — £(X3) by the rule

BN = [ b
(B)) =0,

1
47

—~

2,8 f(x+&) dE, ] <

< |lz|| < 1.

| =

Let K be a convex compact set in Xy and 7 := dist (K, 0X5). Let us show that there exists a
convex compact set V' C int (supp ) such that for all € € (0,v) and Ny € Z, there exists a
constant ¢ = ¢(g, N3) > 0 such that

1Bf e ny < Cllfllgivo» f€EX).

It is obvious that for each € € (0,v) and each N, € Z. there exists a constant C' > 0 depending
on b and N, such that for each f € £(X;) we have

1Bk me = 1Bl eerpmyme S Cillfl ey no (9)
If v € (0,2), by (9) we get

||Bf”K5,N2 < Cl”f”[(v.ﬁ,_@p = CleHK-‘,-D('y—&—%),O

Therefore, in this case we can let V = D(y+ ). If v € [3,1], then K C D(3) and by (9) we
obtain

1B

Thus, as v € [2,1], we can let V = D(3).
Thus, by Theorem the operator A+ B : £(X;) — £(X3) is surjective.

K¢,No < Ol”f”D(%)’O < Ol”‘f”KJrD(%),O'
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