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ON ABSOLUTE CESÁRO SUMMABLITY OF

FOURIER SERIES FOR ALMOST PERIODIC FUNCTIONS

WITH LIMITING POINTS AT ZERO

YU.KH. KHASANOV

Abstract. In the paper we establish some tests for absolute Cesáro summability of the
Fourier series for almost periodic functions in the Besicovitch space. We consider the case,
when the Fourier exponents have a limiting point at zero and as a structure characteristics
of the studied function, we use a high order averaging modulus.
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1. Introduction

The scalar series
∞∑︁
𝑛=0

𝑎𝑛

is called absolute summable by Cesáro method of order 𝛼, (−1 < 𝛼 < ∞) or |𝐶, 𝛼|-summable
if

∞∑︁
𝑛=1

|𝜎𝛼
𝑛 − 𝜎𝛼

𝑛−1| < ∞,

where

𝜎𝛼
𝑛 =

∞∑︁
𝑘=0

(𝐴𝛼
𝑛)−1𝐴𝛼

𝑛−𝑘𝑎𝑘 (𝑛 = 1, 2, · · · ), 𝐴𝛼
𝑛 =

(𝛼 + 1)(𝛼 + 2) · · · (𝛼 + 𝑛)

𝑛!
.

The works devoted to the absolute Cesáro summability of arbitrary orthogonal series and, in
particular, of Fourier series, appeared first in the beginning of 60s in the previous century and
belonged mostly to Soviet and Hungarian mathematicians [1]–[6]. The main results of these
studies can be found in works [5] and [7].

By the trigonometric system of a 2𝜋-periodic function 𝑓(𝑥) ∈ 𝐿2 with the Fourier series
∞∑︁
𝑛=0

(𝑎𝑛 cos𝑛𝑥 + 𝑏𝑛 sin𝑛𝑥),

L. Leindler [1] established some sufficient conditions for |𝐶, 𝛼|-summability of Fourier series for
various values 𝛼 > −1. In the same work there were established similar results for the series
over arbitrary orthonormal systems of functions {𝜙(𝑥)} defined on a finite interval [𝑎, 𝑏]. A
particular case of the Leindler’s results corresponding to |𝐶, 1|-summability almost everywhere
of the Fourier series was established in work by K. Tandori [2].
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Analogues of the Leindler’s results for functions 𝑓(𝑥) ∈ 𝐿𝑝, (1 < 𝑝 6 2) in general construc-
tive or structural terms were considered in works by M.F. Timan [3] and L.V. Grepachevskaya
[5]. The authors established that in the case of monotonous Fourier coefficients, the consid-
ered conditions are also necessary. As 𝛼 = 0, 𝑝 = 2, the results by L.V. Grepachevskaya [5]
were obtained by S.B. Stechkin [4]. We also mention that L.V. Grepachevskaya [5] established
the necessity of |𝐶, 𝛼|-summability of Fourier series over Rademacher system in the case of
monotonous coefficients.

In the present work we provide some sufficient conditions of absolute Cesáro summability of
Fourier series for almost periodic in the Besicovitch sense functions.

By 𝐵𝑝, (1 6 𝑝 < ∞), we denote the space of almost periodic Besicovitch functions with the
norm

‖𝑓‖𝐵𝑝
=
{︀
𝑀 [ |𝑓(𝑥)|𝑝]

}︀1/𝑝
=

⎧⎨⎩ lim
𝑇→∞

1

2𝑇

𝑇∫︁
−𝑇

|𝑓(𝑥)|𝑝 𝑑𝑥

⎫⎬⎭
1/𝑝

< ∞, 1 6 𝑝 < ∞.

The definitions and main properties of the functions in the space 𝐵𝑝, (1 6 𝑝 < ∞), can be
found in works [9] or [10].

Assume that the Fourier series of almost periodic in the Besicovitch sense functions is of the
form

𝑓(𝑥) ∼
∞∑︁
𝑛=0

𝐴𝑛𝑒
𝑖𝜆𝑛𝑥, (1)

where

𝐴𝑛 = lim
𝑇→∞

1

2𝑇

𝑇∫︁
−𝑇

𝑓(𝑥)𝑒−𝑖𝜆𝑛𝑥𝑑𝑥

are the Fourier coefficients of functions 𝑓(𝑥) ∈ 𝐵𝑝, and {𝜆𝑛}, (𝑛 = 1, 2, . . .) are Fourier expo-
nents (or the spectrum of the function).

Some sufficient conditions of absolute Cesáro summability of Fourier series of functions 𝑓(𝑥) ∈
𝐵𝑝, (𝑝 > 1), we studied in works [7], [11], [12]. In contrast to periodic functions, in the case
of almost periodic functions the required conditions are imposed not only for the smoothness
of the functions but also on the behavior of the spectrum of the considered function {𝜆𝑛},
(𝑛 = 1, 2, . . .). This is why we consider two cases: the spectrum of the function (the Fourier
exponents) has the only accumulating point at infinity or at zero. In work [7], some tests for the
absolute Cesáro summability of Fourier series of functions 𝑓(𝑥) ∈ 𝐵2 were established, when
its spectrum has the only accumulating point at the infinity:

𝜆−𝑛 = −𝜆𝑛, |𝜆𝑛| < |𝜆𝑛+1| (𝑛 = 1, 2, . . .); lim
𝑛→∞

|𝜆𝑛| = ∞.

The present note is a continuation of work [7] for series of form (1), when the Fourier expo-
nents tend to zero, more precisely,

𝜆−𝑛 = −𝜆𝑛, |𝜆𝑛| < |𝜆𝑛−1| (𝑛 = 1, 2, · · · ); lim
𝑛→∞

|𝜆𝑛| = 0. (2)

At that, as a structural characteristics of the properties of the functions we use the quantity
𝑊𝑘(𝑓 ;𝐻)𝐵2 , which is the modulus of average of order 𝑘 for function 𝑓(𝑥) ∈ 𝐵2 on (−∞,∞):

𝑊𝑘(𝑓 ;𝐻)𝐵2 = sup
𝑇≥𝐻

‖𝑓𝑇𝑘(𝑥)‖𝐵2
, (3)

where 𝐻 > 0, 𝑘 ∈ N,

𝑓𝑇𝑘(𝑥) = (2𝑇 )−𝑘

𝑥+𝑇∫︁
𝑥−𝑇

𝑑𝑡1

𝑡1+𝑇∫︁
𝑡1−𝑇

𝑑𝑡2 . . .

𝑡𝑘−2+𝑇∫︁
𝑡𝑘−2−𝑇

𝑑𝑡𝑘−1

𝑡𝑘−1+𝑇∫︁
𝑡𝑘−1−𝑇

𝑓(𝑡𝑘)𝑑𝑡𝑘.
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One can check that as 𝑘 = 1, the quantity 𝑊𝑘(𝑓 ;𝐻) possesses all properties similar to the
properties of modulus of continuity 𝜔1(𝑓 ;ℎ):

1. 𝑊 (𝑓 ;𝐻) decreases monotonically as 𝐻 → +∞.
2. If 𝑛 is a natural number, then

𝑊 (𝑓 ;𝑛𝐻) 6 𝑛𝑊 (𝑓 ;𝐻),

and 𝜆 is an arbitrary positive number, then

𝑊 (𝑓 ;𝜆𝐻) 6 (𝜆 + 1)𝑊 (𝑓 ;𝐻).

3. The function 𝑊 (𝑓 ;𝐻) is semi-additive, that is, for all 𝑇1 > 0, 𝑇2 > 0,

𝑊 (𝑓 ;𝑇1 + 𝑇2) 6 𝑊 (𝑓 ;𝑇1) + 𝑊 (𝑓 ;𝑇2).

4. The function 𝑊 (𝑓 ;𝐻) is continuous on the interval 0 < 𝐻 < ∞.
We note that the quantity 𝑊𝑘(𝑓 ;𝐻)𝐵𝑝 was employed earlier in studying the tests for the

absolute convergence of the Fourier series of functions 𝑓(𝑥) ∈ 𝐵𝑝, (1 6 𝑝 < ∞) (see, for
instance, [13]).

We shall make use of the following auxiliary statements, which were used in work [7].

Lemma 1. If the series
∞∑︁
𝑛=0

|𝑢𝑛|

converges, then as 0 < 𝛼 < 1, the series
∞∑︁
𝑛=1

(𝐴𝛼
𝑛)−1𝑢𝑛

is summable by |𝐶, 𝛼| method.

Lemma 2. Assume that a uniformly convergent sequence of measurable integrable on each
finite segment functions {𝑓𝑛(𝑥)} is such that
a) {𝑓𝑛(𝑥)} ∈ 𝐵2, 𝑛 = 1, 2, . . . ;
b) 0 6 𝑓1(𝑥) 6 𝑓2(𝑥) 6 . . . 6 𝑓𝑛(𝑥) 6 . . . ;
c) 𝑀{𝑓𝑛(𝑥)} 6 𝐾, (𝐾 is some constant independent of 𝑛).
Then there exists a function 𝑓(𝑥) ∈ 𝐵1 such that

lim
𝑛→∞

𝑓𝑛(𝑥) = 𝑓(𝑥), lim
𝑛→∞

𝑀{𝑓𝑛(𝑥)} = 𝑀{𝑓(𝑥)}

almost everywhere.

Proof. Let 𝜀 > 0 be an arbitrary number and 𝑁(𝜀) be such that

sup
−∞<𝑥<∞

|𝑓(𝑥) − 𝑓𝑁(𝑥)| < 𝜀

3
.

If 𝜏 is the 𝜀
3
-almost period of function 𝑓𝑁(𝑥), then we have

|𝑓(𝑥 + 𝜏) − 𝑓(𝑥)| 6 |𝑓(𝑥 + 𝜏) − 𝑓𝑁(𝑥 + 𝜏)| + |𝑓𝑁(𝑥 + 𝜏) − 𝑓𝑁(𝑥)| + |𝑓𝑁(𝑥) − 𝑓(𝑥)| < 𝜀.

Since the set of 𝜀
3
-almost-periods of the function 𝑓𝑁(𝑥) is relatively dense and by the last

inequality each 𝜀
3
-almost period of the function 𝑓𝑁(𝑥) is the 𝜀-almost period of the function

𝑓(𝑥), it follows that
lim
𝑛→∞

𝑓𝑛(𝑥) = 𝑓(𝑥).

The proof of the second part of the lemma is implied immediately by the estimate

|𝑀{𝑓(𝑥)} −𝑀{𝑓𝑛(𝑥)}| 6 𝑀{|𝑓(𝑥) − 𝑓𝑛(𝑥)|} 6 sup
𝑥

|𝑓(𝑥) − 𝑓𝑛(𝑥)|.



ON ABSOLUTE CESÁRO SUMMABLITY OF FOURIER SERIES. . . 147

By means of Lemma 2 we establish the following statement, which was proved in work [7].

Lemma 3. If we are given a sequence of functions {𝜙𝑛(𝑥)} ∈ 𝐵1, (𝑛 = 1, 2, · · · ), and
𝜙𝑛(𝑥) > 0, (𝑛 = 1, 2, · · · ), almost everywhere, then the condition

∞∑︁
𝑛=1

𝑀{𝜙𝑛(𝑥)} < ∞

implies that the series
∞∑︁
𝑛=1

𝜙𝑛(𝑥)

converges almost everywhere.

2. Main results

Here we provide the main results of the paper. First we establish sufficient conditions for
|𝐶, 𝛼|-summability of Fourier series of functions 𝑓(𝑥) ∈ 𝐵2 for negative values of 𝛼. Namely,
we have the following statement.

Theorem 1. Assume that the spectrum Λ{𝜆𝑛}, (𝑛 = 1, 2, · · · ), of the function 𝑓(𝑥) ∈ 𝐵2

satisfies conditions (2) and 𝜆𝑛 = 𝑂(𝑛−𝛿) (𝛿 > 0). If as

0 < 𝛽 < 2, 0 6 𝛾 < 1, 𝑘 >
𝛾 + 1 − 𝛽/2

𝛽𝛿
, 𝜌 =

𝛾 + 1 − 𝛽/2

𝛿

we have
∞∑︁
𝑛=1

𝑛𝜌−1𝑊 𝛽
𝑘 (𝑓 ;𝑛)𝐵2 < ∞, (4)

then the series
∞∑︁
𝑛=1

|𝐴𝑛|𝛽

is summable by |𝐶,−𝛾| method.

Proof. Let
∞∑︁
𝑛=0

𝐴𝑛𝑒
𝑖𝜆𝑛𝑥

be the Fourier series of a function 𝑓(𝑥) ∈ 𝐵2. Since

1

(2𝑇 )𝑘

𝑥+𝑇∫︁
𝑥−𝑇

𝑑𝑡1

𝑡1+𝑇∫︁
𝑡1−𝑇

𝑑𝑡2 . . .

𝑡𝑘−2+𝑇∫︁
𝑡𝑘−2−𝑇

𝑑𝑡𝑘−1

𝑡𝑘−1+𝑇∫︁
𝑡𝑘−1−𝑇

𝑒𝑖𝜆𝑛𝑡𝑘𝑑𝑡𝑘 = 𝑒𝑖𝜆𝑛𝑥

{︂
𝑠𝑖𝑛𝜆𝑛𝑇

𝑖𝜆𝑛𝑇

}︂𝑘

,

the series
∞∑︁
𝑛=1

𝐴𝑛𝑒
𝑖𝜆𝑛𝑥

{︂
𝑠𝑖𝑛𝜆𝑛𝑇

𝑖𝜆𝑛𝑇

}︂𝑘

,

is the Fourier series for the function 𝑓𝑇𝑘(𝑥).
Applying Parseval identity, we obtain⎧⎨⎩

∞∑︁
𝑛=1

⃒⃒⃒⃒
⃒𝐴𝑛

{︂
sin𝜆𝑛𝑇

𝑖𝜆𝑛𝑇

}︂𝑘
⃒⃒⃒⃒
⃒
2
⎫⎬⎭

1
2

= ‖𝑓𝑇𝑘(𝑥)‖𝐵2
. (5)

Let Λ{𝜆𝑛}, (𝑛 = 1, 2, · · · ). Then

𝑁𝜈 = {𝑛 : 2−𝜈𝜋 6 𝜆𝑛 6 2−(𝜈−1)𝜋}
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and 𝑚(𝑁𝜈) stands for the exponents {𝜆𝑛} in the set 𝑁𝜈 for each fixed 𝜈. Then for 𝜈 = 0, thanks
to Hölder inequality, we have

∑︁
𝑛∈𝑁𝜈

|𝐴𝑛|𝛽 6 {𝑚(𝑁𝜈)}1−
𝛽
2 ·

{︃∑︁
𝑛∈𝑁𝜈

|𝐴𝑛|2
}︃𝛽

2

. (6)

By the assumption of the theorem we have 𝜆𝑛 = 𝑂(𝑛−𝛼) (𝛼 > 0) and therefore,

𝐾1 ·
1

2𝜈+1
6

1

𝑛𝛼
6 𝐾2 ·

1

2𝜈
,

or

𝐾1 6 𝑛𝛼 6 𝐾22
𝜈+1,

where 𝐾1 > 0, 𝐾2 > 0 are some constants. Therefore, 𝑚(𝑁𝜈) = 𝑂{2𝜈/𝛼} uniformly in 𝜈.
Since

𝜋

2𝜈+1
6 𝜆𝑛 6

𝜋

2𝜈
,

it follows that
𝜋𝑇

2𝜈+1
6 𝜆𝑛𝑇 6

𝜋𝑇

2𝜈
.

Letting 𝑇 = 2𝜈−1, we obtain that 𝜆𝑛𝑇 6 𝜋
2
. It yields

sin𝜆𝑛𝑇 >
2

𝜋
𝜆𝑛𝑇.

Hence, by (5) we get the estimate{︃∑︁
𝑛∈𝑁𝜈

|𝐴𝑛|2
}︃ 1

2

⪯ 𝑊𝑘(𝑓 ; 2𝜈)𝐵2 . (7)

Since 𝑚(𝑁𝜈) = 𝑂{2𝜈/𝛼}, by means of estimate (7) we rewrite inequality (6) as∑︁
𝑛∈𝑁𝜈

|𝐴𝑛|𝛽 ⪯ 2
𝜈
𝛼
(1−𝛽

2
)𝑊 𝛽

𝑘 (𝑓 ; 2𝜈)𝐵2 .

Let 𝛾 > 0. By Hölder inequality we have

∑︁
𝑛∈𝑁𝜈

|𝐴𝑛|𝛽𝑛𝛾 6

{︃∑︁
𝑛∈𝑁𝜈

𝑛2· 𝛾
2−𝛽

}︃1−𝛽
2

·

{︃∑︁
𝑛∈𝑁𝜈

|𝐴𝑛|2
}︃𝛽

2

⪯2
𝜈𝛾
𝛼 · 2𝜈· 1−𝛽/2

𝛼 ·𝑊 𝛽
𝑘 (𝑓 ; 2𝜈)𝐵2 = 2

𝜈
𝛼
(𝛾+1−𝛽

2
) ·𝑊 𝛽

𝑘 (𝑓 ; 2𝜈)𝐵2 .

Summing up this inequality over 𝜈, we find

∞∑︁
𝜈=1

∑︁
𝑛∈𝑁𝜈

|𝐴𝑛|𝛽𝑛𝛾 6
∞∑︁
𝜈=1

2
𝜈
𝛼
(𝛾+1−𝛽

2
) ·𝑊 𝛽

𝑘 (𝑓 ; 2𝜈)𝐵2 .

In view of the monotonicity of 𝑊𝑘(𝑓 ;𝐻)𝐵2 (𝐻 → ∞) we obtain

∞∑︁
𝑛=1

|𝐴𝑛|𝛽𝑛𝛾 ⪯
∞∑︁
𝑛=1

𝑛
𝛾+1−𝛽

2
𝛼

−1 ·𝑊 𝛽
𝑘 (𝑓 ;𝑛)𝐵2 .

By condition (4) and Lemma 1, the series
∑︀∞

𝑛=1 |𝐴𝑛|𝛽 is |𝐶,−𝛾|-summable. The proof is
complete.
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Theorem 2. Let the spectrum Λ{𝜆𝑛} (𝑛 = 1, 2, . . .) of a function 𝑓(𝑥) ∈ 𝐵2 satisfies condi-
tions (2) and 𝜆𝑛 = 𝑂(𝑛−𝛿) (𝛿 > 0). Then as −1 < 𝛼 < 1

2
, the condition

∞∑︁
𝜈=0

2𝜈( 1
2
−𝛼)𝑊𝑘(𝑓 ;𝜆−1

2𝜈 )𝐵2 < ∞; (8)

as 𝛼 = 1
2
, the condition

∞∑︁
𝜈=0

2−𝜈𝑊𝑘(𝑓 ;𝜆−1
2𝜈 )𝐵2 < ∞; (9)

as 𝛼 > 1
2
, the condition

∞∑︁
𝜈=0

2−𝜈(ln 2𝜈)−1/2𝑊𝑘(𝑓 ;𝜆−1
2𝜈 )𝐵2 < ∞, (10)

imply |𝐶, 𝛼|-summability of the series

∞∑︁
𝑛=0

𝐴𝑛𝑒𝑥𝑝(𝑖𝜆𝑛𝑥). (11)

Proof. We consider the series

∞∑︁
𝑛=1

|𝜎𝛼
𝑛(𝑥) − 𝜎𝛼

𝑛−1(𝑥)| =
∞∑︁
𝑛=1

(𝑛𝐴𝛼
𝑛)−1

⃒⃒⃒⃒
⃒

𝑛∑︁
𝑘=1

𝐴𝛼−1
𝑛−𝑘𝑘𝐴𝑘𝑒𝑥𝑝(𝑖𝜆𝑘𝑥)

⃒⃒⃒⃒
⃒ , (12)

where 𝜎𝛼
𝑛(𝑥) are 𝑛-th Cesáro means of order 𝛼, (𝛼 > −1) and 𝐴𝑘 are the Fourier coefficients of

a function 𝑓(𝑥) ∈ 𝐵2.
According to Lemma 3, to prove the almost everywhere convergence of series (12), it is

sufficient to establish the convergence of the series

𝐺(𝑓 ;𝛼) =
∞∑︁
𝑛=1

𝑀{|𝜎𝛼
𝑛(𝑥) − 𝜎𝛼

𝑛−1(𝑥)|}. (13)

It is known [7] that

𝐺(𝑓 ;𝛼) 6
∞∑︁
𝜈=0

2−𝜈(𝛼+ 1
2
)

{︃(︃
2𝜈−1∑︁
𝑛=1

2𝜈+1−1∑︁
𝑘=2𝜈

+
2𝜈+1−1∑︁
𝑛=2𝜈

2𝜈+1−1∑︁
𝑘=𝑛

)︃
𝑛2𝐴2

𝑛

(𝑛− 𝑘 + 1)2(1−𝛼)

}︃ 1
2

. (14)

1. If −1 < 𝛼 < 1
2
, then 2𝛼 < 1 or 2(1 − 𝛼) > 1. Hence, (see, for instance, [14]),

2𝜈+1−1∑︁
𝑘=2𝜈

(𝑘 − 𝑛 + 1)2(𝛼−1) < 𝐾, (15)

where 𝐾 is some constant. Therefore, by relation (14) for −1 < 𝛼 < 1
2

and inequality (15), we
obtain

𝐺(𝑓 ;𝛼) ⪯
∞∑︁
𝜈=0

2−𝜈(𝛼+ 1
2
)

𝜈∑︁
𝑘=0

2𝑘+1

⎧⎨⎩
2𝑘+1−1∑︁
𝑛=2𝑘

𝐴2
𝑛

⎫⎬⎭
1
2

.

Interchanging the order of the summation in the last inequality, we have

𝐺(𝑓 ;𝛼) ⪯
∞∑︁
𝜈=0

2−𝜈(𝛼− 1
2
)

{︃
2𝜈+1−1∑︁
𝑛=2𝜈

𝐴2
𝑛

}︃ 1
2

. (16)
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It follows from estimate (7) that

2𝜈+1−1∑︁
𝑛=2𝜈

𝐴2
𝑛 6 𝑊 2

𝑘 (𝑓 ;𝜆−1
2𝜈 )𝐵2

for each 𝜈 = 1, 2, . . ., or {︃
2𝜈+1−1∑︁
𝑛=2𝜈

𝐴2
𝑛

}︃ 1
2

6 𝑊𝑘(𝑓 ;𝜆−1
2𝜈 )𝐵2 . (17)

By inequality (16) and estimate (17) it follows that

∞∑︁
𝜈=0

2−𝜈(𝛼− 1
2
)

{︃
2𝜈+1−1∑︁
𝑛=2𝜈

𝐴2
𝑛

}︃ 1
2

⪯
∞∑︁
𝜈=0

2𝜈( 1
2
−𝛼)𝑊𝑘(𝑓 ;𝜆−1

2𝜈 )𝐵2 .

It follows from estimate (9) that series (13) converges almost everywhere. This means that
by Lemma 3 series (12) converges almost everywhere. Therefore, as −1 < 𝛼 < 1

2
, series (11) is

summable by |𝐶, 𝛼| method.
2. Let 𝛼 = 1

2
. Then by relation (14) we obtain

𝐺(𝑓 ;𝛼) ⪯
∞∑︁
𝜈=0

2−𝜈( 1
2
+ 1

2
)

{︃(︃
2𝜈−1∑︁
𝑛=1

2𝜈+1−1∑︁
𝑘=2𝜈

+
2𝜈+1−1∑︁
𝑛=2𝜈

2𝜈+1−1∑︁
𝑘=𝑛

)︃
𝑛2𝐴2

𝑛

𝑛− 𝑘 + 1

}︃ 1
2

=
∞∑︁
𝜈=0

2−𝜈

{︃
2𝜈+1−1∑︁
𝑛=1

𝑛2𝐴2
𝑛

}︃ 1
2

=
∞∑︁
𝜈=0

2−𝜈

⎧⎨⎩
𝜈∑︁

𝑘=0

2𝑘+1−1∑︁
𝑛=2𝑘

𝑛2𝐴2
𝑛

⎫⎬⎭
1
2

6
∞∑︁
𝜈=0

2−𝜈

𝜈∑︁
𝑘=0

2𝑘+1

⎧⎨⎩
2𝑘+1−1∑︁
𝑛=2𝑘

𝐴2
𝑛

⎫⎬⎭
1
2

6
∞∑︁
𝜈=0

{︃
2𝜈+1−1∑︁
𝑛=2𝜈

𝐴2
𝑛

}︃ 1
2

.

By applying the inequality [15]

∞∑︁
𝑛=1

𝑑𝛿𝑛 6 𝑐𝛽

∞∑︁
𝑛=1

𝑛−𝛿

(︃
∞∑︁
𝜈=𝑛

𝑑𝜈

)︃𝛿

, 0 < 𝛿 < 1, 𝑑𝑛 > 0,

we get

𝐺(𝑓 ;𝛼) ⪯
∞∑︁
𝜈=0

2−𝜈

{︃
2𝜈+1−1∑︁
𝑛=2𝜈

𝐴2
𝑛

}︃ 1
2

.

Estimate (17) implies

𝐺(𝑓 ;𝛼) ⪯
∞∑︁
𝜈=0

2−𝜈𝑊𝑘(𝑓 ;𝜆−1
2𝜈 )𝐵2

and by Lemma 1 and condition (9) this yields the |𝐶; 1
2
|-summability of series (11).

3. Assume that 𝛼 > 1
2
. Then 2 − 2𝛼 < 1. Thus, interchanging the order of summation and

applying of the estimate

2𝑚+1−1∑︁
𝜈=2𝑚

1

(𝑛− 𝜈 + 1)2(1−𝛼)
= 𝑂

(︁
2𝑚(𝛼+ 1

2
)
)︁
,

by (14) we obtain

𝐺(𝑓 ;𝛼) ⪯
∞∑︁
𝑛=0

2−𝑛(𝛼+ 1
2
)2𝑛(𝛼+ 1

2
)

{︃
2𝑛+1−1∑︁
𝜈=2𝑛

𝐴2
𝜈

}︃ 1
2

=
∞∑︁
𝑛=0

{︃
2𝑛+1−1∑︁
𝜈=2𝑛

𝐴2
𝜈

}︃ 1
2

.
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By applying the inequality [5]

∞∑︁
𝑛=0

(︃
2𝑛+1∑︁

𝑘=2𝑛+1

𝐴2
𝑘

)︃ 1
2

6 4 ·
∞∑︁
𝑛=2

(
∑︀∞

𝑘=𝑛𝐴
2
𝑘)

1
2

𝑛(ln𝑛)1/2

we get

𝐺(𝑓 ;𝛼) ⪯
∞∑︁
𝑛=2

𝑛−1(ln𝑛)−
1
2

(︃
2𝑛+1−1∑︁
𝜈=2𝑛

𝐴2
𝜈

)︃ 1
2

6
∞∑︁
𝜈=1

2−𝜈(ln 2𝜈)−
1
2𝑊𝑘(𝑓 ;𝜆−1

2𝜈 )𝐵2 .

By condition (10) this implies the almost everywhere convergence of series (13) that by Lemma 1
implies |𝐶, 𝛼|-summability of series (11) for 𝛼 = 1

2
. The proof of Theorem 2 is complete.
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