
ISSN 2304-0122 Ufa Mathematical Journal. Vol. 7. No 3 (2015). P. 28-37.

doi:10.13108/2015-7-3-28 UDC 517.518

ON PROPERTIES OF FUNCTIONS

IN EXPONENTIAL TAKAGI CLASS

O.E. GALKIN, S.YU. GALKINA

Abstract. The structure of functions in exponential Takagi class are similar to the
Takagi continuous nowhere differentiable function described in 1903. These functions have
one real parameter v and are defined by the series Tv(x) =

∑∞
n=0 v

n
T0(2

n
x), where T0(x)

is the distance from x ∈ R to the nearest integer. For various values of v, we study the
domain of such functions, their continuity, Hölder property, differentiability and concavity.
Providing known results and proving missing facts, we give the complete description of
these properties for each value of parameter v.
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1. Intorduction

Takagi function T (x) was introduced by T. Takagi in 1903 in work [1], where he showed that
T (x) is everywhere continuous and nowhere differentiable on R. This function can be defined
by the series

T (x) =
∞∑

n=0

1

2n
T0(2

nx), x ∈ R,

where T0(x) = |[x + 1/2] − x| = |{x + 1/2} − 1/2| = ρ(x,Z) is the distance between a point
x ∈ R and the nearest integer, [x] is the integer part of x, {x} is the fractional part of x.

Hata and Yamaguti [2, Sect. 2] replaced the sequence of the coefficients {1/2n} by an arbitrary
sequence of coefficients {cn} in the definition of Takagi function and obtained a new family of
function, which they called Takagi class.

The object of our study are real functions Tv depending on a parameter v. They belong to
a smaller family and are defined by the identity

Tv(x) =

∞∑

n=0

vnT0(2
nx), x ∈ R. (1)

We observe that as v = 0, function Tv(x) coincides with T0(x), while as v = 1/2, we obtain
Takagi function: T1/2(x) = T (x).

Since in the present case coefficients cn = vn depend on v by the exponential rule, the set of
functions (1), where v ∈ (−1; 1), will be called exponential Takagi class.

Takagi function and its generalizations are applied in various fields of mathematics, for in-
stance, in mathematical analysis, probability theory, number theory and others. A lot of
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publications is devoted to these functions and their number is growing. In particular, a lot of
interesting results and references were provided in surveys [3] and [4].

In the present work we study the properties of functions in the exponential Takagi class like
the domain, continuity, Hölder condition, differentiability, concavity. Recalling known results
and proving missing facts, we provide a complete description of these properties of functions Tv

for each value of parameter v. Each section of the paper is devoted to the property mentioned
in its title. In the last section the provided results are illustrated graphically.

2. Domain and continuity

As dyadic rational numbers (or points), we shall call numbers p/2k, where p ∈ Z, k ∈ N∪{0}.
Theorem 1. 1) If |v| < 1, then the series (1) defining function Tv(x) converges uniformly

in x ∈ R, its sum Tv(x) is continuous and |Tv(x)| 6 1/(2− 2|v|) for each x ∈ R.
2) If |v| > 1, then series (1) converges if and only if x is dyadic rational. At that, function

Tv(x) is discontinuous on the set of dyadic rational numbers.

To prove this theorem, we shall make use of the following lemma.

Lemma 1. Let v 6= 1/2, x be a dyadic rational point having the binary representation x =
. . . ,x1x2 . . . xm and N > m, where m,N ∈ N. Then

1) If v ∈ (−1; 1) and a number h ∈ [0; 2−N) has a binary representation h =
0, 0 . . . 0
︸ ︷︷ ︸

N

hN+1hN+2 . . ., then the identity

Tv(x+ h)− Tv(x) = h ·
(1− 2NvN

1− 2v
− 2

m∑

n=1

(2v)n−1xn

)

+ vNTv(2
Nh)

holds true.
2) The identity

Tv(x+ 2−N)− Tv(x) = 2−N
(
(1− 2NvN)/(1− 2v)− 2

m∑

n=1

(2v)n−1xn

)

holds true.

Proof of Lemma 1. 1) We observe first that for each number y having a binary representation
0,y1y2 . . ., the chain of identities

T0(0,y1y2 . . .) = T0(y) =

{
y as y1 = 0

1− y as y1 = 1
= y1 + (1− 2y1) · 0,y1y2 . . .

holds true. Employing these identities, the periodicity of function T0 and the identity x+ h =
. . . ,x1 . . . xm 0 . . . 0

︸ ︷︷ ︸

N−m

hN+1hN+2 . . ., we obtain

Tv(x+ h) =Tv(. . . ,x1x2 . . . xm 0 . . . 0
︸ ︷︷ ︸

N−m

hN+1hN+2 . . .)

=

m−1∑

n=0

vnT0(0,xn+1 . . . xm 0 . . . 0
︸ ︷︷ ︸

N−m

hN+1 . . .)

+

N−1∑

n=m

vnT0(0, 0 . . . 0︸ ︷︷ ︸

N−n

hN+1hN+2 . . .) +

∞∑

n=N

vnT0(0,hn+1hn+2 . . .)

=

m−1∑

n=0

vn(xn+1 + (1− 2xn+1) · 0,xn+1 . . . xm 0 . . . 0
︸ ︷︷ ︸

N−m

hN+1hN+2 . . .)
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+
N−1∑

n=m

vn · 0, 0 . . . 0
︸ ︷︷ ︸

N−n

hN+1hN+2 . . .+ vNTv(2
Nh).

Letting h = 0, we find:

Tv(x) =

m−1∑

n=0

vn(xn+1 + (1− 2xn+1) · 0,xn+1 . . . xm).

The difference of two latter identities gives

Tv(x+ h)− Tv(x) =

m−1∑

n=0

vn(1− 2xn+1) · 0, 0 . . . 0︸ ︷︷ ︸

N−n

hN+1hN+2 . . .

+

N−1∑

n=m

vn · 0, 0 . . . 0
︸ ︷︷ ︸

N−n

hN+1hN+2 . . .+ vNTv(2
Nh)

=

N−1∑

n=0

vn · 2nh− 2

m−1∑

n=0

vnxn+1 · 2nh+ vNTv(2
Nh)

=h ·
(
(1− 2NvN)/(1− 2v)− 2

m∑

n=1

(2v)n−1xn

)
+ vNTv(2

Nh).

2) If not only x is dyadic rational, but h is dyadic rational as well, then the series for Tv(x) and
Tv(x+h) have only a finite amount of non-zero terms and thus, the arguments of paragraph 1)
are true for each v 6= 1/2. Replacing N by N − 1, we apply these arguments for the case
h = 2−N = 0, 0 . . . 0

︸ ︷︷ ︸

N−1

1. In view of Tv(1/2) = 1/2 we obtain

Tv(x+ 2−N)− Tv(x) =2−N ·
(1− 2N−1vN−1

1− 2v
− 2

m∑

n=1

(2v)n−1xn

)

+ vN−1Tv(2
−1)

=2−N ·
(
(1− 2NvN)/(1− 2v)− 2

m∑

n=1

(2v)n−1xn

)
.

The proof is complete.

Proof of Theorem 1. 1) For |v| < 1 the uniform convergence of series (1) is implied by the
Weierstrass test, while the continuity of its sums is thanks to Weierstrass theorem and the
continuity of its terms. The estimate |Tv(x)| 6 1/(2− 2|v|) is yielded by the inequalities

|Tv(x)| 6
∞∑

n=0

|v|n|T0(2
nx)| 6

∞∑

n=0

|v|n/2 = 1/(2− 2|v|).

2) Let |v| > 1.
2a) We show first that if x is not dyadic rational, then series (1) diverges. In this case the

binary representation x = . . . ,x1x2 . . . xn . . . is non-periodic. This is why there exists a strictly
monotonically increasing sequence of indices {nk}k∈N such that xnk+1 = 0 and xnk+2 = 1 for
each k ∈ N. Therefore,

T0(2
nkx) = T0(0,xnk+1xnk+2 . . .) = 0,xnk+1xnk+2 . . . > 0,012 = 1/4.

Hence, |vnkT0(2
nkx)| > |vnk |/4 > 1/4, and the general terms of series (1) does not tend to zero

and the series diverges.
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If x is dyadic rational, then x = p/2m, where p is integer, m is non-negative integer. Therefore,
as n > m we have T0(2

nx) = T0(2
n−mp) = 0. Thus, series (1) contains only a finite amount of

non-zero terms and converges at point x.
2b) Let us show that for |v| > 1 function Tv is everywhere discontinuous on the set of dyadic

rational points x. Suppose that x has the binary represenation x = . . . ,x1x2 . . . xm. Then by
Statement 2 of Lemma 1 the identity

Tv(x+ 2−N)− Tv(x) = (2−N − vN)/(1− 2v)− 21−N
m∑

n=1

(2v)n−1xn

holds true for N > m. Therefore, the difference Tv(x+ 2−N)− Tv(x) does not tend to zero as
N → ∞, and function Tv is therefore discontinuous. The proof is complete.

Remark. 1) We note that function T0 is even on R, is 1-periodic and satisfies the identity
T0(1 − x) = T0(x). Moreover, T0(x) = x as x ∈ [0; 1/2] and T0(x) = 1 − x as x ∈ [1/2; 1].
This is why function Tv is also even on its domain, is 1-periodic and satisfies the identity
Tv(1− x) = Tv(x).

2) In the case |v| > 1 it follows from Paragraph 2b) of the proof of Theorem 1 that the
difference Tv(x+2−N)−Tv(x) tends to infinity as N → ∞ and hence, function Tv is unbounded
on any bounded interval in the set of dyadic rational numbers.

3) The simple result of Statement 1) of the theorem is provided for comparing with the result
of Statement 2).

3. Lipschitz and Hölder condition

3.1. As it follows from the results by K.G. Spurrier [5, Prop. 2.1.3], function Tv satisfies Hölder
condition with the exponent log2(1/|v|) on R for 1/2 < |v| < 1.

3.2. It follows from the results by Shidfar and Sabetfakhri [6] that function Tv satisfies Hölder
condition with each exponent in the interval (0; 1) on R for |v| = 1/2.

3.3. In the case |v| < 1/2 the following simple statement is true.

Theorem 2. As |v| < 1/2, function Tv satisfies Lipschitz condition on R.

Proof. Identity (1) implies the inequality:

|Tv(x)− Tv(y)| 6
∞∑

n=0

|v|n|T0(2
nx)− T0(2

ny)| for each x, y ∈ R.

By the estimate |T0(2
nx)− T0(2

ny)| 6 |2nx− 2ny| it follows that

|Tv(x)− Tv(y)| 6
∞∑

n=0

|v|n2n|x− y| = |x− y|/(1− 2|v|).

Therefore, function Tv satisfies Lipschitz condition.

4. Functional equation

4.1. It follows from the results by de Rham [7] that for each v ∈ (−1; 1) function Tv is the
unique bounded solution of the functional equation

y(x) = v · y(2x) + T0(x), x ∈ R. (2)

4.2. Hata and Yamaguti [8] showed that in the case v = 1/4 the identity

Tv(x) = T1/4(x) = 2(x− x2) as x ∈ [0; 1] (3)

holds true. To check this identity, one can substitute function (3) into functional equation (2).
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5. Differentiability

5.1. As it has already been mentioned in Introduction, for v = 1/2 function Tv(x) coincides
with Takagi function T (x) and this is why it is nowhere differentiable on R (see [1]).

5.2. As it follows from identity (3) and the periodicity of Tv(x), for v = 1/4 this function is
differentiable at all points x ∈ R except the integers.

5.3. As v = 0, function Tv coincides with function T0 and hence, it is differentiable at all points
x ∈ R except half-integers.

5.4. As 1/2 6 |v| < 1, it follows from Kôno theorem [9, Thm. 2] on functions in Takagi class
that function Tv is differentiable at none of points in R.

5.5. As |v| < 1/2, the same Kôno theorem [9, Thm. 2] implies that function Tv is differentiable
almost everywhere in R. This result can be specified as follows.

a) It follows from the results by K.G. Spurrier [5, Prop. 1.1.2] that for |v| < 1/2 function Tv

is differentiable in R at all the points not being dyadic rational.
b) In [10, Sec. A.1.2] Mandelbrot noted without the proof that in particular, for 0 < v < 1/2

and v 6= 1/4 function Tv has one-sided derivatives T ′
v(x±0) at all points in R. These derivatives

are different at dyadic rational points and coincides at other points. We prove the following
result being in accordance with these facts.

Theorem 3. 1) As 0 < |v| < 1/2, at each dyadic rational point with the binary representa-
tion x = 0,x1x2 . . . xm there exists one-sided derivatives T ′

v(x±0) = limh→+0(Tv(x±h)−Tv(x))/h
and the identities

T ′
v(x+ 0) =

1

1− 2v
− 2

m∑

n=1

(2v)n−1xn (4)

T ′
v(x− 0) =

1

1− 2v
− 2

m∑

n=1

(2v)n−1xn + 2mvm−11− 4v

1− 2v
as x /∈ Z, (5)

T ′
v(x− 0) = − 1

1 − 2v
as x ∈ Z (6)

hold true.
2) As 0 < |v| < 1/2 and v 6= 1/4, function Tv is not differentiable at dyadic rational points

in R.

Proof. 1) We begin with the proof of Statement 1).
1a) For each number h ∈ (0; 1/2m) one can choose natural number N = N(h) such that

2−N−1 6 h < 2−N . Then employing estimate in Statement 1) of Theorem 1, we obtain:

|vNTv(2
Nh)/h| 6|v|N/(2(1− |v|)h) = 2−N log

2
1/|v|/(2h(1− |v|))

6hlog
2
1/|v|/(2h(1− |v|)) = hlog

2
1/|2v|/(2(1− |v|)).

Since log2 1/|2v| > 0, we see that vNTv(2
Nh)/h → 0 as h → 0. Now by Statement 1 of Lemma 1

implies identity (4).
1b) As x ∈ Z, identity (6) follows identity (4) since by the periodicity and evenness we have

T ′
v(x− 0) = T ′

v(−x− 0) = −T ′
v(x+ 0).

1c) Let x /∈ Z. Without loss of generality we can assume that xm = 1 in the binary
representation x = . . . ,x1x2 . . . xm. Then, employing the expansion h = 0, 0 . . . 0

︸ ︷︷ ︸

N

hN+1hN+2 . . . ,
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we obtain
x− h = . . . ,x1 . . . xm−10 1 . . . 1︸ ︷︷ ︸

N−m

h̃N+1h̃N+2 . . . = x̃+ h̃,

where x̃ = . . . ,x1 . . . xm−10 1 . . .1︸ ︷︷ ︸

N−m

, h̃ = 0, 0 . . . 0
︸ ︷︷ ︸

N

h̃N+1h̃N+2 . . . = 2−N − h, h̃n = 1 − hn as

n = N + 1, N + 2, . . ..
We employ Statement 1) of Lemma 1 replacing there x by x̃, h by h̃, and m by N :

Tv(x− h)− Tv(x̃) =Tv(x̃+ h̃)− Tv(x̃)

=h̃ ·
(1− 2NvN

1− 2v
− 2

N∑

n=1

(2v)n−1x̃n

)

+ vNTv(2
N h̃)

=(2−N − h) ·
(1− 2NvN

1− 2v
− 2

m−1∑

n=1

(2v)n−1xn − 2

N−1∑

n=m+1

(2v)n−1
)

+ vNTv(2
Nh).

As h = 0, this identity implies:

Tv(x)− Tv(x̃) = 2−N ·
(1− 2NvN

1− 2v
− 2

m−1∑

n=1

(2v)n−1xn − 2

N−1∑

n=m+1

(2v)n−1
)

.

Deducting the former identity from the latter, we find:

Tv(x)− Tv(x− h) = h ·
(1− 2NvN

1− 2v
− 2

m−1∑

n=1

(2v)n−1xn − 2

N∑

n=m+1

(2v)n−1
)

− vNTv(2
Nh).

Since xm = 1, it follows that

Tv(x)− Tv(x− h) =h ·
(1− 2NvN

1− 2v
− 2m+1vm − 2N+1vN

1− 2v
+ 2mvm−1 − 2

m∑

n=1

(2v)n−1xn

)

− vNTv(2
Nh).

Letting h to tend to zero and employing the relation vNTv(2
Nh)/h → 0 from Paragraph 1a),

we find:

T ′
v(x− 0) = 1/(1− 2v) + 2mvm−1(1− 4v)/(1− 2v)− 2

m∑

n=1

(2v)n−1xn,

which is the desired identity.
2) It follows from the identities proven in Paragraph 1) that T ′

v(x − 0) 6= T ′
v(x + 0) for

0 < |v| < 1/2, v 6= 1/4 and dyadic rational x. This is why function Tv is differentiable at none
of dyadic rational point.

The proof is complete.

Example. By means of the formulae proven in the theorem, one can calculate, for instance,
that for v ∈ (0; 1/4), the biggest jump of the derivative at the points x = 1/4 and x = 3/4 is
for v = 1/2−

√
2/4 ≈ 0,146 and T ′

v(x+ 0)− T ′
v(x− 0) = 6− 4

√
2 ≈ 0,343, see Fig. 1.

6. Global maximum

6.1. For v = 1/2 the points of global and local extrema for function T1/2(x) = T (x) were found
by Kahane. In particular, he proved the following statement [11]:

Theorem (Kahane, 1959). The set of the points at which Takagi function attains it
global maximum equal to 4/3 is the set of points having the binary representation x =
. . . , x1x2 . . . xn . . . and satisfying the condition x2k+1 + x2k+2 = 1 for k = 0, 1, . . ..
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Further results on local extrema and level sets of Takagi function can be found in sur-
veys [3], [4] and work [14].

6.2. For v = 1/
√
2 it follows from the results of work [12, Lm. 5] that the global maximum of

function Tv is equal to (2 +
√
2)/3 and on the segment [0; 1] is attained at two points: 1/3 and

2/3.

6.3. Tabor and Tabor obtained formula for the global maxima of functions Tvn on R for some
sequence {vn}. In terms of our notations their result [13, Thm. 3.1] can be formulated as
follows.

Theorem (Tabor and Tabor, 2009). For each n ∈ N by vn we denote the unique positive
solution to the equation 2v+4v2+. . .+2nvn = 1. Let Cv = 1/(1−(4v−1)log2v v) as v ∈ (1/4; 1/2).
Then

1) v1 = 1/2, sequence {vn} decreases and converges to 1/4.
2) max

x∈R
T1/4(x) = 1/2 = lim

v→1/4+0
Cv and max

x∈R
T1/2(x) = 2/3 = lim

v→1/2−0
Cv.

3) max
x∈R

Tvn(x) = Cvn for n ∈ N, n > 2.

6.4. For further exposition we shall need the following theorem on attaining a maximum by
functions Tv at the point 1/2.

Theorem 4. 1) For v ∈ [−1/2; 1/4], function Tv has the global maximum at the point 1/2
and its maximum is equal to 1/2.

2) For v ∈ (−1;−1/2) ∪ (1/4; 1), function Tv has no global maximum at the point 1/2.
3) For v ∈ [0; 1/4] and integer n > 0 functions

Sv,n(x) =

n∑

k=0

vkT0(2
kx)

have global maximum at the point 1/2 and this global maximum is equal to 1/2.

Proof. 1) We consider separately the cases v ∈ [−1/2; 0) and v ∈ [0; 1/4].
1a) For v ∈ [−1/2; 0) the function Fv(x) = T0(x) + vT0(2x) is non-negative on R. Moreover,

by identity (1) defining function Tv we obtain:

Tv(x) = T0(x) +
∞∑

k=0

v2k+1Fv(2
2k+1x).

Hence, since v < 0, and Fv(x) > 0, then Tv(x) 6 T0(x) 6 1/2. And since Tv(1/2) = 1/2, then
1/2 is the point of the global maximum of function Tv.

1b) Suppose that v ∈ [0; 1/4]. If x ∈ [0; 1], representation (1) of function Tv and formula (3)
yield the relations: Tv(x) 6 T1/4(x) = 2(x − x2) 6 1/2 = Tv(1/2). For other x the inequality
Tv(x) 6 Tv(1/2) is true due to the periodicity of function Tv. Hence, 1/2 is the point of global
maximum.

2) For v = 1/2 it follows from Kahane theorem (see Subsection 6.1) that 1/2 is not among
the points of global maximum of function Tv(x) = T (x).

As v 6= 1/2, v ∈ (−1;−1/2) ∪ (1/4; 1) it is sufficient to show that for some natural N the
inequality Tv(1/2 + 2−N) > Tv(1/2) holds true.

By Lemma 1 for x = 1/2 = 0,12 and m = 1 we have:

Tv(1/2 + 2−N) = 2−N
(
(1− 2NvN)/(1− 2v)− 2

)
= 2−N(4v − 1− 2NvN)/(1− 2v).

Therefore, for v ∈ (−1;−1/2) the inequality Tv(1/2+2−N) > Tv(1/2) holds true for sufficiently
large odd N ; and for v ∈ (1/4; 1), v 6= 1/2 this inequality holds true for all sufficiently large N .
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3) As v ∈ [0; 1/4], by the definition of function Sv,n and Statement 1) we have: Sv,n(x) 6

Tv(x) 6 1/2 = Sv,n(1/2). Therefore, for such v functions Sv,n have the global maximum at the
point 1/2.

7. Concavity on segment [0;1]

7.1. The following statement on concavity of functions Tv on the segment [0; 1] holds true.

Theorem 5. Functions Tv are concave on the segment [0; 1] as v ∈ [0; 1/4] and are not
concave as v ∈ (−1; 0) ∪ (1/4; 1).

Proof. 1) Let us show that for each v ∈ [0; 1/4] function Tv is concave, i.e., for each x, y ∈ [0; 1]
and α ∈ (0; 1) the inequality

Tv(αx+ (1− α)y) > αTv(x) + (1− α)Tv(y) (7)

holds true.
Since Tv(x) is the pointwise limit of the functions Sv,n(x) =

∑n
k=0 v

kT0(2
kx) as n → ∞, in

order to prove the concavity of Tv, it is sufficient to prove the concavity of functions Sv,n for
each n = 0, 1, 2, . . .. We shall do it by an induction in n.

As n = 0, function Sv,n(x) = T0(x) is obviously concave on [0; 1].
Suppose that function Sv,n is concave on [0; 1]. Let us show that Sv,n+1 is also concave on

[0; 1], i.e., for each x, y ∈ [0; 1] and α ∈ (0; 1) the inequality

Sv,n+1(αx+ (1− α)y) > αSv,n+1(x) + (1− α)Sv,n+1(y) (8)

holds true.
We consider three cases: a) 0 6 x 6 y 6 1/2; b) 1/2 6 x 6 y 6 1; c) 0 6 x < 1/2 < y 6 1.
a) Let 0 6 x 6 y 6 1/2. Since

Sv,n+1(x) =
n+1∑

k=0

vkT0(2
kx) = T0(x) + vSv,n(2x),

relation (8) is equivalent to the inequality

T0(αx+ (1− α)y) + vSv,n(α · 2x+ (1− α) · 2y) >αT0(x) + (1− α)T0(y)

+ v(αSv,n(2x) + (1− α)Sv,n(2y)).

This inequality is true by the concavity of functions T0 and Sv,n on the segment [0; 1].
b) Let 1/2 6 x 6 y 6 1. Then 0 6 1 − y 6 1− x 6 1/2. Replacing x by 1 − y, y by 1 − x,

α by 1 − α in inequality (8) and employing the identity Sv,n+1(t) = Sv,n+1(1 − t) (t ∈ R), we
obtain the desired relation.

c) We consider the last case 0 6 x < 1/2 < y 6 1. Without loss of generality, we can assume
that the point αx+ (1− α)y lies in the segment [0; 1/2].

We choose number β ∈ (0; 1) so that αx+ (1 − α)y = βx+ (1 − β) · 1/2. In order to do it,
we obviously should take β = (1/2− αx− (1− α)y)/(1/2− x).

Since y > 1/2, then β < (1/2− αx− (1− α) · 1/2)/(1/2− x) = α.
By the result of Paragraph a), function Sv,n+1 is concave on the segment [0; 1/2]. Hence,

Sv,n+1(αx+ (1− α)y) =Sv,n+1(βx+ (1− β) · 1/2)
>βSv,n+1(x) + (1− β)Sv,n+1(1/2)

=Sv,n+1(1/2)− β(Sv,n+1(1/2)− Sv,n+1(x)).

In accordance with Statement 1) of Theorem 4, as v ∈ [0; 1/4], the inequalities Sv,n+1(x) 6
Sv,n+1(1/2) and Sv,n+1(y) 6 Sv,n+1(1/2) hold true. In view of these inequalities and β < α, we
get the concavity for function Sv,n+1:

Sv,n+1(αx+ (1− α)y) >Sv,n+1(1/2)− α(Sv,n+1(1/2)− Sv,n+1(x))
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=αSv,n+1(x) + (1− α)Sv,n+1(1/2) > αSv,n+1(x) + (1− α)Sv,n+1(y).

2) As v ∈ (−1; 0), function Tv is not concave on the segment [0; 1] since

Tv(1/4) = T0(1/4) + vT0(1/2) = 1/4 + v/2 < 1/4.

Therefore, as x = 0, y = 1/2, α = 1/2, concavity condition (7) fails.
3) It remains to show that as v ∈ (1/4; 1), function Tv is not concave on the segment [0; 1].

Since in accordance with Statement 2) of Theorem 4 there is no global maximum at the point
1/2, for some x0 ∈ [0; 1] we have Tv(x0) > Tv(1/2). Then Tv(1 − x0) = Tv(x0) > Tv(1/2) and
as x = x0, y = 1− x0, α = 1/2, concavity condition (7) fails.

The proof is complete.

7.2. We also mention the result of Tabor and Tabor [13, Corollary 2.1] who proved that for
v ∈ [1/4, 1/2] functions Tv are (1, log2(1/v))–semi-convex, i.e., they satisfy the inequalities

Tv

(x+ y

2

)

6
Tv(x) + Tv(y)

2
+ |x− y|log2(1/v); x, y ∈ R.

8. Illustration of presented results

Here we illustrate the results of the work by the example of functions Tv for v = 0,146 and
v = −0,64.
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Figure 1. Figure 2.

Function y = T0,146(x) (its graph is given in Fig. 1) satisfies Lipschitz condition in R (see
Theorem 2). It is not differentiable at dyadic rational points and is differentiable at other points
(see Subsection 5.5). It has a global maximum 1/2 at point 1/2 (see Theorem 4). It is concave
on segment [0; 1] (see Theorem 5).

Function y = T−0,64(x) (see its graph in Fig. 2) satisfies Hölder condition with the exponent
log2(25/16) ≈ 0,644 in R (see Subsection 3.1). It is differentiable at none of the points in R

(see Subsection 5.4). It has no global maximum at point 1/2 (see Theorem 4). It is not concave
on the segment [0; 1] (see Theorem 5).
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Sense // Amer. Math. Monthly. 93:5, 375–376 (1986).
7. de Rham G. Sur un exemple de fonction continue sans dérivée // Enseign. Math. II. Sér 3. 71–72
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