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DIFFERENT TYPES OF LOCALIZATION

FOR EIGENFUNCTIONS OF SCALAR

MIXED BOUNDARY VALUE PROBLEMS

IN THIN POLYHEDRA

S.A. NAZAROV

Abstract. We construct asymptotics for the eigenvalues and eigenfunctions of the Laplace
operator in a thin polyhedron with parallel closely spaced bases and skewed narrow lateral
faces. On the bases we impose the Dirichlet conditions, while on the lateral faces the
Dirichlet or Neumann conditions are imposed. Their distribution over the faces, as well as
the slope of the latter, significantly affect the behavior of eigenfunctions when the domain
becomes thinner. We find situations, in which the eigenfunctions are distributed along the
entire polyhedron and localized near its lateral faces or vertices. The results are based on
the analysis of the spectrum (cut–off point, isolated eigenvalues, threshold resonances, etc.)
of auxiliary problems in a half–strip and a quarter of a layer with skewed end and lateral
sides, respectively. We formulate open questions concerning both spectral and asymptotic
analysis.

Keywords: Laplace operator, mixed problem in thin polyhedron, asymptotics for eigen-
values, localization of eigenfunctions, essential and discrete spectrum of problems in infinite
domains.
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1. Introduction

1.1. Prelude. The eigenfunctions of the Dirichlet problem for the Laplace operator in a
“flattened pyramidal” polyhedron are localized near the vertex furthest from the flat base, see
Fig. 1. This result was obtained in paper [1] and it joins the results of the works [2]–[6]
on thin domains of varying width. In the present paper we study the eigenfunctions of mixed
boundary value problems in thin polyhedra with parallel bases and skewed narrow lateral faces,
see Figs. 2a and 3a. On the bases we impose the Dirichlet condition, while on the lateral faces
we impose either the Dirichlet or Neumann condition. Depending on the particular choice, one
or another localization of eigenfunctions is realized or the absence of localization. Namely, we
describe the situations, in which several first eigenfunctions are localized respectively near the
edges or angles of thin plate or they are distributed along the entire plate. The absence of
localization of eigenfunctions or its characteristics are determined by the properties of spectra
(presence of localized eigenvalues and threshold resonances) of model problems on pointed
semi–infinite strip (hereafter, semi–strip) or a quarter of layer with a skewed lateral surface,
which are considered in Section 2. While the flat problem has already been completely studied
(see [7]–[9] and other works), the known results for the spatial problem are fragmentary (see
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a) b)

Figure 1. Pyramidal polyhedra

[10]–[12]), and in what follows for the completeness we choose the geometric shape, see Fig. 3,
which requires an independent study, in particular, it allows us to point out new approaches
for analysis of the discrete spectrum.
The choice of particular thin polyhedra is motivated by the possibility of constructing from

them thin–walled boxes and cubes1, see Fig. 2b and 4b. It should be stressed that the thin–
walled constructions appears everywhere, however, no full studies were made. The scalar Neu-
mann problems are rather simple, while the vector problems of elasticity theory are very com-
plicated. The scalar Dirichlet problem considered in the paper [12] and in the present work
has an intermediate position. We note that the localization effect in constructions from [12]
was first of all achieved by varying the widths of various elements (partition walls), but for the
box the localization appears for the constant width of all walls due to the slope of walls with
the Neumann conditions in an auxiliary polyhedron, Fig. 2a. We succeed to find, and, what is
important, to justify rigorously the phenomenon of edge localization of eigenfunctions, which
just was discussed in [12]. Finally, the results of [10], [11] allows one, by the scheme presented
in Section 5, to verify that the first eight eigenvalues of the Dirichlet problem in the thin–walled
cube are concentrated near its vertices, see Fig. 3.

1.2. Formulation of first group of problems. The mixed spectral problem

−∆𝑥𝑢
𝜀(𝑥) = 𝜆𝜀𝑢𝜀(𝑥), 𝑥 ∈ Ω𝜀, (1.1)

𝑢𝜀(𝑥) = 0, 𝑥 ∈ Γ𝜀𝐷, (1.2)

𝜕𝜈(𝑥)𝑢
𝜀(𝑥) = 0, 𝑥 ∈ Γ𝜀𝑁 := 𝜕Ω𝜀 ∖ Γ𝜀𝐷, (1.3)

is posed in a thin polyhedra

Ω𝜀 = {𝑥 = (𝑦, 𝑧) : 𝑦1 = 𝑥1 ∈ (−1, 1), |𝑦2| = |𝑥2| < 1− 𝑧, 𝑧 = 𝑥3 ∈ (0, 𝜀)}, (1.4)

see Fig. 1a. Here 𝜀 is a small positive parameter, ∇𝑥 = grad, ∆𝑥 = ∇𝑥 · ∇𝑥 is the Laplace
operator, 𝜕𝜈 = 𝜕𝜈(𝑥) is the derivative along the outward normal and

Γ𝜀𝑁 = {𝑥 ∈ 𝜕Ω𝜀 : 𝑧 ∈ (0, 𝜀)} (1.5)

or

Γ𝜀𝐷 = {𝑥 ∈ 𝜕Ω𝜀 : |𝑦1| < 1}. (1.6)

In the first case the Neumann conditions are imposed on the entire lateral surface of the
polyhedra Ω𝜀, while in the second case it is imposed only on two thin faces

Γ𝜀♯± = {𝑥 ∈ Ω𝜀 : 𝑦1 = ±1, |𝑦2| < 1, 𝑧 ∈ (0, 𝜀)}, (1.7)

perpendicular to the abscise axis. As the lower base of polyhedron (1.4) the square □1 =
(−1, 1)2 serves.

1In some sense they can interpreted as fragments of spatial quantum waveguides, cf. the monograph [13].
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a) b)

Figure 2. Thin polyhedron (a) and a box formed by four polyhedra (b)

a)
b)

c)

Figure 3. Thin polyhedron with differently skewed lateral faces (a) and its
sections parallel to the ordinate (b) and abscise axis (c)

1.3. First group of asymptotic results. One of the aims of work is to construct the
asymptotics for the eigenvalues

0 < 𝜆𝜀1 < 𝜆𝜀2 ⩽ 𝜆𝜀3 ⩽ . . . ⩽ 𝜆𝜀𝑚 ⩽ · · · → +∞ (1.8)

and associated eigenfunctions 𝑢𝜀1, 𝑢
𝜀
2, 𝑢

𝜀
3, . . . , 𝑢

𝜀
𝑚, . . . ∈ 𝐻1

0 (Ω
𝜀; Γ𝜀𝐷) of the problem (1.1)–(1.3) as

𝜀→ +0. The variational formulation of this problem is given by the integral identity [14], [15](︀
∇𝑥𝑢

𝜀,∇𝑥𝜓
𝜀
)︀
Ω𝜀 = 𝜆ℎ(𝑢𝜀, 𝜓𝜀)Ω𝜀 ∀𝜓𝜀 ∈ 𝐻1

0 (Ω
𝜀; Γ𝜀𝐷). (1.9)

Here ( · , · )Ω𝜀 is the natural scalar product in the Lebesgue space 𝐿2(Ω𝜀), scalar or vector, while
𝐻1

0 (Ω
ℎ; Γ𝜀𝐷) is the Sobolev space of functions obeying the Dirichlet condition (1.2).

The pairs {𝜆𝜀;𝑢𝜀𝑚} are called the eigenpairs of problem (1.1)–(1.3). The first eigenvalue is
simple, while the associated eigenfunction can be chosen positive in Ω𝜀 ∪ Γ𝜀𝑁 .
In the situation (1.6) the eigenvalues admit a simple asymptotic representation

𝜆𝜀(𝑝,𝑞) =
𝜋2

𝜀2
+
𝜋2

4

(︀
𝑝2 + 𝑞2

)︀
+ ̃︀𝜆𝜀(𝑝,𝑞), (1.10)

where ̃︀𝜆𝜀(𝑝,𝑞) is a small remainder, see Section 5.3. Of course, the eigenvalues (1.10) indexed

by the subscripts 𝑞 ∈ N := {1, 2, 3, . . . } and 𝑝 ∈ N0 := N ∪ {0} are to be regrouped into the
monotone sequence (1.8). The eigenfunctions becomes

𝑢𝜀(𝑝,𝑞)(𝑥) = sin
(︁
𝜋
𝑧

𝜀

)︁
cos

(︁𝜋
2
𝑝(𝑦1 − 1)

)︁
sin

(︁𝜋
2
𝑞(𝑦2 − 1)

)︁
+ ̃︀𝑢𝜀(𝑝,𝑞)(𝑥), (1.11)

with a small remainder ̃︀𝑢𝜀(𝑝,𝑞), see Section 3.5. It is easy to see that the leading terms in the

formulas (1.10) and (1.11) form an eigenpair of the problem (1.1)–(1.3) in the parallelepiped
Ω𝜀

□ = □1 × (0, 𝜀) ⊂ R3, where the separation of variables is possible.
The eigenpairs of the problem (1.1)–(1.3) acquires a completely different asymptotics struc-

ture in the case of the Neumann condition on the entire lateral surface (1.5), see Sections 4.1,
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a) b) c)

Figure 4. A thin truncacted pyramide (a), a thin–walled cube formed by six
pyramides (b), and its central section (c)

4.4, namely,

𝜆𝜀(𝑝,𝑗) =
Λ1

𝜀2
+
𝜋2

4
𝑝2 + ̃︀𝜆𝜀(𝑘,𝑗), (1.12)

𝑢𝜀(𝑝,𝑗)(𝑥) =
1

𝜀

∑︁
±

𝐾±
𝑝,𝑗𝑊1

(︁1∓ 𝑦2
𝜀

,
𝑧

𝜀

)︁
cos

(︁𝜋
2
𝑝(𝑦1 − 1)

)︁
+ ̃︀𝑢𝜀(𝑘,𝑗)(𝑥), (1.13)

where 𝐾±
𝑘,𝑗 are some coefficients, 𝑘 ∈ N, 𝑗 = 1, 2 and 𝑝 ∈ N0, while Λ1 ∈ (𝜋2/2, 𝜋2) is the

eigenvalue and the associated eigenfunction𝑊1 ∈ 𝐻1(Π) exponentially decaying at infinity (see
Sect. 2.1) of the auxiliary problem (2.1)–(2.3) on the pointed semi–strip

Π =
{︀
𝜂 = (𝜂1, 𝜂2) ∈ R2 : 𝜂2 ∈ (0, 1), 𝜂1 > 𝜂2}. (1.14)

The set (−1, 1) × Π is obtained by the formal passage to the limit 𝜀 = 0 after the following
rescaling of the ordinate and applicate:

𝑥 ↦→
(︀
𝑦1, 𝜂

±
1 , 𝜂

±
2

)︀
=

(︁
𝑦1,

1∓ 𝑦2
𝜀

,
𝑧

𝜀

)︁
. (1.15)

Owing to the definition (1.4) the result is independent of the subscript ± of the face

Γ𝜀± = {𝑥 : |𝑦1| < 1,±𝑦2 = 1− 𝑧, 𝑧 ∈ (0, 𝜀)}. (1.16)

The eigenfunctions (1.13) are localized in a small neighbourhood of narrow faces (1.16) and
they exponentially fast decay while going from the faces, see Section 4.3.
We stress that both formulas (1.11) are (1.13) provide just some non–normalized eigenfunc-

tions, but in the next sections we suppose that they obey the orthogonality and normalization
conditions (︀

𝑢𝜀𝑗 , 𝑢
𝜀
𝑘

)︀
Ω𝜀 = 𝛿𝑗,𝑘, 𝑗, 𝑘 ∈ N, (1.17)

where 𝛿𝑗,𝑘 is the Kronecker delta.

1.4. Brief review of known forms. A wide literature is devoted to the localization of
eigenfunctions of boundary value problems, see the works [1]–[6], [16]–[18], the review [19] and
many other publications. As it has been already mentioned, for thin domains with the Dirichlet
condition on one or both bases the concentration of eigenfunctions is observed near the height
with the maximal length, see Fig. 2a and 2b, while there are known shapes of domains, for
which the discussed phenomenon appears in a different way, see Fig. 2c–2f.
We note that in the paper [20] there was found a similar phenomenon of concentration of

modes of eigenoscillations of cylindrical elastic (homogeneous and isotropic) thin plates with
with rigidly fixed bases and a narrow side surface, which is free of external forces.
The choice of the polyhedron (1.4) is motivated by the following observation: the odd in the

case (1.5) and the even in the case (1.6) continuation of the eigenfunction from the horizontal
wall via the sides (1.16) and the repetition of this procedure for two formed vertical walls gives
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Figure 5. Localization near the height of maximal length (a and b). Localiza-
tion near two points or circumference (after rotation of section) (c), left end (d),
on the segment (e) and on a single cell (f). The dashed–dotted line indicates the
rotation axes under the admitted passage from flat figures to spatial bodies.

the associated with the same eigenvalue eigenfunction of the mixed boundary value in a thin
box, see Fig. 1b,

𝒦𝜀 =
(︀
□1 ∖□1−𝜀

)︀
× (−1, 1), (1.18)

where □𝑎 = {𝜂 = (𝜂1, 𝜂2) ∈ R2 : |𝜂𝑗| < 𝑎, 𝑗 = 1, 2} is the square with side 2𝑎. At the same
time on the outer and inner lateral surfaces of the box {𝑥 ∈ 𝜕𝒦𝜀 : |𝑦1| < 1} the Dirichlet
conditions are imposed, while on the ends

(︀
□1 ∖ □1−𝜀

)︀
× {±1} the Neumann or Dirichlet

condition is imposed. The asymptotic formulas obtained in Section 3 and Section 4 show that
eigenfunctions of the aforementioned problem in the thin–walled construction (1.18) can have
completely different behavior as 𝜀→ +0, namely, they can concentrate near the edges or appear
everywhere in the box.
The found options of distribution of eigenfunctions appear also in the Dirichlet problem for

the Laplace operator in a thin–walled (hollow) cube

𝒦𝜀 ∪
(︀
□1 ×

(︀
(−1,−1 + 𝜀) ∪ (1− 𝜀, 1)

)︀)︀
, (1.19)

whereby it primarily manifests a different method of localization, already mentioned in Section
1.1: the first eight eigenfunctions are concentrated near the vertices of the cube and decay
exponentially far from the vertices. This property of the eigenfunctions is derived using the
approach described in Section 5 on the base of the results in [10], [11] on the spectrum of the
Dirichlet problem in the «Fichera layer»⋃︁

𝑗=1,2,3

{𝜉 = (𝜉1, 𝜉2, 𝜉3) : 𝜉𝑗 < 1, 𝜉𝑘 > 0, 𝑘 = 1, 2, 3} ,

called similarly to the well–known Fichera angle [21]. For a detailed description of the reasons
for such near–vertex localization, a thin body will be formed in one of the sections, see Fig. 3a,
and in Section 2 we carry out a spectral analysis, namely, we determine the essential spectrum
and veirfy the non–emptiness of the discrete spectrum for a model boundary value problem on
a quarter of layer with differently skewed lateral edges

Ξ = {𝜉 = (𝜉1, 𝜉2, 𝜉3) : 𝜉1 > −𝜉3, 𝜉2 > 𝜉3, 𝜉3 ∈ (0, 1)}. (1.20)

We stress that the discrete spectrum is absent for the mixed boundary value problem on the
quarter of layer

Ξ⊔ = {𝜉 ∈ R3 : 𝜉1 > 0, 𝜉2 > 𝜉3, 𝜉3 ∈ (0, 1)} (1.21)

with one flat side, while the case of quarter of layer

Ξ∧ = {𝜉 ∈ R3 : 𝜉1 > 𝜉3, 𝜉2 > 𝜉3, 𝜉3 ∈ (0, 1)} (1.22)

with same skewed lateral faces is directly related with the thin–walled cube (1.19). The presence
of an eigenvalue in the discrete spectrum of the mixed boundary value problem in the domain
(1.22) was established in the work [11].
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1.5. Aggravation of localization effect. As it has been mentioned, we consider one more
domain, in which the problem (1.1)–(1.3) is posed. This polyhedron is shown on Fig. 3 and is
defined by the formula

Ω𝜀 = {𝑥 : |𝑦1| < 1 + 𝑧, |𝑦2| < 1− 𝑧, 𝑧 ∈ (0, 𝜀)}, (1.23)

while the set, on which the Neumann condition is imposed, is given by (1.5). We stress that
in contrast to (1.4), the pairs of sides (1.16) and (1.7) of the polyhedron (1.23) are located at
angles 𝜋/4 and 3𝜋/4 to the plane {𝑥 : 𝑧 = 0}. The quarter of layer (1.20) has the same angles
of the lateral faces, but for the quarter of layer (1.22) both angles are 𝜋/4.
In Section 5 we shall demonstrate that the eigenfunctions 𝑢𝜀1, . . . , 𝑢

𝜀
4 associated with the first

four eigenvalues in the sequence (1.8) feature the concentration in 𝑐𝜀–neighbourhoods of short
edges incident to the points

𝑃±+ = (±1,+1, 0), 𝑃±− = (±1,−1, 0), (1.24)

and the exponential decay far from them, while the eigenvalues have the asymptotics

𝜆𝜀𝑘 = 𝜀−2𝑀1 + ̃︀𝜆𝜀𝑘, 𝑘 = 1, . . . , 4, (1.25)

where 𝑀1 ∈ (0,Λ1) is the eigenvalue of the problem (2.13) in the infinite domain (1.20), see

Section 2.3, and ̃︀𝜆𝜀𝑘 is a small remainder, see Section 5.2. Due to the reasons mentioned in
Section 5.3, the author has no information about the eigenvalues {𝜆𝜀𝑘;𝑢𝜀𝑘} for 𝑘 > 4.

1.6. Preliminary description of results. In the next section we study mixed spectral
boundary value problem in the half–strip (1.14) and quarter of layer (1.20). While for the
planar problem all results presented in Section 2.1 are known, for the spatial problem, in
Sections 2.2–2.4 we have to prove the formula for the essential spectrum (Theorem 2.1), the
non–emptiness of the discrete spectrum (Theorem 2.2), as well as the exponential decay at
infinity of the eigenfunction (Theorem 2.3). We stress that the mentioned results is the key
point of the work and, as in the paper [12], they serve as the base for finding out the near–
vertex localization of eigenfunctions. However, in Section 2.5 we count all disadvantages of
the analysis of spatial problem being the obstacle for a complete study of the problem in the
polyhedron (1.23), in particular, we discuss the phenomenon of threshold resonance and its
influence on the asymptotic structures.
In Section 3 we provide asymptotic formulas for the spectral pairs of problem (1.1)–(1.3) in

the situation (1.6) including the spectral pairs of problem (3.3) in the square □1. The con-
struction and justification of asymptotics are traditional, see, for instance, [22]–[25], while the
passage from the Neumann conditions to the Dirichlet condition requires a modification of the
procedure. The calculations and arguing is presented in detail in Sectoin 3 for the reader’s
convenience and also as a preliminary material for clarifying the differences in constructing and
justifying the asymptotic formulas in further sections under the appearance of the localization
effect. We first construct a formal asymptotics and then provide the classical lemma 3.1 on
almost eigenvalues and eigenvectors, which is used for finding the eigenvalues of original prob-
lems with the constructed asymptotics, and finally, Lemma 3.2 allows us to establish the final
statements (Theorems 2.1 and 2.2) on asymptotic expansions of the eigenpairs {𝜆𝜀𝑚;𝑢𝜀𝑚}.
In Section 4 we study the spectrum of problem (1.1)–(1.3) in the situation (1.5), which fea-

tures the concentration of eigenfunctions near narrow faces (1.16) and this is reflected in change
of asymptotic ansätze, which now involve the eigenpair {Λ1;𝑊1} of the problem (2.1)–(2.3),
as well as the eigenpairs {𝜇𝑚; 𝑣𝑚} of the Neumann problem (4.1) for an ordinary differential
equation on the segment (−1, 1) ∋ 𝑦1. On one hand, the procedure of justification of asymp-
totics becomes simpler, since by imposing artificial boundary conditions on the central plane
{𝑥 : 𝑦2 = 0} of the body Ω𝜀 the eigenvalues become simple. On the other hand, the proof of
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Lemma 4.1 on convergence required a significant revision of the material from Section 3.4. Fi-
nally, in Section 4.5 we point out other series of eigenvalues with stable asymptotics, which are
constructed along the lines of Section 3, but with changes in arguing on imposing the boundary
conditions on the sides of square □1.
In Section 5 we provide asymptotic results on the problem (1.1)–(1.3) in the domain (1.23).

The near–vertex localization originates from the found in Section 2.3 point 𝑀1 in the discrete
spectrum of problem (2.13) in the quarter of layer (1.20). The presence of eigenpair {𝑀1;𝑉1}
simplifies essentially the asymptotic ansätze and the justification also becomes trivial thanks
to imposing the artificial boundary conditions on two symmetry planes of the body (1.23), see
Theorem 5.2 on the eigenvalues 𝜆𝜀1, . . . , 𝜆

𝜀
4. At the same time, because of the incompleteness

of spectral analysis of problem (2.13), cf. the comments in Section 2.5, we failed to get the
information about the eigenpairs with the indices 𝑚 > 4. Other open questions are discussed
in Section 5.3.
The methods and results of the asymptotic analysis carried out below admit various gen-

eralizations (of course, under understandable restrictions), namely, a variation in the number
of faces, solutions of dihedral angles and the distribution of boundary conditions (1.2) and
(1.3), as well as for second–order scalar equations in divergence form with smooth coefficients,
but such generalizations are left without attention for clarity and simplification of asymptotic
constructions and, of course, to facilitate the formulation of results.

2. Spectral problems in infinite domains

2.1. Auxiliary planar problem. In the half–strip (1.14) with a skewed end 𝛾 =
{︀
𝜂 : 𝜂2 ∈

(0, 1), 𝜂1 = 𝜂2} and lateral sides 𝜎𝑗 =
{︀
𝜂 : 𝜂2 = 𝑗, 𝜂1 > 𝑗}, 𝑗 = 0, 1, we consider the problem

−∆𝜂𝑊 (𝜂) = Λ𝑊 (𝜂), 𝜂 ∈ Π, (2.1)

𝑊 (𝜂) = 0, 𝜂 ∈ 𝜎 := 𝜎0 ∪ 𝜎1, (2.2)

𝜕𝜈(𝜂)𝑊 (𝜂) = 0 or 𝑊 (𝜂) = 0, 𝜂 ∈ 𝛾. (2.3)

The latter boundary conditions are denoted (2.3)𝑁 or (2.3)𝐷, respectively.
The continuous spectrum of both problems is the ray [𝜋2,+∞). The classical trick [26] shows

that the point spectrum of the Dirichlet problem (2.1)–(2.3)𝐷 is empty.
It is known that the discrete spectrum of the mixed boundary value problem (2.1)–(2.3)𝑁

consists of the single point Λ1 ∈ (0, 𝜋2); the approximate value 0.93𝜋2 was calculated in work
[27], while the existence and uniqueness was rigorously established in the works [7], [8], [16].

The corresponding eigenfunction𝑊1 ∈ 𝐻1
0 (Π;𝜎) decays at infinity with the rate 𝑂

(︀
𝑒−𝜂1

√
𝜋2−Λ1

)︀
and can be represented as (see, for instance, [28, Ch. 2]),

𝑊1(𝜂) = 𝜒(𝑟1)𝐶1𝑟
2
3
1 sin

2𝜙1

3
+ ̂︁𝑊1(𝜂), (2.4)

where 𝐶1 is the so–called intensity factor, (𝑟𝑗, 𝜙𝑗) ∈ R+× (0, (2𝑗+1)𝜋/4) is the system of polar

coordinates centered at the point 𝒫𝑗 = (𝑗, 𝑗) (Fig. 6a, 6b), 𝑗 = 0, 1, ̂︁𝑊1 ∈ 𝐻2(Π), 𝑊1(𝒫0) = 0
and 𝑊1(𝒫1) = 0, while 𝜒 ∈ 𝐶∞(R) is an etalon cut–off function,

𝜒(𝑟) = 1 for 𝑟 <
1

3
and 𝜒(𝑟) = 0 for 𝑟 >

2

3
. (2.5)

We note that near the point 𝒫0 the function 𝑊1 behaves as 𝐶0𝑟
2
0 sin(2𝜙) +𝑂(𝑟40), i.e., it turns

out to be smooth. We normalize the first eigenfunction in the space 𝐿2(Π)

‖𝑊1;𝐿
2(Π)‖ = 1. (2.6)
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Figure 6. Pointed semi–strip (a), angle 3𝜋/4 and polar coordinates (𝑟1, 𝜙1) (b).
L–shaped domain and deeply toned unit square in it (c)

By the Krein — Rutman theorem, see, for instance, [29, Thm. 1.2.5], it can be fixed positive in
Π∪ 𝛾. In this case the coefficient 𝐶1 is positive since, except for one detached in the expansion
(2.4), all harmonic functions in the angle 3𝜋/4 with the Dirichlet and Neumann conditions
on its sides are sign–changing; this fact is to be applied iteratively. Finally, the expansion at
infinity

𝑊1(𝜂) = 𝐾1𝑒
−𝛽1𝜂1 sin(𝜋𝜂2) + ̃︁𝑊1(𝜉) (2.7)

is valid, in which ̃︁𝑊1(𝜉) = 𝑂
(︀
𝑒−𝛽2𝜂1

)︀
as 𝜂1 → +∞ and

𝛽𝑘 =
√︀
𝜋2𝑘2 − Λ1, 𝑘 ∈ N. (2.8)

The coefficient 𝐾1 is positive since again among the terms 𝐾𝑘𝑒
−𝛽𝑘𝜂1 sin(𝜋𝑘𝜂2) of the Fourier

series for the function 𝑊1, which converges as 𝜂1 > 1, only the term detached in the relation
(2.7) is sign–definite.
In view of the importance of result on the discrete spectrum of mixed boundary value problem

in Π and for the reader’s convenience, we present simple and shortened proofs.

Lemma 2.1. On the interval (0, 𝜋2) the problem (2.1)–(2.3)𝑁 has a unique eigenvalue Λ1 ∈
(𝜋2/2, 𝜋2).

Proof. The existence of eigenvalue in the discrete spectrum was verified in [7], [8], [16] and
others. Let us show how to establish its uniqueness and get a simplest lower bound. By the
even continuation through the diagonal of first quadrant (dash–dotted line on Fig. 6c), we
reduce the problem (2.1)–(2.3)𝑁 to the Dirichlet problem in L–shaped domain

L =
⋃︁
𝑗=1,2

{︁
𝜂 : 𝜂𝑗 > 0, 0 < 𝜂3−𝑗 < 1

}︁
,

which we partition in two (𝑗 = 1, 2) semi–strips 𝜛𝑗 = {𝜂 ∈ L : 𝜂𝑗 > 1} with right ends and
unit square ■ = (0, 1)2 (deeply toned on Fig. 6c). By the Dirichlet condition on the boundary
𝜕L the one–dimensional Friedrichs inequality on the segment (0, 1) shows that

‖∇𝜂𝑊 ;𝐿2(𝜛𝑗)‖2 ⩾ 𝜋2‖𝑊 ;𝐿2(𝜛𝑗)‖2 ∀𝑊 ∈ 𝐻1
0 (L). (2.9)

The first two eigenvalues of the Laplace operator in the square ■ with the Dirichlet condition
on two adjacent sides and the Neumann condition on two others are equal to 𝜋2

2
and 5𝜋2

2
. The

first eigenvalue is simple with the positive eigenfunction sin
(︁
𝜋
2
𝜂1

)︁
sin

(︁
𝜋
2
𝜂2

)︁
, which obeys the

Neumann condition on the diagonal of the square, that is, the condition (2.3)𝑁 on 𝛾, while the
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second eigenvalue is double. Thus, the relations hold:

‖∇𝜂𝑊 ;𝐿2(■)‖2 ⩾ 𝜋2

2
‖𝑊 ;𝐿2(■)‖2 ∀ 𝑊 ∈ 𝐻1

0 (L) (2.10)

‖∇𝜂𝑊 ;𝐿2(■)‖2 ⩾ 5𝜋2

2
‖𝑊 ;𝐿2(■)‖2 for all 𝑊 ∈ 𝐻1

0 (L), (2.11)

obeying the restriction

∫︁
Q

sin
(︁𝜋
2
𝜂1

)︁
sin

(︁𝜋
2
𝜂1

)︁
𝑊 (𝜂)𝑑𝜂 = 0.

Finally, the needed facts are ensured by the minimax principle, see [30, Thms. 10.2.1, 10.2.2]
and respectively by the inequalities (2.9), (2.10) and inequalities (2.9), (2.11). The proof is
complete.

Remark 2.1. Similar results are known also for the pointed strips

Π𝛼 =
{︀
𝜂 : 𝜂2 ∈ (0, 1), 𝜂1 > 𝜂2 cot𝛼

}︀
, 𝛼 ∈

(︁
0,
𝜋

2

)︁
,

see papers [8], [9] and others, however, the multiplicity of discrete spectrum increases unbound-
edly as 𝛼 → +0. The paper [9], in which this fact was observed, there is a flaw: the constructed
asymptotic approximation for the eigenfunction is not in the domain of the self–adjoint operator

because of the singularity 𝑂
(︀
𝑟

𝜋
2(𝜋−𝛼)

)︀
at the point (cot𝛼, 1). The way of correcting this flaw was

provided in the paper [31].

2.2. Essential spectrum of problem in quarter of layer. The rescaling of all three
coordinates

𝑥 ↦→ 𝜉 = 𝜀−1
(︀
𝑦1 + 1, 𝑦2 + 1, 𝑧) (2.12)

with respect to the point 𝑃−− ∈ R3 and the formal passage to 𝜀 = 0 transforms the thin domain
(1.23) into the set (1.20), on which we consider the mixed spectral boundary value problem

−∆𝜉𝑉 (𝜉) =𝑀𝑉 (𝜉), 𝜉 ∈ Ξ,

𝑉 (𝜉) = 0, 𝜉 ∈ Θ := Θ1 ∪Θ2,

𝜕𝜈(𝜉)𝑉 (𝜉) = 0, 𝜉 ∈ Υ := Υ0 ∪Υ1.

(2.13)

Here Θ𝑗 = {𝜉 ∈ 𝜕Ξ : 𝜉3 = 𝑗}, 𝑗 = 0, 1, are quadrants, that is, the bases of the infinite
polyhedron (1.20), and

Υ𝑘 = {𝜉 ∈ 𝜕Ξ : 𝜉𝑘 > (−1)𝑘𝜉3, 𝜉3 ∈ (0, 1)}, 𝑘 = 1, 2,

are its lateral sides. By the definition (1.23) of the thin finite polyhedron Ω𝜀, the rescaling of
the coordinates with respect to other points in the list (1.24) and rotations of the Cartesian
coordinates, similar to (2.12), give the same quarter of layer (1.20).
To the variational formulation of the problem (2.13)(︀

∇𝜉𝑉,∇𝜉Ψ
)︀
Ξ
=𝑀

(︀
𝑉,Ψ

)︀
Ξ

∀ Ψ ∈ 𝐻1
0 (Ξ;Υ) (2.14)

we assign [30, Ch. 10, Sect. 1] a self–adjoint positive definite unbounded operator 𝐵 in the
Hilbert space ℒ = 𝐿2(Ξ). The nearest aim is to confirm that the essential spectrum of the
operator reads

℘𝑒 = [𝑀†,+∞) = [Λ1,+∞), (2.15)

where Λ1 ∈ (𝜋2/2, 𝜋2) is the eigenvalue of problem (2.1)–(2.3), see Lemma 2.1. We essentially
reproduce the arguing from [10], [12].
We begin with confirming the inclusion [Λ1,+∞) ⊂ ℘𝑒. In order to do this, we define the

singular Weyl sequence for the operator 𝐵 at the point 𝑀 ⩾𝑀† as

𝒵𝑘(𝜉) = ‖𝑋𝑘𝑍𝑀 ;ℒ‖−1𝑋𝑘(𝜉1)𝑍𝑀(𝜉), 𝑘 ∈ N, (2.16)
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where

𝑍𝑀(𝜉) = 𝑒𝑖𝜉1
√
𝑀−𝑀†𝑊1(𝜉2, 𝜉3), 𝑖 =

√
−1,

𝑋𝑘(𝜉1) = 𝜒(𝜉1 − 2𝑘+1 + 1)
(︀
1− 𝜒(𝜉1 − 2𝑘)

)︀
.

Here 𝜒 is the cut–off function (2.5). Thus, the support of the function (2.16) is located in the
set Ξ1

𝑘, where

Ξ𝑗𝑘 =
{︁
𝜉 ∈ Ξ : 𝜉1 ∈

[︁
2𝑘 +

𝑗

3
, 2𝑘+1 − 𝑗

3

]︁}︁
, 𝑗 = 1, 2.

As a result, the formula supp𝒵𝑘 ∩ supp𝒵𝑗 = ∅ holds for 𝑘 ̸= 𝑗, as well as first two properties
of the singular Weyl sequence

1∘ ‖𝒵𝑘;ℒ‖ = 1,
2∘ 𝒵𝑘 → 0 weakly in ℒ

become clear. Since 𝑋𝑘 = 1 on Ξ2
𝑘, by the identity (2.6) we have

‖𝑋𝑘𝑍𝑀 ;ℒ‖2 ⩾

2𝑘+1− 2
3∫︁

2𝑘+ 2
3

∫︁
Π

⃒⃒
𝑊1(𝜉2, 𝜉3)

⃒⃒2
𝑑𝜉2𝑑𝜉3𝑑𝜉1 = 2𝑘+1 − 2𝑘 − 4

3
.

Moreover, (∆𝜉 +𝑀)𝑍𝑀 = 0, and hence the function (∆𝜉 +𝑀)𝒵𝑘 vanishes on the set Ξ2
𝑘 and

‖(𝐵 −𝑀)(𝑋𝑘𝑍𝑀);ℒ‖2 ⩽
∫︁

Ξ1
𝑘∖Ξ

2
𝑘

⃒⃒[︀
∆𝜉, 𝑋𝑘

]︀
𝑍𝑀

⃒⃒2
𝑑𝜉 ⩽ 2𝑐𝜒𝑀 .

Thus, the third property is also obvious:

3∘ ‖𝐵𝒵𝑘 −𝑀𝒵𝑘;ℒ‖ → 0.

As a result 𝑀 ∈ ℘𝑒 and [Λ1,+∞) ⊂ ℘𝑒 by the Weyl criterion, see [30, Thm. 9.1.2].
Now let𝑀 ∈ (0,𝑀†). In what follows we shall establish the unique solvability of the problem(︀

∇𝜉𝑉,∇𝜉Ψ
)︀
Ξ
−𝑀

(︀
𝑉,Ψ

)︀
Ξ
+ 𝑡

(︀
𝑉,Ψ

)︀
Ξ(𝑅)

= 𝑓(Ψ), Ψ ∈ 𝐻1
0 (Ξ;Υ), (2.17)

in which 𝑓 ∈
(︀
𝐻1

0 (Ξ;Υ)
)︀*

is a linear continuous functional on the space 𝐻1
0 (Ξ;Υ), and a number

𝑡 > 0 and a bounded set Ξ(𝑅) ⊂ Ξ will be appropriately fixed. The fact that mapping

𝐻1
0 (Ξ;Υ) ∋ 𝑉 ↦→ ℬ𝑡(𝑅)𝑉 = 𝑓 ∈

(︀
𝐻1

0 (Ξ;Υ)
)︀*

is an isomorphism yield the Fredholm property of the operatro ℬ0 of the original problem (2.14),
since the difference ℬ𝑡(𝑅)−ℬ0 is a compact operator due to the compactness of the embedding
𝐻1(Ξ) ⊂ 𝐿2(Ξ(𝑅)), namely,

(ℬ𝑡(𝑅)𝑉 − ℬ0𝑉,Ψ)Ξ = 𝑡(𝑉,Ψ)Ξ(𝑅).

We begin with verifying simple and mostly known facts, see [10], [32] and others.

Proposition 2.1. Let 𝑇 > 1 and Λ𝑇1 is the first eigenvalue of mixed boundary value problem
on the trapezoid Π𝑇 = {𝜂 : 𝜂1 ∈ (𝜂2, 𝑇 ), 𝜂2 ∈ (0, 1)}

−∆𝜂𝑊
𝑇 (𝜂) = Λ𝑇𝑊 𝑇 (𝜂) for 𝜂 ∈ Π𝑇 ,

𝑊 𝑇 (𝜂) = 0 for 𝜂2 < 𝜂1 < 𝑇, 𝜂2 = 0 or 𝜂2 = 1,

𝜕𝜈(𝜂)𝑊
𝑇 (𝜂) = 0 for 𝜂 ∈ 𝜕Π𝑇 , 𝜂2 ∈ (0, 1).

(2.18)

The function (1,+∞) ∋ 𝑇 ↦→ Λ𝑇1 is smooth and strictly monotonically increasing. It satisfies
the estimate ⃒⃒

Λ𝑇1 − Λ1 + 𝛽1𝐾
2
1𝑒

−2𝛽1𝑇
⃒⃒
⩽ 𝐶𝑒−𝛽2𝑇 , (2.19)

and the numbers 𝐾1 and 𝛽𝑘 are taken from the formulas (2.7) and (2.8).
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Proof. The simplest way to confirm the properties of the eigenvalue Λ𝑇1 as of the function
of parameter 𝑇 is to construct the asymptotics. Here, it is sufficient to realize the formal
procedure, the justification of obtained representations follows standard schemes repeatedly
published, see [22, Ch. 5, Sect. 6, Ch. 9], [32] and others. We stress that by the dilatation of
coordinates the “long” domain Π𝑇 becomes a “thin” domain, while for such bodies, even elastic,
the published literature is vast, see, for instance, surely incomplete lists of references in the
monographs [22], [25], [33]–[36], and it answers almost all meaningful questions.
We seek the asymptotic for eigenpairs of the problem (2.18) in the form

Λ𝑇1 = Λ1 + 𝑒−2𝛽1𝑇Λ′ + . . . , (2.20)

𝑊 𝑇
1 (𝜉) = 𝑊1(𝜉) +𝐾1𝑒

−2𝛽1𝑇 𝑒𝛽1𝜂1 sin(𝜋𝜂2) + 𝑒−2𝛽1𝑇𝑊 ′(𝜉) + . . . , (2.21)

where the dots replaces higher–order asymptotic terms inessential for the made analysis, and
the pair {Λ′;𝑊 ′} is to be determined. According to the expansion (2.7), the sum of first two
terms in the right hand side of ansätze (2.21) gives the error 𝑂

(︀
𝑒−𝛽2𝑇

)︀
in the boundary condition

on the segment 𝛾𝑇 = {𝜂 : 𝜂1 = 𝑇, 𝜂2 ∈ 0, 1)}. For the pair {Λ′;𝑊 ′} we obtain the equation

−∆𝜂𝑊
′(𝜂)− Λ1𝑊

′(𝜂) = Λ′𝑊1(𝜂), 𝜂 ∈ Π,

with the boundary condition (2.2) on the lateral sides and the Neumann condition on the end

𝜕𝜈(𝜂)𝑊
′(𝜂) = −𝐾1𝜕𝜈(𝜂)

(︀
𝑒𝛽1𝜂2 sin(𝜋𝜂2)

)︀
, 𝜂 ∈ 𝛾,

already found according to the mentioned expansion (2.7). Since Λ1 is a simple eigenvalue,
there is one solvability condition of the obtained problem in the class of functions decaying at
infinity, see, for instance, [28, Chs. 2, 5], which in view of the normalization (2.6), we satisfy
as follows:

Λ′ = Λ′‖𝑊 ′;𝐿2(Π)‖2 = −
∫︁
Π

𝑊1(𝜂) (∆𝜂 + Λ1)𝑊
′(𝜂)𝑑𝜂

= 𝐾1

∫︁
𝛾

𝑊1(𝜂)𝜕𝜈(𝜂)
(︀
𝑒𝛽1𝜂1 sin(𝜋𝜂2)

)︀
𝑑𝑠𝜂

= −𝐾1 lim
𝑡→+∞

∫︁
𝛾𝑡

(︂
𝑊1(𝜂)

𝜕

𝜕𝜂1

(︀
𝑒𝛽1𝜂1 sin(𝜋𝜂2)

)︀
− 𝑒𝛽1𝜂1 sin(𝜋𝜂2)

𝜕𝑊1

𝜕𝜂1
(𝜂)

)︂
𝑑𝜂2

= −𝐾2
12𝛽1

1∫︁
0

(sin(𝜋𝜂2))
2 𝑑𝜂2 = −𝛽1𝐾2

1 .

The corrector in the representation (2.20) is calculated.
To verify the monotonicity property, we take a small parameter ℎ > 0 and compare the eigen-

values Λ𝑇−ℎ1 and Λ𝑇1 for the trapezoids Π𝑇−ℎ ⊂ Π𝑇 . We again admit the simplest asymptotic
ansätze

Λ𝑇−ℎ1 = Λ𝑇1 + ℎΛ𝑇∙ + . . . ,

𝑊 𝑇−ℎ
1 (𝜂) = 𝑊 𝑇

1 (𝜂) + ℎ𝑊 𝑇
∙ (𝜂) + . . . .

In view of the Taylor series

𝜕𝑊 𝑇
1

𝜕𝜂1
(𝜂1 − ℎ, 𝜂2) =

𝜕𝑊 𝑇
1

𝜕𝜂1
(𝜂1, 𝜂2)− ℎ

𝜕2𝑊 𝑇
1

𝜕𝜂21
(𝜂1, 𝜂2) + . . .

we find that the correctors in ansätze are found from the equation

−∆𝜂𝑊
𝑇
∙ (𝜂)− Λ𝑇1𝑊

𝑇
∙ (𝜂) = Λ𝑇∙𝑊

𝑇
1 (𝜂) in Π𝑇 ,
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with the homogeneous Dirichlet condition on the bases 𝜎𝑇0 and 𝜎𝑇1 of the trapezoid Π𝑇 and the
Neumann condition on the lateral sides

𝜕𝑊 𝑇
∙

𝜕𝜈(𝜂)
= 0 on 𝛾,

𝜕𝑊 𝑇
∙

𝜕𝜂1
(𝑇, 𝜂2) =

𝜕2𝑊 𝑇
1

𝜕𝜂21
(𝑇, 𝜂2) for 𝜂2 ∈ (0, 1).

In view of one (Λ𝑇1 is a simple eigenvalue) solvability condition of the formed problem, we find

Λ𝑇∙ ‖𝑊 𝑇
1 ;𝐿

2(Π𝑇 )‖2 = −
1∫︁

0

𝑊 𝑇
1 (𝑇, 𝜂2)

𝜕2𝑊 𝑇
1

𝜕𝜂21
(𝑇, 𝜂2)𝑑𝜂2

=

1∫︁
0

𝑊 𝑇
1 (𝑇, 𝜂2)

(︂
𝜕2𝑊 𝑇

1

𝜕𝜂22
(𝑇, 𝜂2) + Λ𝑇1𝑊

𝑇
1 (𝑇, 𝜂2)

)︂
𝑑𝜂2

=

1∫︁
0

(︂
Λ𝑇1

⃒⃒
𝑊 𝑇

1 (𝑇, 𝜂2)
⃒⃒2 − ⃒⃒⃒𝜕𝑊 𝑇

1

𝜕𝜂2
(𝑇, 𝜂2)

⃒⃒⃒2)︂
𝑑𝜂2.

(2.22)

The function 𝑊 𝑇
1 is at least twice continuously differentiable at the angular points, which are

the ends of the segment 𝛾𝑇 . Thus, by means of the Friedrichs inequality, the formula (2.22)
implies the estimate

Λ𝑇∙ ⩽
(︀
Λ𝑇1 − 𝜋2

)︀
‖𝑊 𝑇

1 ;𝐿
2(Π𝑇 )‖−2‖𝑊 𝑇

1 ;𝐿
2(𝛾𝑇 )‖2,

and both norms of the positive in Π𝑇 ∪𝛾 ∪𝛾𝑇 function 𝑊 𝑇
1 do not vanish. Thus, the derivative

of the function 𝑇 ↦→ Λ𝑇1 at some point 𝑇 > 1 is strictly positive under the condition Λ𝑇1 < 𝜋2.
The inequality Λ𝑇1 ⩾ 𝜋2 is impossible for all 𝑇 > 1 since by the formula (2.19) for large 𝑇 the
needed condition is satisfied.
We note that the almost identical change of variables

𝜂 ↦→ (𝜂1𝜒(𝜂1 − 1) + (𝜂1 − ℎ)(1− 𝜒(𝜂1 − 1)), 𝜂2)

transforms the trapezoid Π𝑇 into the trapezoid Π𝑇−ℎ, that is, the translation of boundary is
a regular perturbation of the problem and the justification of asymptotics in this case is very
simple, see the monograph [37, Ch. 7, Sect. 6].

We return to the problem (2.17) for 𝑀 < 𝑀†. We partition the domain Ξ into three sets

Ξ(𝑅) = {𝜉 ∈ Ξ : 𝜉1 + 1 < 𝑅, 𝜉2 < 𝑅},
Ξ+(𝑅) = {𝜉 ∈ Ξ : 𝜉1 + 1 > 𝑅, 𝜉2 < 𝜉1 + 1},
Ξ−(𝑅) = {𝜉 ∈ Ξ : 𝜉2 > 𝑅, 𝜉2 > 𝜉1 + 1},

(2.23)

and choose the size 𝑅 > 1 so that the relation

Λ𝑇1 >
1

2

(︀
𝑀† +𝑀

)︀
> 𝑀 for 𝑇 > 𝑅 (2.24)

holds, where Λ𝑇1 is the first eigenvalue of the problem (2.18). Proposition 2.1 shows that the
condition (2.24) can be satisfied for each 𝑀 ∈

(︀
0,𝑀†

)︀
.
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Owing to the Dirichlet condition on the bases of infinite truncated pyramide Ξ+(𝑅), the
relation

‖∇𝜉𝑉 ;𝐿2(Ξ+(𝑅))‖2 ⩾
+∞∫︁

𝑅−1

∫︁
Π𝜉1+1

|∇𝜂𝑉 (𝜉1, 𝜂)|2𝑑𝜂𝑑𝜉1

⩾

+∞∫︁
𝑅−1

Λ𝜉1+1
1

∫︁
Π𝜉1+1

|𝑉 (𝜉1, 𝜂)|2𝑑𝜂𝑑𝜉1 ⩾
𝑀 +𝑀†

2
‖𝑉 ;𝐿2(Ξ+(𝑅))‖2

holds. Exactly the same inequality holds on the set Ξ−(𝑅), which is congruent to the set
Ξ+(𝑅). Therefore, for a symmetric bilinear form 𝑏(𝑉,Ψ;Ξ) in the left hand side of integral
identity (2.17) restricted to the subdomains (2.23), the formulas

𝑏(𝑉, 𝑉 ; Ξ±(𝑅)) = ‖∇𝜉𝑉 ;𝐿2(Ξ±(𝑅))‖2 −𝑀‖𝑉 ;𝐿2(Ξ±(𝑅))‖2

⩾ 𝛿‖∇𝜉𝑉 ;𝐿2(Ξ±(𝑅))‖2 + 1

2
((𝑀† −𝑀)− 𝛿(𝑀† +𝑀)) ‖𝑉 ;𝐿2(Ξ±(𝑅))‖2,

𝑏(𝑉, 𝑉 ; Ξ(𝑅)) = ‖∇𝜉𝑉 ;𝐿2(Ξ±(𝑅))‖2 + (𝑡−𝑀)‖𝑉 ;𝐿2(Ξ(𝑅))‖2.

are valid. Fixing the numbers 𝑡 > 𝑀 and 𝛿 ∈
(︀
0, (𝑀† +𝑀)−1(𝑀† −𝑀)

)︀
, we find that the

form 𝑏(𝑉,Ψ;Ξ) is positive definite on the space 𝐻1
0 (Ξ;Υ), that is, by the Riesz theorem on

representation of continuous linear functional in a Hilbert space the problem (2.17) is uniquely
solvable.

Thus, we have proved the next theorem.

Theorem 2.1. The essential spectrum of problem (2.13) in the domain (1.20) with the
Dirichlet conditions on the bases Υ± is the ray (2.15), the bottom 𝑀† of which is the eigenvalue
Λ1 in the discrete spectrum of problem (2.1)–(2.3) in the pointed strip (1.14).

2.3. Discrete spectrum of problem in quarter of layer. The approaches of this section
slightly differ from ones used in works [11] and [12] for checking the non–emptiness of discrete
spectrum in layer–type domains of similar shapes. According to the minimax principle [30,
Thm. 10.2.1], the bottom ℘ of spectrum ℘ of problem (2.14) (or (2.13) in the differential form)
obeys the relation

℘ = min
Ψ∈𝐻1

0 (Ξ;ϒ)∖{0}

‖∇𝜉Ψ;𝐿2(Ξ)‖2

‖Ψ;𝐿2(Ξ)‖2
.

Thus, to check the non–emptiness of the spectrum ℘𝑑, it is sufficient to find a test function
Ψ ∈ 𝐻1

0 (Ξ;Υ), which satisfies the inequality

‖∇𝜉Ψ;𝐿2(Ξ)‖2 −𝑀†‖Ψ;𝐿2(Ξ)‖2 < 0. (2.25)

At the same time it turns out that ℘ is the first eigenvalue in the discrete spectrum ℘𝑑.
We let

Ψ𝛿(𝜉) =

{︃
𝑊1(𝜉2, 𝜉3) for 𝜉1 ⩽ 0,

𝑊1(𝜉2, 𝜉3)𝑒
−𝛿𝜉1 for 𝜉1 ⩾ 0.

It is clear that Ψ𝛿 ∈ 𝐻1
0 (Ξ;Υ) for 𝛿 > 0. By the normalization (2.6) we have

‖Ψ𝛿;𝐿
2(Ξ)‖2 = ‖𝑊1;𝐿

2(T)‖2+
∞∫︁
0

𝑒−2𝛿𝜉1𝑑𝜉1

∫︁
Π

|𝑊1(𝜉2, 𝜉3)|2𝑑𝜉2𝑑𝜉3 = ‖𝑊1;𝐿
2(T)‖2+ 1

2𝛿
. (2.26)
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Here T = {𝜉 : 𝜉1 ∈ (−𝜉3, 0), 𝜉2 > 𝜉3, 𝜉3 ∈ (0, 1)} is a truncated prism with a triangular section.
Supposing the parameter 𝛿 is small, in the same way we obtain

‖∇𝜉Ψ𝛿;𝐿
2(Ξ)‖2 = ‖∇𝜉𝑊1;𝐿

2(T)‖2 +
∞∫︁
0

𝑒−2𝛿𝜉1𝑑𝜉1

∫︁
Π

⃒⃒
∇𝜂𝑊1(𝜂)

⃒⃒2
𝑑𝜂 +𝑂(𝛿)

= ‖∇𝜉𝑊1;𝐿
2(T)‖2 + 1

2𝛿
Λ† +𝑂(𝛿).

We consider the difference

‖∇𝜉𝑊1;𝐿
2(T)‖2 − Λ1‖𝑊1;𝐿

2(T)‖2

= J := −
∫︁
P

𝑊1(𝜉2, 𝜉3)
(︀
∆𝜉 + Λ1)𝑊1(𝜉2, 𝜉3)𝑑𝜉 +

∫︁
Θ2

𝑊1(𝜉2, 𝜉3)𝜕𝜈(𝜉)𝑊1(𝜉2, 𝜉3)𝑑𝑠𝜉.

The first integral in the right hand side vanishes due to Equation (2.1) for the pair {Λ1;𝑊1}.
The second integral is equal to

J = − 1√
2

∫︁
P

𝑊1

(︁
𝜂1,

𝜂2√
2

)︁𝜕𝑊1

𝜕𝜂2

(︁
𝜂1,

𝜂2√
2

)︁
𝑑𝜂, (2.27)

where 𝜂 = (𝜂1, 𝜂2) is the system of Cartesian coordinates in the plane of face Υ2, and 𝜂1 = 𝜉2
and 𝜂2 = 2−

1
2 (𝜉3 − 𝜉1), while P ⊂ R+ ×

(︀
0,
√
2
)︀
is the pointed semi–strip with the vertices

𝜂 = (0, 0) and 𝜂 =
(︀
1,
√
2
)︀
. We denote the segment connecting these points by I, and we

integrate by parts to obtain

J = −1

2

∫︁
I

⃒⃒⃒⃒
𝑊1

(︁
𝜂1,

𝜂2√
2

)︁⃒⃒⃒⃒2
𝑑𝑠 < 0. (2.28)

The strict inequality holds since the first eigenfunction𝑊1 of the problem (2.1)–(2.3) is positive
on the end of semi–strip (1.14); in any case it can not vanish everywhere on the end by the
uniqueness continuation theorem, see, for instance, the book [38].
Gathering the formulas (2.26)–(2.28), we see that the left hand side of inequality (2.25) does

not exceed the sum J + 𝐶𝛿 and this is why it indeed becomes negative for sufficiently small
𝛿 > 0.
We formulate the obtained result.

Theorem 2.2. The discrete spectrum of problem (2.13) (or (2.14) in the variational form)
contains at least one eigenvalue.

2.4. Exponential decay of eigenfunction. Let 𝑀1 be the first (smallest) eigenvalue of
problem (2.13) given by Theorem 2.2. We normalize the associated eigenfunction 𝑉1 ∈ 𝐻1

0 (Ξ;Υ)
in 𝐿2(Ξ) and fix it positive in Ξ ∪ Θ. Into the integral identity (2.14) we substitute the test
function Ψ𝜅

𝑇 = ℛ𝜅
𝑇𝒱𝜅𝑇 , where 𝒱𝜅𝑇 = ℛ𝜅

𝑇𝑉1. A continuous piecewise–smooth weight factor reads

ℛ𝜅
𝑇 (𝜉) =

⎧⎪⎨⎪⎩
𝑒𝜅 for 𝜌 ⩽ 1,

𝑒𝜅𝜌 for 𝜌 ∈ (1, 𝑇 ),

𝑒𝜅𝑇 for 𝜌 ⩾ 𝑇,

(2.29)

with 𝜌2 = 𝜉21 + 𝜉22 , while 𝜅 and 𝑅 are positive parameters chosen small and large, respectively.
We stress that the functions 𝒱𝜅𝑇 and Ψ𝜅

𝑇 belong to the space 𝐻1
0 (Ξ;Θ) since the weight factor

(2.29) is constant for large radius 𝜌. By simple transformations (several commutations of the
operator–gradient ∇𝜉 with the function ℛ𝜅

𝑇 ) we obtain the identity

‖∇𝜉𝒱𝜅𝑇 ;𝐿2(Ξ)‖2 − ‖𝒱𝜅𝑇 (ℛ𝜅
𝑇 )

−1∇𝜉ℛ𝜅
𝑇 ;𝐿

2(Ξ)‖2 =𝑀1‖𝒱𝜅𝑇 ;𝐿2(Ξ)‖2. (2.30)
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We note that

∇𝜉ℛ𝜅
𝑇 (𝜉) = 0 for 𝜌 ̸∈ (1, 𝑇 ), ℛ𝜅

𝑇 (𝜉)
−1|∇𝜉ℛ𝜅

𝑇 (𝜉)| ⩽ 𝜅 for 𝜌 ∈ (1, 𝑇 ). (2.31)

We partition the set Ξ into four parts: the set Ξ(𝑅) from the formula (2.23) and also the sets

Σ1
𝑅 =

{︁
𝜉 ∈ Ξ : 𝜉2 < 𝑅, 𝜉1 > 𝑅− 1

2

}︁
, Σ2

𝑅 =
{︁
𝜉 ∈ Ξ : 𝜉1 < 𝑅− 1

2
, 𝜉2 > 𝑅

}︁
and 𝐾𝑅 = Ξ ∖

(︀
Ξ(𝑅)∪Σ1

𝑅 ∪Σ1
𝑅

)︀
. Recalling Proposition 2.1, we choose the size 𝑅 > 1 to satisfy

the relation Λ𝑅1 > 1
2
(𝑀1 + Λ1). Then on the subdomains Σ1

𝑅 and Σ2
𝑅, which are congruent to

the set (𝑅,+∞)× Π𝑅 ∋ (𝜏, 𝜂), the estimates hold:

1

2
(𝑀1 + Λ1) ‖𝒱𝜅𝑇 : 𝐿2(Σ𝑗

𝑅)‖
2 ⩽ Λ𝑅1 ‖𝒱𝜅𝑇 : 𝐿2(Σ𝑗

𝑅)‖
2 ⩽ ‖∇𝜉𝒱𝜅𝑇 : 𝐿2(Σ𝑗

𝑅)‖
2, (2.32)

which are obtained by integrating in 𝜏 the Friedrichs inequality on the trapezoid Π𝑅. After
an additional integration, the one–dimensional Freidrichs inequality on the segment (0, 1) ∋ 𝜉3
gives the relation

𝜋2‖𝒱𝜅𝑇 : 𝐿2(𝐾𝑅)‖2 ⩽ ‖∇𝜉𝒱𝜅𝑇 : 𝐿2(𝐾𝑅)‖2. (2.33)

Now by means of the formulas (2.31)–(2.33) we transform the identity (2.30) into the estimate

𝑀1𝑒
𝑅
√
2𝜅 ⩾𝑀1‖𝒱𝜅𝑇 ;𝐿2(Ξ(𝑅))‖2 ⩾ 𝛿‖∇𝜉𝒱𝜅𝑇 ;𝐿2(Ξ)‖2

+ ((1− 𝛿)𝜋2 −𝑀1 − 𝜅)‖𝒱𝜅𝑇 ;𝐿2(𝐾𝑅)‖2

+
∑︁
𝑗=1,2

(︁1
2
(𝑀1 + Λ1)−𝑀1 − 𝜅

)︁
‖𝒱𝜅𝑇 ;𝐿2(Σ𝑗

𝑅)‖
2.

Taking sufficiently small 𝛿 > 0 and 𝜅 > 0, we find that the factors in the norms ‖𝒱𝜅𝑇 ;𝐿2(𝐾𝑅)‖
and ‖𝒱𝜅𝑇 ;𝐿2(Σ𝑗

𝑅)‖ are positive and hence, the uniform estimate

‖∇𝜉𝒱𝜅𝑇 ;𝐿2(Ξ)‖2 + ‖𝒱𝜅𝑇 ;𝐿2(Ξ)‖2 ⩽ ℳ (2.34)

holds.
Since the weight factor (2.29) grows monotonically as the parameter 𝑇 grows, the passage to

limit as 𝑇 → +∞ in the inequality (2.34) ensures the following statement, which confirms the
aforementioned decay at infinity of the eigenfunction 𝑉1.

Theorem 2.3. The found first eigenfunction 𝑉1 ∈ 𝐻1
0 (Ξ;Υ) of problem (2.13) normalized

in the space 𝐿2(Ξ) satisfies the weight estimate

‖𝑒𝜅𝜌∇𝜉𝑉1;𝐿
2(Ξ)‖2 + ‖𝑒𝜅𝜌𝑉1;𝐿2(Ξ)‖2 ⩽ 𝒦, (2.35)

where 𝜅 and 𝒦 are some positive numbers and 𝜌 =
√︀
𝜉21 + 𝜉22.

2.5. Remarks on threshold resonances. The planar problem (2.1)–(2.3) has already been
studied for a long time in detail sufficient for the asymptotic analysis in the present work. At
the same time for the spatial problem (2.13) a series of important question remained open, for
instance, the multiplicity of discrete spectrum and the emergence of threshold resonances.
In the planar domain (1.14) the threshold resonance (see papers [39], [40] and others) is

due to the appearance of a non–trivial bounded solution for the problem with the threshold
spectral parameter Λ = 𝜋2; this solution is either trapped (decaying at infinity) or almost
standing (stabilizing at infinity) wave. It is easy to establish the absence of such solutions in
the problem (2.1)–(2.3): in the case of the Dirichlet condition on the end the method from
[26] works, while in the case of the Neumann condition we need to apply the inequality (2.11),
which means that the second eigenvalue of the problem in the triangle {𝜂 ∈ Π : 𝜂1 < 1} is
strictly greater than the threshold 𝜋2. We also need to apply the sufficient condition [41], [42]
or the first of two criterions [32] of the absence of threshold resonance.
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In the spatial problem (2.13) on layer–type domains (1.20)—(1.22) the notion of threshold
resonance requires a specification since the asymptotics of its solution at infinity for 𝑀 = Λ1

is unknown; Theorem 2.3 concerns only the case 𝑀 < Λ1. However, in this problem on the
domain (1.21) the even continuation to the set R×Π is admitted and it is followed by the Fourier
transform in the variable 𝜉1, while the needed bounded solution is of the form 𝜉 ↦→ 𝑊1(𝜉2, 𝜉3).
By the way, exactly due to the mentioned threshold resonance in the domain Ξ⊔ defined by the
formula (1.21) the limiting problem (4.1) on the segment (−1, 1) ∋ 𝑦1 acquires the Neumann
condition. The influence of threshold resonances on the boundary conditions in the limiting
problems is also discussed in Section 5.3.
The next statement on solvability of the Helmholtz equation in the skewed semi–strip (1.14)

−∆𝜂𝑤(𝜂)− 𝜋2𝑤(𝜂) = 𝐹 (𝜂), 𝜂 ∈ Π, (2.36)

with the boundary conditions (2.2) and (2.3) is obtained by specification of general results
from the book [28, Ch. 5] and paper [40]. However, for the reader’s convenience we reproduce
its short proof. In order to do this, we define the exponential weight Sobolev space 𝒲1

𝛽(Π)
(the Kondratiev space; see the original work [43] and, for instance, the books [28], [44]) as the
completion of the linear set 𝐶∞

𝑐

(︀
Π
)︀
by the norm⃦⃦

𝑤;𝒲1
𝛽(Π)

⃦⃦
=

⃦⃦
𝑒𝛽𝜂1𝑤;𝐻1(Π)

⃦⃦
, (2.37)

where 𝛽 ∈ R is the weight index. The space 𝒲1
𝛽(Π) consists of the functions 𝑤 ∈ 𝐻1

𝑙𝑜𝑐

(︀
Π
)︀
, for

which the norm (2.37) is finite and in the case 𝛽 = 0 it coincides with 𝐻1(Π), but for 𝛽 > 0 the
functions in 𝒲1

𝛽(Π) decay at infinity, while for 𝛽 < 0 a certain growth is allowed for them and

the decay/growth rate is controlled by the weight index. By 𝒲1,0
𝛽 (Π) we denote the subspace

of functions obeying the Dirichlet condition from the list (2.2), (2.3).
As usually, by a weak solution to the problem (2.36), (2.2), (2.3) in the weight classes we

mean a function 𝑤 ∈ 𝒲1,0
𝛽 (Π) obeying the integral identity

(∇𝜂𝑤,∇𝜂𝜓)Π − 𝜋2(𝑤,𝜓)Π = 𝑓(𝜓) ∀𝜓 ∈ 𝒲1,0
−𝛽(Π), (2.38)

where 𝑓 ∈
(︀
𝒲1,0

−𝛽(Π)
)︀*

is a linear continuous functional on the space 𝒲1,0
−𝛽(Π), for instance,

𝑓(𝜓) = (𝐹, 𝜓)Π with 𝑒𝛽𝜂1𝐹 ∈ 𝐿2(Π).

The problem (2.38) is associated with the continuous mapping

𝒲1,0
𝛽 (Π) ∋ 𝑤 ↦→ 𝒜𝛽𝑤 := 𝑓 ∈

(︀
𝒲1,0

−𝛽(Π)
)︀*
.

Proposition 2.2. The following assertions hold.

1) The operators 𝒜𝛽 and 𝒜−𝛽 are mutually adjoint. They turn out to be Fredholm in the case

𝛽 ∈
(︀
0, 𝜋

√
3
)︀
, but they lose this property for 𝛽 = 0 and 𝛽 = 𝜋

√
3.

2) If 𝛽 ∈
(︀
0, 𝜋

√
3
)︀
and 𝑓 ∈

(︀
𝒲1,0

−𝛽(Π)
)︀* ⊂

(︀
𝒲1,0

𝛽 (Π)
)︀*
, then the problem (2.38) with the re-

placement 𝛽 ↦→ −𝛽 has a unique (bounded) solution 𝑤 ∈ 𝒲1,0
−𝛽(Π), which can be represented

as

𝑤(𝜂) = (1− 𝜒(𝜂1 − 1))𝑎 sin(𝜋𝜂2) + ̃︀𝑤(𝜂), (2.39)

where ̃︀𝑤 ∈ 𝒲1,0
𝛽 (Π), 𝑎 ∈ R, 𝜒 is the cut–off function (2.5), and the estimate(︀⃦⃦ ̃︀𝑤;𝒲1,0

𝛽 (Π)
⃦⃦2

+ |𝑎|2
)︀ 1

2 ⩽ 𝑐𝛽
⃦⃦
𝑓 ; (𝒲1,0

−𝛽(Π)
)︀*⃦⃦

(2.40)

holds, and the factor 𝑐𝛽 is independent of the functional 𝑓, but it grows unboundedly as

𝛽 → +0 or 𝛽 → 𝜋
√
3− 0.
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Proof. We first of all observe that the solutions of the Dirichlet problem for the homogeneous
(𝐹 = 0) equation (2.36) in the entire space R× (0, 1) are the functions

𝜂1 sin(𝜋𝜂2) and 𝑒±𝜂1𝜋
√
𝑘2−1 sin(𝜋𝑘𝜂2), 𝑘 = 1, 2, 3, . . . . (2.41)

Thus, the first statement is a corollary of classical Kondratiev theorem [43] (a simple exposition
of this theory is presented in the introductory chapter 2 in the monograph [28]), and the
restriction for the quantity 𝛽 puts the weight indices ±𝛽 between “prohibited” indices 0 and
±𝜋

√
3 taken from the latter formula (2.41) with 𝑘 = 1, 2.

The absence of threshold resonance in the problem (1.1)–(1.3) in particular means that the
operator 𝒜𝛽 is a monomorphism for 𝛽 > 0. Therefore, in the case 𝛽 ∈

(︀
0, 𝜋

√
3
)︀
the operator

𝒜−𝛽 is an epimorphism. Theorem 4.3.3 in [28] on the index increment applied for cylindrical
domains show that Ind𝒜𝛽 − Ind𝒜−𝛽 = −2, where two is the number of solutions in the list
(2.41) with the polynomial growth at the infinity. Since

Ind𝒜 = dimker𝒜− dimcoker𝒜 and dimker𝒜𝛽 = 0, dimcoker𝒜−𝛽 = 0,

we find out that Ind𝒜−𝛽 = −1, and hence the restriction of the operator 𝒜−𝛽 to the subspace

𝒲1,0
𝛽⊕(Π) of the functions in 𝒲1,0

−𝛽(Π) admitting the representation (2.39), which we equip with
the norm in the left hand side (2.40), takes the zero index and becomes the isomorphism due to
the absence of the trapped waves on the threshold frequency. Thus, we have proved the second
statement and have completed the proof. We note that the introduced subspace is called a
weight class with the detached asymptotics.

Remark 2.2. In the proof of Proposition 2.2 the identity

dimker𝒜−𝛽 = 1

was established. It is easy to see that for 𝐾 = 𝑁,𝐷 the subspace ker𝒜−𝛽 is spanned over the
solution W𝐾 of homogeneous problem (2.1)–(2.3)𝐾 with the parameter Λ = 𝜋2, which has a
linear growth at infinity and admits the representation

W𝐾(𝜂) = sin(𝜋𝜂2)(𝜂1 −C𝐾) + ̃︁W𝐾(𝜂), (2.42)

where C𝐾 is some constant, while the remainder ̃︁W𝐾 ∈ 𝒲1
𝛽(Π) decays exponentially at infinity

with the rate 𝑂
(︀
𝑒−𝜂1𝜋

√
3
)︀
and it turns out to be infinitely differentiable everywhere on the set Π

except for the angular points 𝒫0 and 𝒫1. We stress that the function (2.42) is not in the space
𝒲1,0

𝛽⊕(Π) and we introduce the difference

̂︁W𝐾(𝜂) = W𝐾(𝜂)− sin(𝜋𝜂2)𝜂1 = −C𝐾 sin(𝜋𝜂2) + ̃︁W𝐾(𝜂), (2.43)

which possesses the needed behavior at infinity, belongs to some weigth space with a separated
asymptotics, but it does not satisfy the boundary condition (2.3).

3. Absence of localization effect

3.1. Usual asymptotic constructions. The approaches used in this section are widely
known in the case of Neumann boundary conditions on the bases of thin domains, see the
monograph [25] and the references therein, and its adaption to the Dirichlet condition requires
minimal efforts in the case of the passage to the mixed boundary conditions exclusively owing
to the Neumann condition only on the perpendicular bases on the lateral sides of polyhedron
Ω𝜀. The passage to the Dirichlet condition on the entire boundary 𝜕Ω requires only literal
reproducing the arguing and calculations given below.
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In the situation (1.6) we admit the simplest ansatz for the eigenpairs of problem (1.1)–(1.3)

𝜆𝜀(𝑥) = 𝜀−2𝜋2 + 𝜇+ . . . , (3.1)

𝑢𝜀(𝑥) = sin
(︀
𝜋𝜀−1𝑧

)︀
𝑣(𝑦) + . . . , (3.2)

where, as usually, the dots replace the higher–order terms. After substituting the ansätze into
the differential equation and boundary conditions we find that the leading asymptotic terms
mutually cancel out, while for the pair {𝜇; 𝑣} we obtain the mixed boundary value problem in
the square

−∆𝑦𝑣(𝑦) = 𝜇𝑣(𝑦), 𝑦 ∈ □1,

𝑣(𝑦1,±1) = 0, |𝑦1| < 1, ± 𝜕𝑣

𝜕𝑦1
(±1, 𝑦2) = 0, |𝑦2| < 1.

(3.3)

The eigenpairs of this problem

{𝜇(𝑝,𝑞); 𝑣(𝑝,𝑞)(𝑦)} =
{︁𝜋2

4
(𝑝2 + 𝑞2), cos

(︁𝜋
2
𝑝(𝑦1 − 1)

)︁
sin

(︁𝜋
2
𝑞(𝑦2 − 1)

)︁}︁
(3.4)

appear in the formulas (1.10) and (1.11). We renumerate the eigenvalues forming the monotone
unbounded sequence

0 < 𝜇1 < 𝜇2 ⩽ 𝜇3 ⩽ . . . ⩽ 𝜇𝑚 ⩽ . . .→ +∞. (3.5)

The associated eigenfunctions of problem (3.3) obey the orthogonality and normalization con-
ditions

(𝑣𝑚, 𝑣𝑛)𝜔 = 𝛿𝑚,𝑛, 𝑚, 𝑛 ∈ N. (3.6)

Let us clarify the choice of boundary conditions: while the Neumann conditions are obtained
by the substitution of ansätze (3.2) into the boundary condition (1.3) on sides (1.7), the Dirichlet
condition in order to eliminate the errors in the boundary conditions (1.2) on other sides (1.6).
The main term is generated by the Taylor series

𝑣(𝑝,𝑞)(𝑦) = 𝐶𝑝(𝑦1) sin
(︁𝜋
2
𝑞(𝑦2 − 1)

)︁
= 𝐶𝑝(𝑦1)

(︀
𝐴±
𝑞 (𝑦2 ∓ 1) +𝑂(|𝑦2 ∓ 1|3)

)︀
= 𝜀𝐶𝑝(𝑦1)

(︀
∓ 𝐴±

𝑞 𝜂
±
1 +𝑂(𝜀2|𝜂±1 |3)

)︀
.

(3.7)

Here we use the stretched coordinates (1.15), as well as the function and numbers

𝐶𝑝(𝑦1) = cos
(︁𝜋
2
𝑝(𝑦1 − 1)

)︁
and 𝐴±

𝑞 =
𝜋

2
(±1)𝑞𝑞. (3.8)

The terms of order 𝜀 in (3.7) multiplied by sin(𝜋𝜂±2 ) in according to the ansätze (3.2) is com-
pensated by boundary layer

𝜀 ̃︀𝑤±(𝑦1, 𝜂
±) = ∓𝜀𝐶𝑝(𝑦1)𝐴±

𝑞
̃︁W𝐷(𝜂

±), (3.9)

where ̃︁W𝐷 is an exponentially decaying as 𝜂±1 → +∞ remainder in the solution (2.42) of
problem (2.1)–(2.3)𝐷 for Λ = 𝜋2.
In view of the representation (2.42), the functions (3.9) generate additional remainders in

the boundary Dirichlet conditions on the skewed sides (1.16), which we eliminate by means of
specifying asymptotic ansätze (3.1) and (3.2) by higher–order terms 𝜀𝜇′

(𝑝,𝑞) and 𝜀 sin(𝜋𝜀
−1𝑧)𝑣′(𝑝,𝑞)

respectively, which are determined by the problem

−∆𝑦𝑣
′
(𝑝,𝑞)(𝑦)− 𝜇(𝑝,𝑞)𝑣

′
(𝑝,𝑞)(𝑦) = 𝜇′

(𝑝,𝑞)𝑣(𝑝,𝑞)(𝑦), 𝑦 ∈ □1,

𝑣′(𝑝,𝑞)(𝑦1,±1) = ±C𝐷𝐴
±
𝑞 𝐶𝑝(𝑦1), |𝑦1| < 1, ±

𝜕𝑣′(𝑝,𝑞)
𝜕𝑦1

(±1, 𝑦2) = 0, |𝑦2| < 1.
(3.10)

The coefficient C𝐷 is taken from the representation (2.43) of the function W𝐷, and from the
boundary condition on the end 𝛾 of the semi–strip Π for the exponentially decaying remainder
in this representation ̃︁W𝐷(𝜂) = sin(𝜋𝜂2)

(︀
C𝐷 − 𝜂1) on 𝛾.
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In the case of the simple eigenvalue 𝜇(𝑝,𝑞) the solvability condition of problem (3.10) is the
relation

𝜇′
(𝑝,𝑞) = 𝜇′

(𝑝,𝑞)‖𝑣(𝑝,𝑞);𝐿2(□1)‖2 =
1∫︁

−1

∑︁
±

±
𝜕𝑣(𝑝,𝑞)
𝜕𝑦2

(𝑦)𝑣′(𝑝,𝑞)(𝑦)
⃒⃒⃒
𝑦2=±1

𝑑𝑦1 = C𝐷
𝜋2

2
𝑞2. (3.11)

As a result the number (3.11) and solution of problem (3.10), as well as the boundary layers
(3.9) determine the correctors in the asymptotic ansätze. In the case of a multiple eigenvalue
𝜇(𝑝,𝑞) the procedure of constructing the remainders becomes a little bit more complicated, see
the monographs [22, Ch. 16], [25, Ch. 7] and many separated publications, but we shall not

reproduce the corresponding arguing since in the derivation of estimate for the remainder ̃︀𝜆𝜀(𝑝,𝑞)
in the expansion (1.10) the remainders are not needed.

Remark 3.1. In this and the next section the boundary layers do not appear near the faces
(1.7) of polyhedron (1.4). This fact can be easily explained. We continue the eigenfunctions 𝑢𝜀𝑚
of problem (1.1)–(1.3) evenly via the plane {𝑥 : 𝑦1 = 1} and impose the periodicity conditions

𝑢𝜀(+1, 𝑦2, 𝑧) = 𝑢𝜀(−1, 𝑦2, 𝑧),

𝜕𝑢𝜀

𝜕𝑦1
(+1, 𝑦2, 𝑧) =

𝜕𝑢𝜀

𝜕𝑦1
(−1, 𝑦2, 𝑧), 𝑧 ∈ (0, 𝜀), |𝑦2| < 1− 𝑧,

on the faces of polyhedron {𝑥 : 𝑦1 ∈ (−1, 3), |𝑦2| < 1− 𝑧, 𝑧 ∈ (0, 𝜀)} perpendicular to the abscise
axis. Then the eigenfunctions of the new problem become smooth and periodic in the variable
𝑦1 ∈ [−1, 3], and this dependence is inherited by the eigenfunctions of original problem in Ω𝜀

and hence, the boundary layers can not appear in the direction of the axis 𝑦1.

3.2. Abstract formulation of original problem. In the Hilbert space ℋ𝜀 := 𝐻1
0 (Ω

𝜀; Γ𝜀𝐷)
we introduce the scalar product

⟨𝑢𝜀, 𝜓𝜀⟩𝜀 =
(︀
∇𝑥𝑢

𝜀,∇𝑥𝜓
𝜀
)︀
Ω𝜀 , (3.12)

as well as a positive symmetric continuous and hence self–adjoint operator 𝒯 𝜀,

⟨𝒯 𝜀𝑢𝜀, 𝜓𝜀⟩𝜀 =
(︀
𝑢𝜀, 𝜓𝜀

)︀
Ω𝜀 ∀𝑢𝜀, 𝜓𝜀 ∈ ℋ𝜀. (3.13)

The operator 𝒯 𝜀 is compact and hence, according to Theorems 10.1.5 and 10.2.2 in [30] its
essential spectrum is the single point 𝜏 = 0, while the discrete spectrum forms a monotone
positive infinitesimal sequence of eigenvalues

𝜏 𝜀1 ⩾ 𝜏 𝜀2 ⩾ 𝜏 𝜀3 ⩾ . . . ⩾ 𝜏 𝜀𝑚 ⩾ . . .→ +0. (3.14)

Comparing the formulas (3.12), (3.13) and (1.9), we see that the variational formulation of
problem (1.1)–(1.3) is equivalent to the abstract equation

𝒯 𝜀𝑢𝜀 = 𝜏 𝜀𝑢𝜀 in the space ℋ𝜀

with the spectral parameter

𝜏 𝜀 =
(︀
𝜆𝜀
)︀−1

. (3.15)

Then next statement known as the lemma of almost eigenvalues and eigenvectors, see the
source [45] is ensured by the spectral expansion of resolvent, see, for instance [30, Ch. 6].

Lemma 3.1. Let 𝑈 𝜀 ∈ ℋ𝜀 and 𝑡𝜀 ∈ R+ be such that

‖𝑈 𝜀;ℋ𝜀‖ = 1, ‖𝒯 𝜀𝑈 𝜀 − 𝑡𝜀𝑈 𝜀;ℋ𝜖‖ =: 𝛿𝜀 ∈ [0, 𝑡𝜀). (3.16)

Then the operator 𝒯 𝜀 possesses an eigenvalue 𝜏 𝜀𝑛(𝜀) obeying the inequality⃒⃒
𝑡𝜀 − 𝜏 𝜀𝑛(𝜀)

⃒⃒
⩽ 𝛿𝜀.
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Moreover, for each 𝛿𝜀* ∈ (𝛿𝜀, 𝑡𝜀) there exists the column of coefficients

𝒞𝜀 =
(︀
𝒞𝜀𝒩 𝜀 , . . . , 𝒞𝜀𝒩 𝜀+𝒳 𝜀−1

)︀
,

which satisfies the relations⃦⃦⃦⃦
𝑈 𝜀 −

𝒩 𝜀+𝒳 𝜀−1∑︁
ℓ=𝒩 𝜀

𝒞𝜀ℓ𝒰 𝜀
(ℓ);ℋ𝜀

⃦⃦⃦⃦
⩽ 2

𝛿𝜀

𝛿𝜀*
,

𝒩 𝜀+𝒳 𝜀−1∑︁
ℓ=𝒩 𝜀

⃒⃒
𝒞𝜀ℓ
⃒⃒2

= 1, (3.17)

where 𝜏 𝜀𝒩 𝜀 , . . . , 𝜏 𝜀𝒩 𝜀+𝒳 𝜀−1 is the set of all eigenvalues (3.14) of operator 𝒯 𝜀 in the segment[︀
𝑡𝜀− 𝛿𝜀*, 𝑡

𝜀 + 𝛿𝜀*
]︀
, and the associated eigenvectors 𝒰 𝜀

𝒩 𝜀 , . . . ,𝒰 𝜀
𝒩 𝜀+𝒳 𝜀−1 obey the orthogonality and

normalization conditions ⟨︀
𝒰 𝜀
𝑝 ,𝒰 𝜀

𝑞

⟩︀
𝜀
= 𝛿𝑝,𝑞. (3.18)

3.3. Asymptotics of eigenvalues. As the component of almost eigenpair {𝑡𝜀(𝑝,𝑞);𝑈 𝜀
(𝑝,𝑞)} we

take the expressions

𝑡𝜀(𝑝,𝑞) = 𝜀2
(︀
𝜋2 + 𝜀2𝜇(𝑝,𝑞)

)︀−1
, 𝑈 𝜀

(𝑝,𝑞) = ‖𝑣𝜀(𝑝,𝑞);ℋ𝜀‖−1𝑣𝜀(𝑝,𝑞), (3.19)

and

𝑣𝜀(𝑝,𝑞)(𝑥) = sin
(︁
𝜋
𝑧

𝜀

)︁
𝑋𝜀(𝑦2)

(︁
𝑣(𝑝,𝑞)(𝑦)−

∑︁
±

𝜒±(𝑦2)𝐶𝑝(𝑦1)𝐴
±
𝑞 (𝑦2 ∓ 1)

)︁
+ 𝜀

∑︁
±

∓𝜒±(𝑦2)𝐴
±
𝑞 𝐶𝑝(𝑦1)W𝑞(𝜂

±).
(3.20)

Here the eigenpair (3.4) with the subscripts 𝑝 ∈ N0, 𝑞 ∈ N of problem (3.3) is involved, as well
as the quantities (3.8) and (2.42) and the cut–off functions

𝜒±(𝑦2) = 𝜒(1∓ 𝑦2),

𝑋𝜀(𝑦2) = 1 for |𝑦2| ⩽ 1− 2𝜀 and 𝑋𝜀(𝑦2) = 0 for |𝑦2| ⩾ 1− 𝜀,

𝑋𝜀 ∈ 𝐶∞
𝑐 (R), 0 ⩽ 𝑋𝜀(𝑦2) ⩽ 1,

⃒⃒⃒⃒
𝑑𝑗𝑋𝜀

𝑑𝑦𝑗2
(𝑦2)

⃒⃒⃒⃒
⩽ 𝑐𝑗𝜀

−𝑗, 𝑗 ∈ N0.

(3.21)

We note that first, owing to the choice of ingredients 𝑣𝜀(𝑝,𝑞) and 𝐶𝑝 the function (3.20) fulfils

the boundary conditions (1.2), (1.3), and second

𝜕𝑣𝜀(𝑝,𝑞)
𝜕𝑧

(𝑥)− 𝑣(𝑝,𝑞)(𝑦)
𝜋

𝜀
cos

(︁𝜋
𝜀
𝑧
)︁
= 𝑂

(︀
𝜀+ 𝑒−

1−|𝑦2|
𝜀 max

{︀
1,
(︀
𝜚𝜀±)

− 1
3

}︀)︀
,

where 𝜚𝜀± =
(︀
(|𝑦2| − 1 + 𝜀)2 + 𝑧2)

1
2/𝜀, cf. the expansion (2.4). Thus,⃒⃒⃒

⟨𝑣𝜀(𝑝,𝑞), 𝑣𝜀(𝑚,𝑛)⟩𝜀 −
𝜋2

2𝜀
𝛿𝑝,𝑚𝛿𝑞,𝑛

⃒⃒⃒
⩽ 𝑐𝑝𝑞,𝑚𝑛𝜀,

and, in particular, ⃒⃒⃒
⟨𝑈 𝜀

(𝑝,𝑞), 𝑈
𝜀
(𝑚,𝑛)⟩𝜀 − 𝛿𝑝,𝑚𝛿𝑞,𝑛

⃒⃒⃒
⩽ 𝐶𝑝𝑞,𝑚𝑛𝜀,

‖𝑣𝜀(𝑝,𝑞);ℋ𝜀‖ ⩾ c(𝑝,𝑞)𝜀
− 1

2 , c(𝑝,𝑞) > 0.
(3.22)

We treat the quantity 𝛿𝜀(𝑝,𝑞) from the formula (3.16) calculated by the pair (3.19). We have

𝛿𝜀(𝑝,𝑞) = sup
...

⃒⃒
⟨𝒯 𝜀𝑈 𝜀

(𝑝,𝑞) − 𝑡𝜀(𝑝,𝑞)𝑈
𝜀
(𝑝,𝑞), 𝜓

𝜀⟩𝜀
⃒⃒

= 𝑡𝜀(𝑝,𝑞)‖𝑣𝜀(𝑝,𝑞);ℋ𝜀‖−1 sup
...

⃒⃒
(∇𝑥𝑣

𝜀
(𝑝,𝑞),∇𝑥𝜓

𝜀)Ω𝜀 − (𝜋2𝜀−2 + 𝜇(𝑝,𝑞))(𝑣
𝜀
(𝑝,𝑞), 𝜓

𝜀)Ω𝜀

⃒⃒
= 𝑡𝜀(𝑝,𝑞)‖𝑣𝜀(𝑝,𝑞);ℋ𝜀‖−1 sup

...

⃒⃒
((∆𝑥 + 𝜋2𝜀−2 + 𝜇(𝑝,𝑞))𝑣

𝜀
(𝑝,𝑞), 𝜓

𝜀)Ω𝜀

⃒⃒
.

(3.23)
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Here the supremum is calculated over the unit ball in the space ℋ𝜀, that is, ‖𝜓𝜀;ℋ𝜀‖ ⩽ 1, and
by the one–dimensional Friedrichs inequality the relation

1

𝜀2

∫︁
Ω𝜀

⃒⃒
𝜓𝜀(𝑥)

⃒⃒2
𝑑𝑦𝑑𝑧 ⩽

1

𝜋2

𝜀∫︁
0

∫︁
□1

h𝜀(𝑦2)
−2
⃒⃒
𝜓𝜀(𝑥)

⃒⃒2
𝑑𝑦𝑑𝑧 ⩽

1

𝜋2

⃦⃦⃦𝜕𝜓𝜀
𝜕𝑧

;𝐿2(Ω𝜀)
⃦⃦⃦2

(3.24)

holds. Here h𝜀(𝑦2) = min{𝜀, 1 − |𝑦2|} is the width of the domain (1.4) and □1 is its square
base. Bearing in mind the differential equations satisfied by the functions 𝑣(𝑝,𝑞) and WD and
the formulas (2.42) and (2.43) for the latter function, we find that the first factor

𝐼𝜀(𝑝,𝑞) = (∆𝑥 + 𝜋2𝜀−2 + 𝜇(𝑝,𝑞))𝑣
𝜀
(𝑝,𝑞)

in the last scalar product in (3.24) becomes

𝐼𝜀(𝑝,𝑞) =sin
(︁
𝜋
𝑧

𝜀

)︁[︁ 𝑑2
𝑑𝑦22

, 𝑋𝜀
]︁(︂
𝑣(𝑝,𝑞) −

∑︁
±

𝐶𝑝𝐴
±
𝑞 (𝑦2 ∓ 1)

)︂
+ 𝜀

∑︁
±

𝐴±
𝑞 𝐶𝑝

[︁ 𝑑2
𝑑𝑦22

, 𝜒±

]︁̂︁W𝐷 + 𝜀𝜇(𝑝,𝑞)

∑︁
±

𝐴±
𝑞 𝐶𝑝𝜒±̂︁W𝐷 =: 𝐼1𝜀(𝑝,𝑞) + 𝐼2𝜀(𝑝,𝑞) + 𝐼3𝜀(𝑝,𝑞).

Owing to the Taylor formula (3.7) and the estimate (3.24) we obtain that⃒⃒(︀
𝐼1𝜀(𝑝,𝑞), 𝜓

𝜀
)︀
Ω𝜀

⃒⃒
⩽ 𝑐

(︁
mes3 𝑌

𝜀max
𝑦∈𝑌 𝜀

∑︁
𝑗=0,1

𝜀−2𝑗(1− |𝑦2|)4+2𝑗
)︁ 1

2
sup
...

‖𝜓𝜀;𝐿2(Ω𝜀)‖ ⩽ 𝑐(𝑝,𝑞)𝜀
4.

In the above relations [D, x] is the commutator of the differential operator D with the cut–off
function x, 𝑌 𝜀 is the set

supp |∇𝑥𝑋
𝜀| = {𝑥 : |𝑦1| ⩽ 1, |𝑦2| ∈ [1− 2𝜀, 1− 𝜀], 𝑧 ∈ (0, 𝜀)}

and its volume mes3 𝑌
𝜀 is equal to 4𝜀2. Since mes3 supp |∇𝑥𝜒±| = 𝑂(𝜀) and the function ̂︁W𝐷

is bounded in the semi–strip Π, while its derivative in 𝜂1 decays exponentially at infinity, we
find out that⃒⃒(︀

𝐼2𝜀(𝑝,𝑞), 𝜓
𝜀
)︀
Ω𝜀

⃒⃒
+
⃒⃒(︀
𝐼3𝜀(𝑝,𝑞), 𝜓

𝜀
)︀
Ω𝜀

⃒⃒
⩽𝑐𝜀

(︀(︀
𝜀−2𝑒−

2𝜅
3𝜀 + 1 + 𝜇(𝑝,𝑞)

)︀
mes3 supp |∇𝑥𝜒±|

)︀ 1
2 sup

...
‖𝜓𝜀;𝐿2(Ω𝜀)‖ ⩽ 𝑐(𝑝,𝑞)𝜀

5
2 .

Finally, in view of the formulas (3.19) and (3.22), for the quantity (3.23) we get the estimate

𝛿(𝑝,𝑞) ⩽ 𝑐(𝑝,𝑞)𝜀
2𝜀

1
2 𝜀

5
2 = 𝑐(𝑝,𝑞)𝜀

5, (3.25)

and hence, by Lemma 3.1 there exists an eigenvalue 𝜏𝑛(𝑝,𝑞)(𝜀) of the operator 𝒯 𝜀, which obeys
the inequality ⃒⃒

𝜏 𝜀𝑛(𝑝,𝑞)(𝜀)
− 𝜀2(𝜋2 + 𝜀2𝜇(𝑝,𝑞))

−1
⃒⃒
⩽ 𝑐(𝑝,𝑞)𝜀

5. (3.26)

By the relation (3.15) of spectral parameters this implies⃒⃒
𝜆𝜀𝑛(𝑝,𝑞)(𝜀)

− 𝜀−2𝜋2 − 𝜇(𝑝,𝑞)

⃒⃒
⩽ 𝑐(𝑝,𝑞)𝜀

3𝜆𝜀𝑛(𝑝,𝑞)(𝜀)

(︀
𝜋2 + 𝜀2𝜇(𝑝,𝑞)

)︀
. (3.27)

Moreover,

𝜆𝜀𝑛(𝑝,𝑞)(𝜀)
⩽ 𝜀−2𝜋2 + 𝜇(𝑝,𝑞) + 𝑐(𝑝,𝑞)𝜀

3𝜆𝜀𝑛(𝑝,𝑞)(𝜀)

(︀
𝜋2 + 𝜀2𝜇(𝑝,𝑞)

)︀
⇒ 𝜆𝜀𝑛(𝑝,𝑞)(𝜀)

⩽
2

𝜀2
(︀
𝜋2 + 𝜀2𝜇(𝑝,𝑞)

)︀
for 𝑐(𝑝,𝑞)𝜀

3
(︀
𝜋2 + 𝜀2𝜇(𝑝,𝑞)

)︀
⩽

1

2
.

(3.28)

We hence find ⃒⃒
𝜆𝜀𝑛(𝑝,𝑞)(𝜀)

− 𝜀−2𝜋2 − 𝜇(𝑝,𝑞)

⃒⃒
⩽ 2𝑐(𝑝,𝑞)𝜀

(︀
𝜋2 + 𝜀2𝜇(𝑝,𝑞)

)︀2
(3.29)

or finally ⃒⃒
𝜆𝜀𝑛(𝑝,𝑞)(𝜀)

− 𝜀−2𝜋2 − 𝜇(𝑝,𝑞)

⃒⃒
⩽ 𝐶(𝑝,𝑞)𝜀 as 𝜀 ∈

(︀
0, 𝜀(𝑝,𝑞)

]︀
(3.30)
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with positive quantities 𝐶(𝑝,𝑞) and 𝜀(𝑝,𝑞) chosen in accordance with the formula (3.28).
In order to confirm the coincidence of eigenvalues of problem (1.1)–(1.3) from the formulas

(1.10) and (3.30), we need additional calculations and arguing.
Let us verify that for the eigenvalue 𝜇(𝑝,𝑞) of multiplicity κ(𝑝,𝑞) > 1 there exist at least κ(𝑝,𝑞)

different eigenvalues 𝜆𝜀𝑛(𝑝,𝑞)(𝜀)
, . . . , 𝜆𝜀𝑛(𝑝,𝑞)(𝜀)+κ(𝑝,𝑞)−1 in the sequence (1.8). We employ the second

part of Lemma 3.1 and denote by 𝛿𝜀 the maximal of above treated quantities 𝛿𝜀(𝑝,𝑞), while by 𝛿
𝜀
*

we denote the product 𝑡−1𝛿𝜀 with a factor 𝑡 ∈ (0, 1). Let also 𝒮𝜀𝑛(𝑝,𝑞)(𝜀)+𝑘
, 𝑘 = 0, . . . ,κ(𝑝,𝑞) − 1,

be the sums over ℓ = 𝒩 𝜀, . . . ,𝒩 𝜀 + 𝒳 𝜀 − 1 from the first formula in the list (3.17), and
𝒞𝜀𝑛(𝑝,𝑞)(𝜀)+𝑘

∈ R𝒳 𝜀
the columns of coefficients of these linear combinations; if it is needed, we

add zero terms to align the sizes of columns. Then by the relations (3.18) and (3.22) we find⃒⃒
(𝒞𝜀𝑛(𝑝,𝑞)(𝜀)+𝑗

, 𝒞𝜀𝑛(𝑝,𝑞)(𝜀)+𝑘
)R𝒳𝜀 − 𝛿𝑗,𝑘

⃒⃒
=
⃒⃒
⟨𝒮𝜀𝑛(𝑝,𝑞)(𝜀)+𝑗

,𝒮𝜀𝑛(𝑝,𝑞)(𝜀)+𝑘
⟩𝜀 − 𝛿𝑗,𝑘

⃒⃒
⩽
⃒⃒
⟨𝒮𝜀𝑛(𝑝,𝑞)(𝜀)+𝑗

,𝒮𝜀𝑛(𝑝,𝑞)(𝜀)+𝑗
− 𝑈 𝜀

𝑛(𝑝,𝑞)(𝜀)+𝑘
⟩𝜀
⃒⃒

+
⃒⃒
⟨𝒮𝜀𝑛(𝑝,𝑞)(𝜀)+𝑗

− 𝑈 𝜀
𝑛(𝑝,𝑞)(𝜀)+𝑗

, 𝑈 𝜀
𝑛(𝑝,𝑞)(𝜀)+𝑘

⟩𝜀
⃒⃒

+
⃒⃒
⟨𝑈 𝜀

𝑛(𝑝,𝑞)(𝜀)+𝑗
, 𝑈 𝜀

𝑛(𝑝,𝑞)(𝜀)+𝑘
⟩𝜀 − 𝛿𝑗,𝑘

⃒⃒
⩽ 2𝑡+ 2𝑡+ 𝐶(𝑝,𝑞)𝜀.

Therefore, for small 𝑡 and 𝜀 the columns 𝒞𝜀𝑛(𝑝,𝑞)(𝜀)+1, . . . , 𝒞𝜀𝑛(𝑝,𝑞)(𝜀)+κ(𝑝,𝑞)−1 are almost orthonor-

malized in the Euclidean space R𝒳 𝜀
, and this is possible only in the case

κ(𝑝,𝑞) ⩽ 𝒳 𝜀.

In other words, having fixed appropriate 𝑡 ∈ (0, 1) and 𝜀 ∈ (0, 𝜀(𝑝,𝑞)], we find at least κ(𝑝,𝑞)

different eigenvalues of the operator 𝒯 𝜀 obeying the estimate (3.26) with the enlarged in 𝑡−1

times majorant. By means of the previous calculations (3.27), (3.28) we get that at least κ(𝑝,𝑞)

different terms of the sequence (1.8) satisfy the inequality (3.30) with new positive numbers
𝐶(𝑝,𝑞) and 𝜀(𝑝,𝑞). Using this observation and sorting out the eigenvalues of limiting problem
(3.3) not exceeding 𝜇(𝑝,𝑞), we obtain the apriori estimate for the eigenvalues of original problem
(1.1)–(1.3)

𝜆𝜀𝑚 ⩽ 𝜀−2𝜋2 + 𝑐𝑚. (3.31)

3.4. Convergences. We continue the eigenfunction 𝑢𝜀𝑚, normalized by the identity (1.17)
for 𝑗, 𝑘 = 𝑚, by zero from the polyhedron Ω𝜀 to the parallelepiped

Ω𝜀
□ = (−1, 1)2 × (0, 𝜀)

and define the functions

𝑢𝜀0𝑚(𝑦) =

𝜀∫︁
0

𝑆𝜀(𝑧)𝑢𝜀𝑚(𝑦, 𝑧)𝑑𝑧, 𝑢𝜀⊥𝑚 (𝑦, 𝑧) = 𝑢𝜀𝑚(𝑦, 𝑧)− 𝑆𝜀(𝑧)𝑢𝜀0𝑚(𝑦).

Here

𝑆𝜀(𝑧) =

√︂
2

𝜀
sin

(︁
𝜋
𝑧

𝜀

)︁
. (3.32)

It is clear that the function 𝑢𝜀0𝑚 vanishes on the sides 𝜐±1 of the square □1 = (−1, 1)2 and belongs
to the space 𝐻1

0 (□1; 𝜐
+
1 ∪ 𝜐−1 ); here

𝜐±𝑘 = {𝑦 : |𝑦𝑘| < 1, 𝑦3−𝑘 = ±1}, 𝑘 = 1, 2. (3.33)

Moreover, the orthogonality condition holds
𝜀∫︁

0

𝑆𝜀(𝑧)𝑢𝜀⊥𝑚 (𝑦, 𝑧)𝑑𝑧 = 0 for 𝑦 ∈ □1, (3.34)
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and hence, the Poincaré inequality yields the estimate

‖𝑢𝜀⊥𝑚 ;𝐿2(Ω𝜀
□)‖2 ⩽

𝜀2

4𝜋2
‖𝜕𝑧𝑢𝜀⊥𝑚 ;𝐿2(Ω𝜀

□)‖2. (3.35)

The relations

‖𝑢𝜀𝑚;𝐿2(Ω𝜀
□)‖2 = ‖𝑢𝜀⊥𝑚 ;𝐿2(Ω𝜀

□)‖2 + ‖𝑢𝜀0𝑚 ;𝐿2(□1)‖2,
‖∇𝑦𝑢

𝜀
𝑚;𝐿

2(Ω𝜀
□)‖2 = ‖∇𝑦𝑢

𝜀⊥
𝑚 ;𝐿2(Ω𝜀

□)‖2 + ‖∇𝑦𝑢
𝜀0
𝑚 ;𝐿

2(□1)‖2,

‖𝜕𝑧𝑢𝜀𝑚;𝐿2(Ω𝜀
□)‖2 = ‖𝜕𝑧𝑢𝜀⊥𝑚 ;𝐿2(Ω𝜀

□)‖2 +
𝜀∫︁

0

(︀
𝜕𝑧𝑆

𝜀(𝑧)
)︀2
𝑑𝑧‖𝑢𝜀0𝑚 ;𝐿2(□1)‖2

+ 2

∫︁
Ω𝜀

□

𝜕𝑧𝑢
𝜀⊥
𝑚 (𝑥)𝑢𝜀0𝑚(𝑦)𝜕𝑧𝑆

𝜀(𝑧)𝑑𝑥 = ‖𝜕𝑧𝑢𝜀⊥𝑚 ;𝐿2(Ω𝜀
□)‖2 +

𝜋2

𝜀2
‖𝑢𝜀0𝑚 ;𝐿2(□1)‖2

hold. The latter integral over the parallelepiped Ω𝜀
□ vanishes by means of integration by parts.

Thus, we transform the integral identity (1.9) with the test function 𝜓𝜀 = 𝑢𝜀𝑚 into the form

‖𝜕𝑧𝑢𝜀⊥𝑚 ;𝐿2(Ω𝜀
□)‖2 + ‖∇𝑦𝑢

𝜀⊥
𝑚 ;𝐿2(Ω𝜀

□)‖2 + ‖∇𝑦𝑢
𝜀0
𝑚 ;𝐿

2(□1)‖2

=
(︁
𝜆𝜀𝑚 − 𝜀−2𝜋2

)︁
‖𝑢𝜀0𝑚 ;𝐿2(□1)‖2 + 𝜆𝜀𝑚‖𝑢𝜀⊥𝑚 ;𝐿2(Ω𝜀

□)‖2.

In view of the formulas (3.31) and (3.35) this gives the estimates

‖𝜕𝑧𝑢𝜀⊥𝑚 ;𝐿2(Ω𝜀
□)‖2 − 𝜆𝜀𝑚‖𝑢𝜀⊥𝑚 ;𝐿2(Ω𝜀

□)‖2 + ‖∇𝑦𝑢
𝜀0
𝑚 ;𝐿

2(□1)‖2

⩽
(︀
𝜆𝜀𝑚 − 𝜀−2𝜋2

)︀
‖𝑢𝜀0𝑚 ;𝐿2(□1)‖2 ⩽ 𝑐𝑚‖𝑢𝜀0𝑚 ;𝐿2(□1‖2 ⩽ 𝑐𝑚

⇒ ‖∇𝑦𝑢
𝜀0
𝑚 ;𝐿

2(□1)‖2 ⩽ 𝑐𝑚 and

3
𝜋2

𝜀2
‖𝑢𝜀⊥𝑚 ;𝐿2(Ω𝜀

□)‖2 ⩽
(︁
4
𝜋2

𝜀2
− 𝜆𝜀𝑚

)︁
‖𝑢𝜀⊥𝑚 ;𝐿2(Ω𝜀

□)‖2 ⩽ 𝑐𝑚.

(3.36)

Thus, along some infinitesimal positive sequence {𝜀𝑗}𝑗∈N we have the convergences

𝑢𝜀0𝑚 → 𝑢00𝑚 weakly in 𝐻1
0 (□1; 𝜐

+
1 ∪ 𝜐−1 ) and strongly in 𝐿2(□1),

𝜆𝜀𝑚 − 𝜀−2𝜋2 → 𝜇0
𝑚, ‖𝑢𝜀0𝑚 ;𝐿2(□1)‖ → 1.

(3.37)

Now we substitute the test function 𝜓𝜀 = 𝑆𝜀𝜙 into the integral identity (1.9), where 𝜙 ∈
𝐶∞
𝑐

(︀
□1 ∖ (𝜐+1 ∪ 𝜐−1 )

)︀
. As above, the orthogonality condition (3.34) shows that the right hand

side of the obtained relation(︀
∇𝑦𝑢

𝜀𝑗0
𝑚 ,∇𝑦𝜙

)︀
□1

−
(︀
𝜆𝜀𝑗𝑚 − 𝜀−2𝜋2

)︀(︀
𝑢𝜀𝑗0𝑚 , 𝜙

)︀
□1

=𝜆𝜀𝑗𝑚
(︀
𝑢𝜀𝑗⊥𝑚 , 𝑆𝜀𝜙

)︀
Ω𝜀

□
−

(︀
𝜕𝑧𝑢

𝜀𝑗⊥
𝑚 , 𝜙𝜕𝑧𝑆

𝜀
)︀
Ω𝜀

□
−
(︀
∇𝑦𝑢

𝜀𝑗⊥
𝑚 , 𝑆𝜀∇𝑦𝜙

)︀
Ω𝜀

□

is zero and hence, the convergences (3.37) ensure the integral identity(︀
∇𝑦𝑢

00
𝑚 ,∇𝑦𝜙

)︀
□1

= 𝜇0
𝑚

(︀
𝑢00𝑚 , 𝜙

)︀
□1
,

which serves the limiting problem (3.3) since taking the closure we can pass to the test functions
𝜙 ∈ 𝐻1

0 (□1; 𝜐
+
1 ∪ 𝜐−1 ).

Lemma 3.2. The limits (3.37) provide an eigenpair of the limiting problem (3.3), and the
eigenfunction 𝑢00𝑚 is normalized in the space 𝐿2(□1).
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3.5. Final theorems on asymptotics. We complete the justification of asymptotic for-
mulas. In particular, we need to verify that the index 𝑛(𝑝,𝑞)(𝜀) of the eigenvalue of original
problem (1.1)–(1.3) in the formula (3.30) coincides with the index 𝑚 of the eigenvalue 𝜇(𝑝,𝑞)

of limiting problem (3.3) in the monotone sequence (3.5). The arguing, which led us to the
estimate (3.31), gives the inequality 𝑛(𝑝,𝑞)(𝜀) ⩾ 𝑚. Suppose that 𝑛(𝑝,𝑞)(𝜀) > 𝑚 for an infin-
itesimal positive sequence {𝜀𝑗}𝑗∈N. Then for the indices 𝑗 ∈ N there exist the eigenvalues

𝜆
𝜀𝑗
n𝑗 ⩽ 𝜀−2𝜋2 + 𝜇(𝑝,𝑞) + 𝑐(𝑝,𝑞)𝜀

1
2
𝑗 , the associated eigenfunctions of which satisfy the orthogonality

conditions (︀
𝑢𝜀𝑗n𝑗

, 𝑢𝜀𝑞)Ω𝜀 = 0, 𝑞 = 1, . . . ,𝑚+ κ𝑚 − 1,

where κ𝑚 is the multiplicity of eigenvalue 𝜇𝑚. Hence, the limits (3.37) and estimates
(3.36) provide the eigenvalue 𝜇00 ⩽ 𝜇𝑚 of the problem (3.3), the associated eigenfunction
𝑢00 ∈ 𝐻1

0 (□1; 𝜐
+
1 ∪ 𝜐−1 ) of which is orthogonal in the space 𝐿2(□1) to the eigenfunctions

𝑣1, . . . , 𝑣𝑚−1, 𝑣𝑚, . . . , 𝑣𝑚+κ𝑚−1. This observation contradicts the way of constructing the se-
quence (3.5), that is, we indeed have 𝑛(𝑝,𝑞)(𝜀) = 𝑚. Thus, the following statement hold.

Theorem 3.1. The terms of sequences (1.8) and (3.5) of eigenvalues of problem (1.1)–(1.3)
and (3.3) respectively satisfy the relation⃒⃒⃒

𝜆𝜀𝑚 − 𝜀−2𝜋2 − 𝜇𝑚

⃒⃒⃒
⩽ 𝑐𝑚𝜀 for 𝜀 ∈ (0, 𝜀𝑚],

where 𝑐𝑚 and 𝜀𝑚 are some positive numbers.

We shall formulate the theorem on asymptotics of the eigenfunctions of problem (1.1)–(1.3)
for a simple (𝑝 = 0, 𝑞 ∈ N or 𝑝 = 𝑞 ∈ N) eigenvalue of problem (3.3); the case of a multiple
eigenvalue can be treated in the same way but the final formula becomes not so explicit, while its
derivation in similar situation was published many times. Moreover, in view of the symmetry
of domain (1.4) some multiple eigenvalues (for instance, the pair (𝑝, 𝑞) includes an odd and
an even number) can be split by imposing1 artificial Dirichlet or Neumann conditions on the
sections

Υ𝜀
0𝑘 = {𝑥 ∈ Ω𝜀 : 𝑦𝑘 = 0}, 𝑘 = 1, 2, (3.38)

Theorem 3.2. Let 𝜇𝑚 be a simple eigenvalue of problem (3.3), and 𝑣𝑚 be the associated
eigenfunction (see (3.4)). Then the sign of normalized in the space 𝐿2(Ω𝜀) eigenfunction 𝑢𝜀𝑚 of
problem (1.1)–(1.3) can be chosen so that the asymptotic formula

𝜀
⃦⃦⃦
∇𝑥

(︀
𝑢𝜀𝑚 −

(︁2
𝜀

)︁ 1
2
𝑆𝜀𝑣𝑚

)︁
;𝐿2(Ω𝜀)

⃦⃦⃦
+
⃦⃦⃦
𝑢𝜀𝑚 −

(︁2
𝜀

)︁ 1
2
𝑆𝜀𝑣𝑚;𝐿

2(Ω𝜀)
⃦⃦⃦
⩽ 𝐶𝑚𝜀, (3.39)

holds, where 𝑆𝜀 is the function (3.32), 𝐶𝑚 and 𝜀𝑚 are some positive numbers and 𝜀 ∈ (0, 𝜀𝑚].

Proof. By Theorem 3.1 for some ℎ > 0 the interval
(︀
𝜀−2𝜋2 + 𝜇𝑚 − ℎ, 𝜀−2𝜋2 + 𝜇𝑚 + ℎ

)︀
contains

a unique eigenvalue 𝜆𝜀𝑚. The relation (3.15) of spectral parameters again shows that for some
ℎ > 0 the closed segment[︀

𝜀2(𝜋2 + 𝜀2𝜇𝑚)
−1 − 𝜀4ℎ, 𝜀2(𝜋2 + 𝜀2𝜇𝑚)

−1 + 𝜀4ℎ
]︀

(3.40)

contains the unique eigenvalue 𝜏 𝜀𝑚 of the operator 𝒯 𝜀. In Lemma 3.1 we take the numbers
𝛿𝜀 ⩽ 𝑐𝑚𝜀

5 and 𝛿𝜀* = 𝜀4ℎ from the formulas (3.25) and (3.40). Then the sums in the relations
(3.17) involve a single term, and hence, the inequality⃦⃦

𝑈 𝜀
𝑚 − 𝒞𝑚𝒰 𝜀

𝑚;ℋ𝜀‖ ⩽ 2 (𝛿𝜀*)
−1 𝛿𝜀 ⩽ 2𝑐𝑚ℎ

−1𝜀 (3.41)

holds and 𝒞𝑚 = ±1 depending on the choice of sign of eigenfunction 𝒰 𝜀
𝑚.

It remains to compare the normalization conditions (1.17) and (3.6) of eigenfunctions of
problems (1.1)–(1.3) and (3.3) with the relation (3.18) for the eigenvectors of operator 𝒯 𝜀: the

1This approach is employed in next two sections.
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inequality (3.41) implies the estimate (3.39). We just note that 𝐿2(Ω𝜀)–norm of the subtrahend√︀
2/𝜀𝑆𝜀𝑣𝑚 in the left hand side of (3.39) is equal to 1 +𝑂(𝜀).

4. Localization near thin faces of polyhedron

4.1. Formal asymptotic constructions. In the situation (1.5) we make the rescaling of
coordinates (1.15) and formally let 𝜀 = 0. In the both cases ± the domain (1.4) is transformed
in the set (−1, 1) × Π ∋ (𝑦1, 𝜂1, 𝜂2), where Π is the pointed semi–strip (1.14). On the base of
results in Section 2.1 we admit the asymptotic ansätze

𝜆𝜀(𝑥) =
Λ1

𝜀2
+ 𝜇+ . . . ,

𝑢𝜀(𝑥) = 𝑊1

(︁1∓ 𝑦2
𝜀

,
𝑧

𝜀

)︁
𝑤±(𝑦1) + . . . .

Substituting them into original problem (1.1)–(1.3) and equating the coefficients at the like
powers of small parameter, we find that the factors at 𝜀−2 in the relation (1.1) cancel out,
while the factors at 1 = 𝜀0 form an ordinary differential equation on the segment (−1, 1) ∋ 𝑦1.
Bearing in mind the boundary conditions (1.3) on the faces (1.7) we derive two (𝜗 = ±) limiting
Neumann problems

−𝜕
2𝑤𝜗
𝜕𝑦1

(𝑦1) = 𝜇𝑤𝜗(𝑦1), 𝑦1 ∈ (−1, 1), ±𝜕𝑤𝜗
𝜕𝑦1

(±1) = 0 (4.1)

(cf. Remark 3.1). In what follows we omit the subscript 𝜗. The eigenpairs

{𝜇𝑝;𝑤𝑝} =
{︁𝜋2

4
𝑝2; cos

(︁𝜋
2
𝑝(𝑦1 − 1)

)︁}︁
of problem (4.1) were involved in the expansions (1.12) and (1.13).

4.2. Asymptotics of eigenvalues. In order to simplify the justification of asymptotics, we
use the symmetry of domain (1.4) with respect to the central section Υ𝜀

02 (the rectangle from
the formula (3.38)) and impose artificial boundary conditions

𝜕𝑢𝜀

𝜕𝑥2
(𝑥) = 0 or 𝑢𝜀(𝑥) = 0 for 𝑥 ∈ Υ𝜀

20. (4.2)

We recall that the Neumann conditions are imposed on the entire lateral surface (1.5), that is,
in what follows we suppose that respectively

Γ𝜀𝐷+ = {𝜕Ω𝜀
+ : 𝑧 ̸∈ (0, 𝜀)} or Γ𝜀𝐷+ = {𝜕Ω𝜀

+ : 𝑧 ̸∈ (0, 𝜀)} ∪Υ𝜀
02. (4.3)

At the same time the original problem in the polyhedron Ω𝜀 is restricted to its half

Ω𝜀
+ = {𝑥 ∈ Ω𝜀 : 𝑦2 > 0}.

We shall employ the notation (1.1)–(1.3), (4.2) independently on the choice of artificial bound-
ary condition; it does not influence the asymptotic formulas. At the same time, the even in
the case (4.2)𝑁 and odd in the case (4.2)𝐷 continuation of eigenfunction of this problem from
the domain Ω𝜀

+ through the abscise axis to the domain Ω𝜀 provides a smooth eigenfunction of
original problem (1.1)–(1.3).
We make necessary changes in the definitions in Section 3.2, but we keep the notation for

the Hilbert space ℋ𝜀 with the scalar product ⟨, ⟩𝜀 and the operator 𝒯 𝜀 in ℋ𝜀.
As almost eigenpairs of the problem in Ω𝜀

+ we take

{𝑡𝜀𝑝;𝑈 𝜀
𝑝} =

{︁
𝜀2

(︀
Λ1 + 𝜀2𝜇𝑝

)︀−1
; ‖𝑤𝜀𝑝;ℋ𝜀‖−1𝑤𝜀𝑝

}︁
, (4.4)
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where 𝑝 ∈ N0 = {0, 1, 2, . . . },

𝑤𝜀𝑝(𝑥) = 𝜒+(𝑦2)𝑊1

(︁1− 𝑦2
𝜀

,
𝑧

𝜀

)︁
𝑤𝑝(𝑦1), (4.5)

and {Λ1;𝑊1} and {𝜇𝑝;𝑤𝑝} are the eigenpairs of problems (2.1)–(2.3) and (4.1), respectively.
Finally, 𝜒+ is the cut–off function in the list (3.21).
We note that the constructions (4.4) and (4.5) are same for both cases (4.3) since the bound-

ary conditions on remote from the faces (1.16) part of the boundary 𝜕Ω𝜀
+ do not influence the

leading terms of asymptotics. At the same time, owing to the presence of cut–off function 𝜒+

the only remainder of function (4.5) in the boundary value problem Ω𝜀
+ with the parameter

𝜆𝜀 = 𝜀−2Λ1 + 𝜇𝑝 appears in the differential equation

(∆𝑥 + 𝜀−2Λ1 + 𝜇𝑝)𝑣
𝜀
𝑝(𝑥) =

[︁ 𝜕2
𝜕𝑦22

, 𝜒+(𝑦2)
]︁
𝑊1

(︁1− 𝑦2
𝜀

,
𝑧

𝜀

)︁
𝑤𝑝(𝑦1).

The support of this remainder is located in the set
{︀
𝑥 ∈ Ω𝜀 : 1/3 ⩽ 𝑦2 ⩽ 2/3

}︀
⊃ supp |∇𝑦𝜒+|,

where the factor𝑊1 turns out to be exponentially small in accordance with the expansion (2.7).
We note that

‖𝑣𝜀𝑝;ℋ𝜀‖2 =
1∫︁

−1

|𝑤𝑝(𝑦1)|2𝑑𝑦1
∫︁
Π

⃒⃒
∇𝜂(𝜒(𝜀

−1𝜂1)𝑊1(𝜂))
⃒⃒2
𝑑𝜂 = Λ1 +𝑂(𝑒−𝜅/𝜀) (4.6)

for some 𝜅 > 0, see the representation (2.7), and treat the quantity 𝛿𝜀𝑝 in the formula (3.16)
found by the pair (4.4). We have

𝛿𝜀𝑝 =‖𝒯 𝜀𝑈 𝜀
𝑝 − 𝑡𝜀𝑝𝑈

𝜀
𝑝 ;ℋ𝜀‖ = sup

...

⃒⃒
⟨𝒯 𝜀𝑈 𝜀

𝑝 − 𝑡𝜀𝑝𝑈
𝜀
𝑝 , 𝜓

𝜀⟩𝜀
⃒⃒

=𝑡𝜀𝑝‖𝑣𝜀𝑝;ℋ𝜀‖−1 sup
...

⃒⃒⃒
(∇𝑥𝑣

𝜀
𝑝,∇𝑥𝜓

𝜀)Ω𝜀
+
− (𝜀−2Λ1 + 𝜇𝑝)(𝑣

𝜀
𝑝, 𝜓

𝜀)Ω𝜀
+

⃒⃒⃒
=𝑡𝜀𝑝‖𝑣𝜀𝑝;ℋ𝜀‖−1 sup

...

⃒⃒(︀
𝜒+(∆𝑥 + 𝜀−2Λ1 + 𝜇𝑝)(𝑊1𝑤𝑝), 𝜓

𝜀
)︀
Ω𝜀

+

+ ([∆𝑥, 𝜒+](𝑊1𝑤𝑝), 𝜓
𝜀)Ω𝜀

+

⃒⃒
.

(4.7)

Here the supremum is taken over the unit ball in the space ℋ𝜀, that is, ‖𝜓𝜀;ℋ𝜀‖ ⩽ 1, and
hence,

‖𝜓𝜀;𝐿2(Ω𝜀
+)‖2 ⩽ 𝑐+𝜀

2‖∇𝑥𝜓
𝜀;𝐿2(Ω𝜀

+)‖2 = 𝑐+𝜀
2‖𝜓𝜀;ℋ𝜀‖2 ⩽ 𝑐+𝜀

2, 𝑐+ > 0. (4.8)

We stress that the inequality (4.8) differs from the inequality (3.24) since in the situation (1.5)
the Dirichlet conditions are imposed not on faces (1.16), but the estimate (4.8) is ensured by
Proposition 2.1, where we can take, for instance, 𝑐+ = Λ1/2.
By the definition of the functions 𝑊1 and 𝑤𝑝 the first term in the sum under between the

last modulus in (4.7) is equal to zero. Therefore, according the formulas (4.4)–(4.6), (4.8) and
(2.7), the inequalities

𝛿𝜀𝑝 ⩽ 𝑐′𝑝𝜀
2
(︀
𝜀(1 + 𝜀−2)𝑒−

2𝜅
𝜀

)︀ 1
2 sup

...
‖𝜓𝜀;𝐿2(Ω𝜀

+)‖ ⩽ 𝑐𝑝𝜀
5
2 𝑒−

𝜅
𝜀

hold. Thus, by Lemma 3.1 there exists an eigenvalue 𝜏 𝜀𝑛𝑝(𝜀)
of the operator 𝒯 𝜀, for which the

estimate ⃒⃒
𝜏 𝜀𝑛𝑝(𝜀) − 𝑡𝜀𝑝

⃒⃒
⩽ 𝑐𝑝𝜀

5
2 𝑒−

𝜅
𝜀 (4.9)

is true. As a result, the relation (3.16) of spectral parameters and transformations similar to
(3.26)–(3.29) establish the existence of an eigenvalue 𝜆𝜀𝑛𝑝(𝜀)

of problem (1.1)–(1.3), (4.2) in the
domain Ω𝜀

+ obeying the relation⃒⃒
𝜆𝜀𝐾𝑛𝑝(𝜀) − 𝜀−2Λ1 − 𝜇𝑝

⃒⃒
⩽ 𝐶𝑝𝜀

− 3
2 𝑒−

𝜅
𝜀 for 𝜀 ∈ (0, 𝜀𝑝]. (4.10)
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Here 𝐶𝑝 and 𝜀𝑝 are some positive numbers. We note that the relations (4.9) and (4.10) concern
both artificial consitions (4.2), that is, the formula (4.10) provides two eigenvalues of the original
problem in the entire domain Ω𝜀.

4.3. Convergences. The change of coordinates (1.15) with the plus sign, which we omit in

what follows, transforms the domain Ω𝜀
+ into the set (−1, 1)×Π

1
𝜀 , and Proposition 2.1 for each

ℎ > 0 and small 𝜀 ∈ (0, 𝜀ℎ], 𝜀ℎ > 0, gives the inequality

𝜀−2(Λ1 − ℎ)‖𝜓𝜀;𝐿2(Ω𝜀
+)‖2 ⩽ ‖∇𝑥𝜓

𝜀;𝐿2(Ω𝜀
+)‖2 ∀𝜓𝜀 ∈ 𝐻1

0 (Ω
𝜀
+; Γ

𝜀
𝐷+). (4.11)

In the integral identity (1.9) corresponding to the problem (1.1)–(1.3), (4.2), we substitute the
test function 𝜓𝜀 = 𝐸𝜀

𝜅u
𝜀
𝑚, where u𝜀𝑚(𝑥) = 𝐸𝜀

𝜅(𝑦)𝑢
𝜀
𝑚(𝑥) and

𝐸𝜀
𝜅(𝑦) =

{︃
𝑒

𝜅
𝜀
(1−𝑦2) for 𝑦2 ⩽ 1− 𝜀,

𝑒𝜅 for 𝑦2 ⩾ 1− 𝜀,
(4.12)

and 𝑢𝜀𝑚 is a normalized in 𝐿2(Ω𝜀
+) eigenfunction associated with some eigenvalue

𝜆𝜀𝑚 ⩽ 𝜀−2Λ1 + c𝑚. (4.13)

At the same time c𝑚 ⩾ 0, and 𝜀 > 0 is a temporarily fixed small value of geometric parameter.
In particular, the eigenvalues appearing in the estimate (4.10) satisfy the condition (4.13).
Several times commuting the operator–gradient ∇𝑥 with the weight function 𝐸𝜀

𝜅, we arrive
at the identity

‖∇𝑥u
𝜀
𝑚;𝐿

2(Ω𝜀
+)‖2 − ‖u𝜀𝑚𝐸𝜀

−𝜅∇𝑦𝐸
𝜀
𝜅;𝐿

2(Ω𝜀
+)‖2 = 𝜆𝜀𝑚‖u𝜀𝑚;𝐿2(Ω𝜀

+)‖2. (4.14)

We note that

𝐸𝜀
−𝜅(𝑦)

⃒⃒
∇𝑥𝐸

𝜀
𝜅(𝑦)

⃒⃒
=

{︃𝜅
𝜀

for 𝑦2 ⩽ 1− 𝜀,

0 for 𝑦2 ⩾ 1− 𝜀,
(4.15)

and reproduce with some changes the calculations presented in Section 2.4. As a result, the
formulas (4.11)–(4.14) imply the following weight estimate indicating the concentration of the
eigenfunctions of both problems in the domain Ω𝜀

+ near its face Γ𝜀+.

Theorem 4.1. If an eigenvalue 𝜆𝜀𝑚 of problem (1.1)–(1.3), (4.2) obeys the relation (4.13),
then the associated normalized in 𝐿2(Ω𝜀

+) eigenfunction 𝑢
𝜀
𝑚 satisfies the estimate

‖𝐸𝜀
𝜅∇𝑥𝑢

𝜀
𝑚;𝐿

2(Ω𝜀
+)‖2 + 𝜀−2‖𝐸𝜀

𝜅𝑢
𝜀
𝑚;𝐿

2(Ω𝜀
+)‖2 ⩽ 𝜀−2C𝑚 for 𝜀 ∈ (0, 𝜀𝑚], (4.16)

where 𝐸𝜀
𝜅(𝑦) is the weight factor (4.12), and 𝜅 and C𝑚, 𝜀𝑚 are some positive numbers.

Proof. We introduce a thin triangular prism △𝜀
+= {𝑥 ∈ Ω𝜀

+ : 𝑦2 > 1−𝜀}. The difference Ω𝜀
+∖△𝜀

+

is a parallelepiped of height 𝜀, and the Dirichlet conditions on its bases ensure the Friedrichs
inequality

‖u𝜀𝑚;𝐿2(Ω𝜀
+∖ △𝜀

+)‖2 ⩽
𝜀2

𝜋2
‖∇𝑥u

𝜀
𝑚;𝐿

2(Ω𝜀
+∖ △𝜀

+)‖2. (4.17)

We have

𝜀−2Λ1𝑒
2𝜅 ⩾𝜀−2Λ1𝑒

2𝜅‖𝑢𝜀𝑚;𝐿2(△𝜀
+ ‖2 ⩾ 𝜀−2Λ1‖u𝜀𝑚;𝐿2(△𝜀

+ ‖2

=‖∇𝑥u
𝜀
𝑚;𝐿

2(Ω𝜀
+)‖2 − ‖u𝜀𝑚𝐸𝜀

−𝜅∇𝑦𝐸
𝜀
𝜅;𝐿

2(Ω𝜀
+∖ △𝜀

+)‖2 − 𝜆𝜀𝑚‖u𝜀𝑚;𝐿2(Ω𝜀
+∖ △𝜀

+)‖2

−
(︀
𝜆𝜀𝑚 − 𝜀−2Λ1

)︀
‖u𝜀𝑚;𝐿2(△𝜀

+)‖2 ⩾ 𝛿‖∇𝑥u
𝜀
𝑚;𝐿

2(Ω𝜀
+)‖2

+
(︁
(1− 𝛿)

𝜋2

𝜀2
− 𝜅2

𝜀2
− 𝜆𝜀𝑚

)︁
‖u𝜀𝑚;𝐿2(Ω𝜀

+∖ △𝜀
+)‖2 + c𝑚‖u𝜀𝑚;𝐿2(△𝜀

+)‖2.

Here we have used the formulas (4.15) and (4.17), (4.11). It remains to choose small positive
quantities 𝛿 and 𝜅 so that the last factor at the norm ‖u𝜀𝑚;𝐿2(Ω𝜀

+∖ △𝜀
+)‖ exceeds (2𝜀)−2(𝜋2−Λ1).

To estimate the first term in the left hand side of (4.16) we once again make the commutation,
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take into consideration the formula (4.15) and impose the restriction 𝜀 ∈ (0, 𝜀𝑚]. The proof is
complete.

By Remark 3.1 the eigenfunction 𝑢𝜀𝑚 depends smoothly on the variable 𝑦1. We introduce the
functions

𝑤𝜀0𝑚 (𝑦1) =
1

𝜀

∫︁
Π

𝑊1(𝜂)𝜒(𝜀𝜂1)𝑢
𝜀
𝑚

(︀
𝑦1, 1− 𝜀𝜂1, 𝜀𝜂2)𝑑𝜂,

𝑤𝜀⊥𝑚 (𝑦1, 𝜂) = 𝜒(𝜀𝜂1)𝜀
−1𝑢𝜀𝑚

(︀
𝑦1, 1− 𝜀𝜂1, 𝜀𝜂2)−𝑊1(𝜂)𝑤

𝜀0
𝑚 (𝑦1).

(4.18)

We recall that 𝜒(𝜀𝜂1) = 𝜒+(𝑦1). By the conditions (2.6) and definitions (4.18) the orthogonality
condition ∫︁

Π

𝑊1(𝜂)𝑤
𝜀⊥
𝑚 (𝑦1, 𝜂)𝑑𝜂 = 0 (4.19)

holds, and hence, in view of Lemma 2.1, we get the inequalities

Λ⊥‖𝑤𝜀⊥𝑚 (𝑦1, ·);𝐿2(Π)‖2 ⩽ ‖∇𝜂𝑤
𝜀⊥
𝑚 (𝑦1, ·);𝐿2(Π)‖2

for all 𝑦1 ∈ (−1, 1) and some Λ⊥ ∈ (Λ1, 𝜋
2].

(4.20)

According to the normalization (1.17), Theorem 4.1 and relation (4.19) we have

1 +𝑂(𝑒−
𝜅
3𝜀 ) = ‖𝜒+𝑢

𝜀
𝑚;𝐿

2(Ω𝜀
+)‖2 = ‖𝑤𝜀0𝑚 + 𝑤𝜀⊥𝑚 ;𝐿2((−1, 1)× Π)‖2

= ‖𝑤𝜀0𝑚 ;𝐿2(−1, 1)‖2 + ‖𝑤𝜀⊥𝑚 ;𝐿2((−1, 1)× Π)‖2.
(4.21)

We transform the integral identity with the test function 𝜀−2𝜒2
+𝑢

𝜀
𝑚 ∈ 𝐻1

0 (Ω
𝜀
+; Γ

𝜀
𝐷+) into the

form

𝜀−2
(︀
𝑢𝜀𝑚∇𝑥𝜒+,∇𝑥(𝜒+𝑢

𝜀
𝑚)

)︀
Ω𝜀

+
− 𝜀−2

(︀
𝜒+∇𝑥𝑢

𝜀
𝑚, 𝑢

𝜀
𝑚∇𝑥𝜒+

)︀
Ω𝜀

+

=𝜀−2‖∇𝑥(𝜒+𝑢
𝜀
𝑚);𝐿

2(Ω𝜀
+)‖2 − 𝜀−2𝜆𝜀𝑚‖𝜒+𝑢

𝜀
𝑚;𝐿

2(Ω𝜀
+)‖2

=𝜀−2‖∇𝜂(𝑊1𝑤
𝜀0
𝑚 + 𝑤𝜀⊥𝑚 );𝐿2(Ω𝜀

+)‖2 − 𝜆𝜀𝑚‖𝑊1𝑤
𝜀0
𝑚 + 𝑤𝜀⊥𝑚 ;𝐿2(Ω𝜀

+)‖2

+ 𝜀−2

⃦⃦⃦⃦
𝜕(𝜒+𝑢

𝜀
𝑚)

𝜕𝑦1
;𝐿2(Ω𝜀

+)

⃦⃦⃦⃦2

=‖𝑤𝜀0𝑚 ;𝐿2(−1, 1)‖2‖∇𝜂𝑊1;𝐿
2(Π)‖2 − 𝜀2𝜆𝜀𝑚‖𝑤𝜀0𝑝 ;𝐿2(−1, 1)‖2

+ ‖∇𝜂𝑤
𝜀⊥
𝑚 ;𝐿2((−1, 1)× Π)‖2 − 𝜀2𝜆𝜀𝑚‖𝑤𝜀⊥𝑚 ;𝐿2((−1, 1)× Π)‖2

+ 2

1∫︁
−1

𝑤𝜀0𝑚 (𝑦1)

∫︁
Π

∇𝜂𝑊1(𝜂)∇𝜂𝑤
𝜀⊥
𝑚 (𝑦1, 𝜂)𝑑𝜂𝑑𝑦1 +

1

𝜀2

⃦⃦⃦ 𝜕

𝜕𝑦1

(︀
𝜒+𝑢

𝜀
𝑚

)︀
;𝐿2(Ω𝜀

+)
⃦⃦⃦2

.

(4.22)

The estimate (4.16) shows that the absolute value of left hand side in the identity (4.22) does

not exceed the quantity 𝑐𝑝𝜀
−3𝑒−

2𝜅
3𝜀 . The integral over the set (−1, 1)×Π (the penultimate term

in (4.22)) is eliminated by means of integration by parts, the Helmholtz equation for the factor
𝑊1 and the orthogonality condition (4.19). We neglect the last term since it is not needed.
Thus, by the formula (4.20) and restriction (4.13) we obtain the estimate

𝑐⊥𝑚‖𝑤𝜀⊥𝑚 ;𝐿2((−1, 1)× Π)‖2 ⩽ (Λ⊥ − 𝜀2𝜆𝜀𝑚)‖𝑤𝜀⊥𝑚 ;𝐿2((−1, 1)× Π)‖2

⩽ (𝜀2𝜆𝜀𝑚 − Λ1)‖𝑤𝜀0𝑚 ;𝐿2(−1, 1)‖2 + 𝑐𝑚𝜀
−3𝑒−

2𝜅
3𝜀 ⩽ 𝐶𝑚𝜀

2
(4.23)

with some independent of the small parameter 𝜀 ∈ (0, 𝜀𝑚] factor

𝑐⊥𝑚(Λ⊥ − Λ1)

2
> 0.
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The made calculations show that on an infinitesimal positive sequence {𝜀𝑗}𝑗∈N the conver-
gences

𝜆𝜀𝑚 − 𝜀−2Λ1 → 𝜇00
𝑚 ,

𝑤𝜀0𝑚 → 𝑤00
𝑚 strongly in 𝐿2(−1, 1), and ‖𝑤00

𝑚 ;𝐿2(−1, 1)‖ = 1
(4.24)

hold.
We take some infinitely differentiable function Ψ of the variable 𝑦1 ∈ [−1, 1] obeying the

conditions

± 𝑑Ψ

𝑑𝑦1
(±1) = 0, (4.25)

and multiply the Helmoholtz equation for the eigenpair {𝜆𝜀𝑚;𝑢𝜀𝑚} by 𝜀−1𝜒+𝑊1Ψ. Integrating
by parts in the domain Ω𝜀

+ and differentiating, we obtain the identity

1∫︁
−1

(︂(︁
𝜆𝜀𝑚 − Λ1

𝜀2

)︁
Ψ(𝑦1) +

𝑑2Ψ

𝑑𝑦21
(𝑦1)

)︂
1

𝜀

∫︁
Π

𝑊1(𝜂)𝜒+(𝑦2)𝑢
𝜀
𝑚(𝑦, 𝑧)𝑑𝑦1𝑑𝑧𝑑𝑦1

=
1

𝜀

∫︁
Ω𝜀

+

Ψ(𝑦1)𝑢
𝜀
𝑚(𝑥)

[︁ 𝑑2
𝑑𝑦22

, 𝜒+(𝑦2)
]︁
𝑊1(𝜂)𝑑𝑥.

The right hand side is infinitesimal as 𝜀 → +0 due to the exponential decay of the functions
𝑢𝜀𝑚 and 𝑊1 (Theorem 4.1 and the formula (2.7)). The convergences (4.24) allow us to pass to
the limit in the left hand side and in view of the first definition (4.18) we get the relation

1∫︁
−1

𝑤00
𝑚 (𝑦1)

(︁
𝜇00
𝑚Ψ(𝑦1) +

𝑑2Ψ

𝑑𝑦21
(𝑦1)

)︁
𝑑𝑦1 = 0,

which in view of the arbitrariness of the test function Ψ ∈ 𝐶∞[−1, 1] obeying only the bound-
ary conditions (4.24), imply the inclusions 𝑤00

𝑚 ∈ 𝐻2(−1, 1) and the differential equation and
boundary conditions in the problem (4.1) (cf. the smoothness improving in [15, Ch. 2]).

Lemma 4.1. The limits (4.24) provide an eigenpair {𝜇00
𝑚 ;𝑤00

𝑚 } of the limiting problem
(4.1) and by the formulas (4.21) and (4.23) the eigenfunction 𝑤00

𝑝 is normalized in the space
𝐿2(−1, 1).

4.4. Theorem on asymptotics. The already standard arguing from Section 3.5 with sim-
plifications caused by imposing the artificial boundary conditions (4.2) and the simplicity of
eigenvalues of limiting problem (4.1) lead us to the following statements on the eigenpairs of
the original problem (1.1)–(1.3) in the entire domain Ω𝜀.

Theorem 4.2. In the situation (1.5) for each 𝑝 ∈ N there exist positive quantities 𝑐𝑝, 𝐶𝑝
and 𝜀𝑝 such that for 𝜀 ∈ (0, 𝜀𝑝] the eigenvalues 𝜆𝜀(𝑝,1) := 𝜆𝜀2𝑝 and 𝜆𝜀(𝑝,2) := 𝜆𝜀2𝑝−1 in the sequence

(1.8) obey the representation (1.12), where the absolute values of the remainders ̃︀𝜆𝜀(𝑝,𝑗) do no

exceed the expression 𝑐𝑝𝜀
− 3

2 𝑒−
𝜅
𝜀 , while the normalized in 𝐿2(Ω𝜀) eigenfunctions 𝑢𝜀𝑝,1 = 𝑢𝜀2𝑝 and

𝑢𝜀𝑝,2 = 𝑢𝜀2𝑝−1, even and odd in the variable 𝑦2, obey the representations (1.13) with 𝐾±
𝑝,1 = 2−

1
2 ,

𝐾±
𝑝,2 = ±2−

1
2 and

𝜀
⃦⃦
∇𝑥̃︀𝑢𝜀𝑝,𝑗;𝐿2(Ω𝜀)‖+

⃦⃦̃︀𝑢𝜀𝑝,𝑗;𝐿2(Ω𝜀)‖ ⩽ 𝐶𝑝𝜀
− 3

2 𝑒−
𝜅
𝜀 .

The formulas (1.12) and (1.13) involve the eigenpair {Λ1;𝑊1} of problem (2.1)–(1.13) given
by Lemma 2.1.
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4.5. Other asymptotic series of eigenvalues. The formal asymptotic constructions from
Section 3.1 can be easily adapted for the problem (1.1)–(1.3) in the situation (1.5), and as
a result, for the terms of asymptotic ansätze (3.1) and (3.2) we derive the limiting problem
(3.3). A bit unexpected fact is that despite the Neumann condition (1.3) on the faces Γ𝜀±,
the Dirichlet condition is preserved on the sides 𝜐±1 of square □1 (cf. the formulas (1.16)
and (3.33)). The reason is that according to the general principles in [22, Ch. 16] and [41],
the boundary conditions in the limiting problem for the thin domain are determined by the
phenomenon of threshold resonance in the problem on boundary layer and not by the type of
boundary conditions on the end. Such resonance is absent in both problems (2.1)–(2.3)𝑁,𝐷 on
the semi–strip Π (see Section 2.5), and this ensures the Dirichlet condition on the sides 𝜐±1 in
both situations.

Remark 4.1. For the same conclusion on the limiting boundary conditions on 𝜐±1 one can
employ the method of composite asymptotic expansions and the method of matching asymptotic
expansions, see, for instance, the monographs [22], [24] and [46], [47], respectively. Indeed, the
leading term in the remainder of sin(𝜋𝑧/𝜀)𝑣(𝑦) in the boundary condition (1.3) on the face Γ𝜀±
is equal to 2−

1
2𝜋𝜀−1 cos(𝜋𝑧/𝜀)𝑣(𝑦) and in the first method, to lessen the remainder, exactly the

Dirichlet condition is needed. In the framework of the second method one needs to match the
expression sin(𝜋𝑧/𝜀)𝑣(𝑦1,±1) with some solution of the problem (2.1)–(2.3)𝑁 in the semi–strip
Π, but because of the absence of threshold resonance, this problem has only the trivial bounded
solution and this is why we have to let 𝑣(𝑦1,±1) = 0.

Reproducing the calculations and arguing from Section 3.3 and using the function W𝑁

instead of the function W𝐷 (see the formula (2.42) in Remark 2.2), we obtain the following
statement.

Theorem 4.3. For each 𝑚 ∈ N there exist positive quantities 𝑐𝑚 and 𝜀𝑚 and the index
𝑛𝑚(𝜀) ∈ N such the eigenvalue of problem (1.1)–(1.3) satisfies the relation⃒⃒⃒

𝜆𝜀𝑛𝑚(𝜀) − 𝜀−2𝜋2 − 𝜇𝑚

⃒⃒⃒
⩽ 𝑐𝑚𝜀 for 𝜀 ∈ (0, 𝜀𝑚], (4.26)

where 𝜇𝑚 is the term in the sequence (3.5) of limiting problem (3.3) on the square □1.

In contrast to Theorem 3.1, in Theorem 4.3 the index 𝑛𝑚(𝜀) of eigenvalue 𝜆
𝜀
𝑛𝑚(𝜀) appearing in

the formula (4.26) is not defined. This is explained by the fact that according to Theorem 4.2,
the sequence (1.8) contains eigenvalues of order 𝜀−2Λ1, which is smaller that 𝜀−2𝜋2, and the total
amount of such numbers in the interval (0, 𝜀−2𝜋2) increases unboundedly as 𝜀→ +0. Thus, the
index 𝑛𝑚(𝜀) depends on the parameter 𝜀 and also tends to infinity as the parameters decreases.
In other words, Theorems 4.2 and 4.3 describe different asymptotics of eigenvalues of problem
(1.1)–(1.3) from formally low– and middle–frequences ranges of the spectrum, respectively.

5. Localization near short edges of polyhedron

5.1. Formal asymptotic constructions. Now the domain Ω𝜀 on Fig. 3a is defined by the
formula (1.23), and to simplify the asymptotic procedures on both central sections (3.38) we
impose the artificial Dirichlet or Neumann conditions; totally four options. We restrict the
problem (1.1)–(1.3) to the subdomain Ω𝜀

# = {𝑥 ∈ Ω𝜀 : 𝑦𝑗 < 0, 𝑗 = 1, 2} and assign the
subscript # to its index and the attributes; the type of artificial boundary conditions does not
influence further arguing, calculations and results. The objects introduced in Section 3.2 for
this problem are also equipped by the subscript # and as the almost eigenpair we take{︀

𝑡𝜀1#;𝑈
𝜀
1#(𝑥)

}︀
=

{︀
𝜀2𝑀−1

1 ; ‖𝜒#𝑉1;ℋ𝜀‖−1𝜒#(𝑦)𝑉1(𝜉)
}︀
. (5.1)
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Here {𝑀1;𝑉1} is the eigenpair of problem (2.13) in the quarter of layer (1.20) presented by
Theorem 2.2, the rescaled variables 𝜉 are of form (2.12) and 𝜒#(𝑦) = 𝜒(𝑟), while 𝑟 = |𝑦−𝒫−−|
is the polar radius, 𝒫−− = (−1,−1) is the vertex of square□1 and 𝜒 is the cut–off function (2.5).
By Theorem 2.3 the normalized in 𝐿2(Ξ) eigenfunction 𝑉1 decays exponentially as |𝜉| → +∞
and hence, the relations

‖𝜒#𝑉1;ℋ𝜀‖2 = 𝜀
(︀
𝑀1 +𝑂(𝑒−

𝜅
𝜀 )
)︀
,

‖(∆𝑥 + 𝜀−2𝑀1)(𝜒#𝑉1);𝐿
2(Ω𝜀

#)‖2 = ‖[∆𝑥, 𝜒#]𝑉1;𝐿
2(Ω𝜀

#)‖2

⩽ 𝑐𝜀
(︀
𝜀−2 + 1

)︀
𝑒−

2𝜅
3𝜀 ⩽ 𝐶𝜀−1𝑒−

2𝜅
3𝜀 ,

are true, where 𝜅 > 0 is the exponent from the formula (2.35). Thus, Lemma 3.1 provides an
eigenvalue of the operator 𝒯 𝜀 obeying the inequality⃒⃒

𝜏 𝜀𝑛(𝜀)# − 𝜀2𝑀−1
1

⃒⃒
⩽ 𝑐𝜀𝑒−

𝜅
3𝜀 .

Owing to the relation (3.16) of spectral parameters, similar to (3.26)–(3.29) calculations show
that ⃒⃒

𝜆𝜀𝑛(𝜀)# − 𝜀−2𝑀1

⃒⃒
⩽ 𝑐1𝜀

−3𝑒−
𝜅
3𝜀 quad 𝜀 ∈ (0, 𝜀1], (5.2)

and 𝑐1 and 𝜀1 are some positive numbers.

5.2. Justification of asymptotics. Since the multiplicity of discrete spectrum of problem
(2.13) remains unknown, the usual way of confirming the identity 𝑛(𝜀) = 1 in the estimate
(5.2), in particular, of proving the convergence theorem, is not appropriate. We follow another
way.
First of all, by the minimax principle [30, Thm. 10.2.1] we get the relation

𝜆𝜀1 = min
𝜓𝜀∈ℋ𝜀

‖∇𝑥𝜓
𝜀;𝐿2(Ω𝜀

#)‖2

‖𝜓𝜀;𝐿2(Ω𝜀
#)‖2

⩽
‖∇𝑥(𝜒#𝑉1);𝐿

2(Ω𝜀
#)‖2

‖𝜒#𝑉1;𝐿2(Ω𝜀
#)‖2

⩽
𝜀‖∇𝜉𝑉1;𝐿

2(Ξ)‖2 + 𝑐1𝑉 𝜀𝑒
− 2𝜅

3𝜀

𝜀3‖𝑉1;𝐿2(Ξ)‖2 + 𝑐0𝑉 𝜀𝑒
− 2𝜅

3𝜀

⩽
1

𝜀2
(︀
𝑀1 + 𝐶𝑉 𝜀

−2𝑒−
𝜅
3𝜀

)︀
.

(5.3)

Now we are going to make sure that the eigenfunctions 𝑢𝜀𝑚# fast decays far from the point
𝒫++; the method of verifying this property echoes the proofs of Theorems 2.3 and 4.1.

Theorem 5.1. Let 𝜆𝜀𝑚# be an eigenvalue of problem (1.1)–(1.3)# in the subdomain Ω𝜀
# with

some artificial boundary conditions and the inequality

𝜀2𝜆𝜀𝑚# ⩽ Λ1 − 𝛿# for 𝛿# > 0

holds. Then the associated normalized in the space 𝐿2(Ω𝜀
#) eigenfunction 𝑢

𝜀
𝑚# the weight esti-

mate

‖𝑒
𝜅𝑚#𝑟

𝜀 ∇𝑥𝑢
𝜀
𝑚#;𝐿

2(Ω𝜀
#)‖2 + 𝜀−2‖𝑒

𝜅𝑚#𝑟

𝜀 𝑢𝜀𝑚#;𝐿
2(Ω𝜀

#)‖2 ⩽ 𝐶𝑚#𝜀
−2, (5.4)

holds, where 𝜀 ∈ (0, 𝜀𝑚#], and 𝜅𝑚#, 𝜀𝑚# and 𝐶𝑚# are some positive numbers.

Proof. In the integral identity (1.9)# corresponding to the problem (1.1)–(1.3)# in the domain

Ω𝜀
# we substitute the product 𝜓𝜀 = 𝑒

2𝜅𝑟
𝜀 𝑢𝜀𝑚# with some exponent 𝜅 > 0 and after simple

transformations for the function u𝜀𝑚 = 𝑒
𝜅𝑟
𝜀 𝑢𝜀𝑚# we obtain the identity

‖∇𝑥u
𝜀
𝑚;𝐿

2(Ω𝜀
#)‖2 − ‖u𝜀𝑚𝑒−

𝜅𝑟
𝜀 ∇𝑥𝑒

𝜅𝑟
𝜀 ;𝐿2(Ω𝜀

#)‖2 = 𝜆𝜀𝑚#‖u𝜀𝑚;𝐿2(Ω𝜀
#)‖2. (5.5)

We note that

𝑒−
𝜅𝑟
𝜀 |∇𝑥𝑒

𝜅𝑟
𝜀 | = 𝜅𝜀−1, (5.6)
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and partition the set Ω𝜀
# into four parts, namely, Ξ𝜀(𝑅) = {𝑥 : 𝜉 ∈ Ξ(𝑅)} (cf. Definition

(2.23)), 𝐾𝜀
𝑅 = Ω𝜀

# ∖ (Σ1𝜀
𝑅 ∪ Σ2𝜀

𝑅 ) and

Σ1𝜀
𝑅 = {𝑥 ∈ Ω𝜀

# : 1 + 𝑦1 > 𝜀(𝑅− 1), 1 + 𝑦2 < 𝜀𝑅},
Σ2𝜀
𝑅 = {𝑥 ∈ Ω𝜀

# : 1 + 𝑦1 < 𝜀(𝑅− 1), 1 + 𝑦2 > 𝜀𝑅}.
As in Section 2.4, the size 𝑅 > 1 is chosen so that in view of Proposition 2.1 to satisfy the
estimates

1

𝜀2

(︁
Λ1 −

𝛿#
2

)︁
‖u𝜀𝑚;𝐿2(Σ𝑗𝜀

𝑅 )‖
2 ⩽ ‖∇𝑥u

𝜀
𝑚;𝐿

2(Σ𝑗𝜀
𝑅 )‖

2, 𝑗 = 1, 2.

Moreover, the one–dimensional Friedrichs inequality on the segment (0, 𝜀) ∋ 𝑧 shows that

‖u𝜀𝑚;𝐿2(𝐾𝜀
𝑅)‖2 ⩽

𝜀2

𝜋2
‖𝜕𝑧u𝜀𝑚;𝐿2(𝐾𝜀

𝑅)‖2.

Now the formulas (5.5) and (5.6) imply the relation

𝑒2
√
2𝜅𝑅

(︀
𝜆𝜀𝑚# + 𝜅2𝜀−2

)︀
⩾𝑒2

√
2𝜅𝑅

(︀
𝜆𝜀𝑚# + 𝜅2𝜀−2

)︀
‖𝑢𝜀𝑚#;𝐿

2(Ξ𝜀(𝑅))‖2

⩾
(︀
𝜆𝜀𝑚# + 𝜅2𝜀−2

)︀
‖u𝜀𝑚;𝐿2(Ξ𝜀(𝑅))‖2 = ‖∇𝑥u

𝜀
𝑚;𝐿

2(Ω𝜀
#)‖2

− 𝜆𝜀𝑚#‖u𝜀𝑚;𝐿2(Ω𝜀
# ∖ Ξ𝜀(𝑅))‖2 − ‖u𝜀𝑚𝑒−

𝜅𝑟
𝜀 ∇𝑥𝑒

𝜅𝑟
𝜀 ;𝐿2(Ω𝜀

# ∖ Ξ𝜀(𝑅))‖2

⩾𝛿‖∇𝑥u
𝜀
𝑚;𝐿

2(Ω𝜀
#)‖2 +

(︁
(1− 𝛿)

𝜋2

𝜀2
− 𝜆𝜀𝑚# − 𝜅2

𝜀2

)︁
‖u𝜀𝑚;𝐿2(𝐾𝜀

𝑅)‖2

+
(︁1− 𝛿

𝜀2

(︁
Λ1 −

𝛿#
2

)︁
− 𝜆𝜀𝑚# − 𝜅2

𝜀2

)︁ ∑︁
𝑗=1,2

‖u𝜀𝑚;𝐿2(Σ𝑗𝜀
𝑅 )‖

2.

It remains to take positive 𝛿 = 𝛿𝑚# > 0 and 𝜅 = 𝜅𝑚# > 0 so small that the coefficients at
the squares of Lebesgue norms of the functions u𝜀𝑚 in the right hand side exceed the quantity
𝑐𝛿,𝜅𝜀

−2 with some factor 𝑐𝛿,𝜅 > 0. The proof is complete.

Now we apply the minimax principle [30, Thm. 10.2.1] to the operator of problem (2.13) in
the quarter of layer Ξ

𝑀1 = min
Ψ∈𝐻1(Ξ;ϒ)

‖∇𝜉Ψ;𝐿2(Ξ)‖2

‖Ψ;𝐿2(Ξ)‖2
. (5.7)

As the test function we take the function Ξ ∋ 𝜉 ↦→ Ψ𝜀(𝜉) = 𝜒#(𝑦)𝑢
𝜀
1#(𝑥) (the relation between

the coordinate systems 𝜉 and 𝑥 is given by the formula (2.12)). In view of Theorem 5.1 we have

‖Ψ𝜀;𝐿2(Ξ)‖2 ⩾ 𝜀−3‖𝑢𝜀1#;𝐿2(Ω𝜀
#)‖2 − 𝜀−3‖(1− 𝜒2

#)
1
2𝑢𝜀1#;𝐿

2(Ω𝜀
#)‖2

⩾ 𝜀−3 − 𝑐0𝜀
−3𝑒−

2𝜅1#
3𝜀 ,

‖∇𝜉Ψ
𝜀;𝐿2(Ξ)‖2 ⩽ 𝜀−1‖∇𝑥𝑢

𝜀
1#;𝐿

2(Ω𝜀
#)‖2 + 𝜀−1

(︀
2𝜒#∇𝑥𝑢

𝜀
1# + 𝑢𝜀1#∇𝑥𝜒#, 𝑢

𝜀
1#∇𝑥𝜒#

)︀
Ω𝜀

#

⩽ 𝜀−1𝜆𝜀1# + 𝑐1𝜀
−3𝑒−

2𝜅1#
3𝜀 .

These estimates and identity (5.7) imply the relation

𝑀1

𝜀2
⩽
𝜆𝜀1# + 𝑐1𝜀

−2𝑒−
2𝜅1#
3𝜀

1− 𝑐0𝑒
−

2𝜅#
3𝜀

⩽ 𝜆𝜀1# + 𝐶𝜀−2𝑒−2𝜅#/3𝜀. (5.8)

The formulas (5.3) and (5.8), and the inequality (5.9), which will be verified later, that in the
estimate we can take 𝑛(𝜀) = 1. Using even and odd continuation of eigenfunctions 𝑢𝜀1# through
the sections (3.38), on which the artificial Dirichlet and Neumann boundary conditions, we
obtain the asymptotics of first four eigenvalues of problem (1.1)–(1.3) in the entire domain Ω𝜀;
owing to the parity properties the associated eigenfunctions are linearly independent.
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Theorem 5.2. The first four terms of sequence (1.8) of eigenvalues of problem (1.1)–(1.3)

in the domain (1.23) satisfy the asymptotic formulas (1.25), and the remainders ̃︀𝜆𝜀𝑘 obey the
estimates ⃒⃒̃︀𝜆𝜀𝑘 ⃒⃒ = ⃒⃒

𝜆𝜀𝑘 − 𝜀−2𝑀1

⃒⃒
⩽ 𝑐♯𝜀

−2𝑒−
2𝜅♯
3𝜀 for 𝜀 ∈ (0, 𝜀♯] and 𝑘 = 1, 2, 3, 4,

where𝑀1 is the first eigenvalue of problem (2.13), and 𝑐♯, 𝜅♯ and 𝜀♯ are some positive quantities.

Proof. It remains to make sure that for the second eigenvalue 𝜆𝜀2# of problem (1.1)–(1.3)# the
inequality

𝜆𝜀2# ⩾ 𝜀−2𝑀⊥ (5.9)

holds with some 𝑀⊥ ∈ (𝑀1,Λ1). Suppose that the relation (5.9) fails, that is, there exists an
infinitesimal positive sequence {𝜀𝑗}𝑗∈N, for which

𝜀2𝑗𝜆
𝜀𝑗
2# →𝑀1 as 𝑗 → +∞ (or 𝜀𝑗 → +0). (5.10)

Omitting several first terms from the sequence, we suppose that 𝜀2𝑗𝜆
𝜀𝑗
2# ⩽ (𝑀1 + Λ1)/2 for all

𝑗 ∈ N and in what follows we do not write this subscript. By the eigenfunctions 𝑢𝜀1# and 𝑢𝜀2#
obeying the relations (︀

𝑢𝜀𝑗#, 𝑢
𝜀
𝑘#

)︀
Ω𝜀

#

= 𝛿𝑗,𝑘, 𝑗, 𝑘 = 1, 2,

we define the functions on the quarter of layer Ξ

𝑤𝜀𝑗#(𝜉) = 𝜀
3
2𝜒#(𝑦)𝑢

𝜀
𝑗#(𝑥), 𝑗 = 1, 2.

The inequalities ⃒⃒(︀
𝑤𝜀𝑗#, 𝑤

𝜀
𝑘#

)︀
Ξ
− 𝛿𝑗,𝑘

⃒⃒
⩽ 𝑐𝜀−2𝑒−

𝜅#
3𝜀 ,⃒⃒(︀

∇𝜉𝑤
𝜀
𝑗#,∇𝜉𝑤

𝜀
𝑘#

)︀
Ξ
− 𝜆𝜀𝑗#𝛿𝑗,𝑘

⃒⃒
⩽ 𝑐𝑒−

𝜅#
3𝜀 , 𝑗, 𝑘 = 1, 2.

(5.11)

This first is implied immediately from the estimate (5.4), while to get the second inequality we
should additionally take into consideration the integral identity(︀

∇𝑥𝑢
𝜀
𝑗#,∇𝑥𝜓

𝜀
)︀
Ω𝜀

#

= 𝜆𝜀𝑗#
(︀
𝑢𝜀𝑗#, 𝜓

𝜀
)︀
Ω𝜀

#

(5.12)

with the test function 𝜓𝜀 = 𝜒2
#𝑢

𝜀
𝑗# ∈ 𝐻1

0 (Ω
𝜀
#; Γ

𝜀
𝐷), which, as usually, is transformed into the

identity(︀
∇𝑥(𝜒#𝑢

𝜀
𝑗#),∇𝑥(𝜒#𝑢

𝜀
𝑘#)

)︀
Ω𝜀

#

− 𝜆𝜀𝑗#
(︀
𝜒#𝑢

𝜀
𝑗#, 𝜒#𝑢

𝜀
𝑗#

)︀
Ω𝜀

#

=
(︀
𝑢𝜀𝑗#∇𝑥𝜒#,∇𝑥(𝜒#𝑢

𝜀
𝑘#)

)︀
Ω𝜀

#

−
(︀
𝜒#∇𝑥𝑢

𝜀
𝑗#, 𝑢

𝜀
𝑘#∇𝑥𝜒#

)︀
Ω𝜀

#

.

We pass to the limit as 𝜀 → +0 in the integral identity (5.12) with the test function 𝜓𝜀(𝑥) =

𝜀
1
2Ψ(𝜉), where Ψ ∈ 𝐶∞

𝑐 (Ξ ∪Θ). As a result,

𝑤0
𝑗# = lim

𝜀→+0
𝑤𝜀𝑗# weakly in 𝐻1

0 (Ξ;Υ)

in accordance with the formulas (5.3), (5.8), (5.10) and (5.11) we get the relations

(∇𝜉𝑤
0
𝑝#,∇𝜉Ψ)Ξ =𝑀1(𝑤

0
𝑝#,Ψ)Ξ ∀Ψ ∈ 𝐶∞

𝑐 (Ξ ∪Θ), 𝑝 = 𝑗, 𝑘,

(𝑤0
𝑗#, 𝑤

0
𝑘#)Ξ = 𝛿𝑗,𝑘, 𝑗, 𝑘 = 1, 2,

which are impossible due to the simplicity of first eigenvalue 𝑀1. The found contradiction
means the validity of inequality (5.9). The proof is complete.
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We are in position to complete the arguing from the end of Section 5.1. Namely, on the base
of Theorem 5.2, the relations (5.9) and relation (3.15) of spectral parameter we conclude that
for some, generally speaking small ℎ > 0 the segment

[𝜀2(𝑀−1
1 − ℎ), 𝜀2(𝑀−1

1 + ℎ)]

contains the unique eigenvalue 𝜏 𝜀1# of the operator 𝒜𝜀
#. Thus, the relation (3.17) in the second

part of Lemma 3.1, in which we let 𝛿𝜀 = 𝑐1𝜀
−3𝑒−

𝜅1#
3𝜀 and 𝛿𝜀* = ℎ𝜀2, provides the estimate for

Sobolev norm of the difference between the eigenfunction 𝑢𝜀1# and its approximation 𝑈 𝜀
# from

the formula (5.1). Finally, recalling even and odd continuations of eigenfunctions in the quarter
Ω𝜀

# on the entire domain Ω𝜀 (there are four of them), we formulate the obtained result.

Theorem 5.3. For the first four eigenfunctions of problem (1.1)–(1.3) in the polyhedron
(1.23) the asymptotic formulas

𝜀
⃦⃦⃦
∇𝑥𝑢

𝜀
𝑘 −

1

2
𝜀−

3
2

∑︁
𝛼,𝜗=±

𝐶𝑘
𝛼𝜗𝜒𝛼𝜗∇𝑥𝑉1;𝐿

2(Ω𝜀)
⃦⃦⃦

+
⃦⃦⃦
𝑢𝜀𝑘 −

1

2
𝜀−

3
2

∑︁
𝛼,𝜗=±

𝐶𝑘
𝛼𝜗𝜒𝛼𝜗𝑉1;𝐿

2(Ω𝜀)
⃦⃦⃦
⩽ 𝐶0𝜀

−4𝑒−
𝜅
3𝜀 for 𝜀 ∈ (0, 𝜀0].

hold. Here 𝜒𝛼𝜗(𝑦) = 𝜒(|𝑦−𝑃𝛼𝜗|) are cut–off functions, 𝑃𝛼𝜗 are the vertices (1.24) of the square
Q1, 𝑉1 ∈ 𝐻1

0 (Ξ;Υ) is the first eigenfunction of the problem (2.13) in the quarter of layer (1.20)
depending on the system of rescaled Cartesian coordinates 𝜉𝛼𝜗 = 𝜀−1(𝑦 − 𝑃𝛼𝜗, 𝑧) appropriately
rotated (see the formula (2.12) in the case 𝛼 = 𝜗 = −1). Moreover, 𝐶1

𝛼𝜗 = 1, while other
columns of the coefficients 𝐶𝑘 =

(︀
𝐶𝑘

++, 𝐶
𝑘
−+, 𝐶

𝑘
+−, 𝐶

𝑘
−−

)︀
are taken from the list

(1,−1,−1, 1), (−1, 1,−1, 1), (−1,−1, 1, 1).

5.3. Other asymptotic series of eigenvalues. Theorems 5.2 and 5.3 provide no complete
information on asymptotics of the spectrum of problem (1.1)–(1.3) in the polyhedron (1.23).
At first glance, it seems that the asymptotics procedure allow us to find the series of eigenvalues
with other stable asymptotics. Indeed, by means of calculations and arguing from Section 3.3
we can verify the following statement.

Theorem 5.4. For all 𝑝, 𝑞 ∈ N there exist positive numbers 𝑐(𝑝,𝑞) and 𝜀(𝑝,𝑞), as well as the
index 𝑛(𝑝,𝑞)(𝜀) ∈ N, such that for the eigenvalue of problem (1.1)–(1.3) in the polyhedron (1.23)
the relation holds ⃒⃒

𝜆𝜀𝑛(𝑝,𝑞)(𝜀)
− 𝜀−2𝜋2 − 𝜇(𝑝,𝑞)

⃒⃒
⩽ 𝑐(𝑝,𝑞)𝜀 for 𝜀 ∈ (0, 𝜀(𝑝,𝑞)]. (5.13)

Here 𝜇(𝑝,𝑞) = 𝜋2
(︀
𝑝2+𝑞2

)︀
/4 are the eigenvalues of the Dirichlet problem for the Laplace operator

in the square □1.

We stress that the Dirichlet conditions on the boundary 𝜕□1 are due to the slope of all four
lateral sides and the absence of threshold resonance in the problem (2.1)–(2.3)𝑁 , see Section
4.5. At the same time, as in Theorem 4.3, the eigenvalues in the formula (5.13), having large
indices 𝑛(𝑝,𝑞)(𝜀), belong to the middle–frequency range of spectrum.
One can try to obtain the formal asymptotic representations of the eigenvalues 𝜆𝜀5, 𝜆

𝜀
6, 𝜆

𝜀
7,

. . . by means of the asymptotic procedure from Section 4.1. The ordinary differential equations
on four segments (−1, 1) are obtained by the same scheme, but in this work we fail to justify
the imposing of boundary conditions or transmission conditions at the points 𝒫±𝜗, 𝜗 = ±
since the author does not know whether there is the threshold resonance in the problem (2.13)
on the quarter of layer (1.20). If it is absent, then the mentioned equations are equipped
with the Dirichlet condition at 𝑦𝑘 = ±1, however, the emergence of resonance can give rise,
for instance, to the classical Kirchhoff transmission conditions at the vertices (1.24) (see, for
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instance, [41]), which join the differential equation on the sides (3.33) of square □1 into a single
spectral problem.
We especially stress that for the problem (2.13) with 𝑀 = Λ1 in the quarter of layer (1.20)

with skewed lateral sides the notion of the threshold resonance is to be specified since the
asymptotic behavior at infinity of its solution is unknown: the Fourier method does not work
by clear reasons, while the known results on the behavior of solutions in layer–type domains
(see, for instance, [48] and others) concern mostly the Neumann condition and do not serve the
specific mixed boundary value problem appeared in the present work.
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https://doi.org/10.1016/j.anihpc.2007.12.001

5. D. Borisov, P. Freitas. Asymptotics of Dirichlet eigenvalues and eigenfunctions of the Laplacian

on thin domains in R𝑑 // J. Funct. Anal. 258:3, 893–912 (2010).
https://doi.org/10.1016/j.jfa.2009.07.014

6. S.A. Nazarov, E. Perez, J. Taskinen. Localization effect for Dirichlet eigenfunctions in thin non-

smooth domains // Trans. Am. Math. Soc. 368:7, 4787–4829 (2016).
https://doi.org/10.1090/tran/6625

7. S.A. Nazarov. Discrete spectrum of cranked, branching, and periodic waveguides // St. Petersbg.
Math. J. 23:2, 351–379 (2012). https://doi.org/10.1090/S1061-0022-2012-01200-8

8. S.A. Nazarov, A.V. Shanin. Trapped modes in angular joints of 2D waveguides // Appl. Anal.
93:3, 572–582 (2014). https://doi.org/10.1080/00036811.2013.786046

9. M. Dauge, N. Raymond. Plane waveguides with corners in the small angle limit // J. Math. Phys.
53:12, 123529 (2012). https://doi.org/10.1063/1.4769993
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