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DIFFERENT TYPES OF LOCALIZATION
FOR EIGENFUNCTIONS OF SCALAR
MIXED BOUNDARY VALUE PROBLEMS
IN THIN POLYHEDRA

S.A. NAZAROV

Abstract. We construct asymptotics for the eigenvalues and eigenfunctions of the Laplace
operator in a thin polyhedron with parallel closely spaced bases and skewed narrow lateral
faces. On the bases we impose the Dirichlet conditions, while on the lateral faces the
Dirichlet or Neumann conditions are imposed. Their distribution over the faces, as well as
the slope of the latter, significantly affect the behavior of eigenfunctions when the domain
becomes thinner. We find situations, in which the eigenfunctions are distributed along the
entire polyhedron and localized near its lateral faces or vertices. The results are based on
the analysis of the spectrum (cut—off point, isolated eigenvalues, threshold resonances, etc.)
of auxiliary problems in a half-strip and a quarter of a layer with skewed end and lateral
sides, respectively. We formulate open questions concerning both spectral and asymptotic
analysis.

Keywords: Laplace operator, mixed problem in thin polyhedron, asymptotics for eigen-
values, localization of eigenfunctions, essential and discrete spectrum of problems in infinite
domains.
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1. INTRODUCTION

1.1. Prelude. The eigenfunctions of the Dirichlet problem for the Laplace operator in a
“flattened pyramidal” polyhedron are localized near the vertex furthest from the flat base, see
Fig. 1. This result was obtained in paper [I| and it joins the results of the works [2]-[6]
on thin domains of varying width. In the present paper we study the eigenfunctions of mixed
boundary value problems in thin polyhedra with parallel bases and skewed narrow lateral faces,
see Figs. 2a and 3a. On the bases we impose the Dirichlet condition, while on the lateral faces
we impose either the Dirichlet or Neumann condition. Depending on the particular choice, one
or another localization of eigenfunctions is realized or the absence of localization. Namely, we
describe the situations, in which several first eigenfunctions are localized respectively near the
edges or angles of thin plate or they are distributed along the entire plate. The absence of
localization of eigenfunctions or its characteristics are determined by the properties of spectra
(presence of localized eigenvalues and threshold resonances) of model problems on pointed
semi—infinite strip (hereafter, semi-strip) or a quarter of layer with a skewed lateral surface,
which are considered in Section 2. While the flat problem has already been completely studied
(see [7]-]9] and other works), the known results for the spatial problem are fragmentary (see
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FIiGURE 1. Pyramidal polyhedra

[10]-][12]), and in what follows for the completeness we choose the geometric shape, see Fig. 3,
which requires an independent study, in particular, it allows us to point out new approaches
for analysis of the discrete spectrum.

The choice of particular thin polyhedra is motivated by the possibility of constructing from
them thin—walled boxes and cubes', see Fig. 2b and 4b. It should be stressed that the thin—
walled constructions appears everywhere, however, no full studies were made. The scalar Neu-
mann problems are rather simple, while the vector problems of elasticity theory are very com-
plicated. The scalar Dirichlet problem considered in the paper [12| and in the present work
has an intermediate position. We note that the localization effect in constructions from [12]
was first of all achieved by varying the widths of various elements (partition walls), but for the
box the localization appears for the constant width of all walls due to the slope of walls with
the Neumann conditions in an auxiliary polyhedron, Fig. 2a. We succeed to find, and, what is
important, to justify rigorously the phenomenon of edge localization of eigenfunctions, which
just was discussed in [12]. Finally, the results of [10], [I 1] allows one, by the scheme presented
in Section 5, to verify that the first eight eigenvalues of the Dirichlet problem in the thin-walled
cube are concentrated near its vertices, see Fig. 3.

1.2. Formulation of first group of problems. The mixed spectral problem

—Ayut(z) = Nu(x), x €,

u(x) =0, zel5, (1.2)
Dy (z) =0, zely =00 \TI5, (1.3)

is posed in a thin polyhedra
C={r=(y,2):ypn=mx1 € (—1,1),ly2| = |xa] <1—2,2=123 € (0,¢)}, (1.4)

see Fig. la. Here ¢ is a small positive parameter, V, = grad, A, = V., - V, is the Laplace
operator, d, = O,(y) is the derivative along the outward normal and

'y ={x € :2ec(0,¢)} (1.5)

or
2 = {z € 00 : |yi| < 1}, (1.6)

In the first case the Neumann conditions are imposed on the entire lateral surface of the
polyhedra ¢, while in the second case it is imposed only on two thin faces

e = {r e 1yy ==x1, |y < 1,2 € (0,¢)}, (1.7)

perpendicular to the abscise axis. As the lower base of polyhedron (1.4) the square [} =
(—1,1)? serves.

In some sense they can interpreted as fragments of spatial quantum waveguides, cf. the monograph [13].
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FIGURE 2. Thin polyhedron (a) and a box formed by four polyhedra (b)
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FIGURE 3. Thin polyhedron with differently skewed lateral faces (a) and its
sections parallel to the ordinate (b) and abscise axis (c)

1.3. First group of asymptotic results. One of the aims of work is to construct the
asymptotics for the eigenvalues

O<AT <A <A<, <=2 40 (1.8)

3
m

and associated eigenfunctions u§, u$, us, ..., us,, ... € H}(QF;T'5) of the problem (1.1)-(1.3) as

) m?

e — +0. The variational formulation of this problem is given by the integral identity [11], [17]
(Vaur, Vab®) oo = N (U, 0%)qe  VO° € Hy(Q5:T%). (1.9)

Here (-, - )q- is the natural scalar product in the Lebesgue space L?(QF), scalar or vector, while
H}(QM %) is the Sobolev space of functions obeying the Dirichlet condition (1.2).

The pairs {A\%;us,} are called the eigenpairs of problem (1.1)—(1.3). The first eigenvalue is
simple, while the associated eigenfunction can be chosen positive in Q° UT'.

In the situation (1.6) the eigenvalues admit a simple asymptotic representation

7'['2 71'2 g

2 2
)=€—2+—(p + %) + A0 (1.10)

Al 1

P
where anq) is a small remainder, see Section 5.3. Of course, the eigenvalues (1.10) indexed
by the subscripts ¢ € IN := {1,2,3,...} and p € INy := INU {0} are to be regrouped into the
monotone sequence (1.8). The eigenfunctions becomes

uf, () = sin (7T§> cos (gp(yl — 1)) sin <gq(y2 — 1)) + Uy g (T), (1.11)
with a small remainder a?p,q)’ see Section 3.5. It is easy to see that the leading terms in the
formulas (1.10) and (1.11) form an eigenpair of the problem (1.1)—(1.3) in the parallelepiped
Of =0, x (0,e) C R?, where the separation of variables is possible.

The eigenpairs of the problem (1.1)—(1.3) acquires a completely different asymptotics struc-
ture in the case of the Neumann condition on the entire lateral surface (1.5), see Sections 4.1,
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FIGURE 4. A thin truncacted pyramide (a), a thin—-walled cube formed by six
pyramides (b), and its central section (c)

4.4, namely,
c A1 7T2 e
Noa) = = + 7 Mooy (1.12)
€ 1 1 +Y2 z ™ ~
Ul (@) = 2 > ijW1< . ,g) cos <§p(y1 - 1)) + UG, 5 (), (1.13)
+

where K,fj are some coefficients, k¥ € IN, 5 = 1,2 and p € Ny, while A; € (72/2,7?) is the
eigenvalue and the associated eigenfunction W, € H'(II) exponentially decaying at infinity (see
Sect. 2.1) of the auxiliary problem (2.1)—(2.3) on the pointed semi-strip

I1= {7] = (n,m2) € R? 11y € (0,1),1m1 > 12} (1.14)

The set (—1,1) x II is obtained by the formal passage to the limit ¢ = 0 after the following
rescaling of the ordinate and applicate:

1Fy =
T = <y17nit7n§t) - <y17 c 75) (115)
Owing to the definition (1.4) the result is independent of the subscript £ of the face
' ={z: |yl <l,typ=1—22€(0,¢6)}. (1.16)

The eigenfunctions (1.13) are localized in a small neighbourhood of narrow faces (1.16) and
they exponentially fast decay while going from the faces, see Section 4.3.

We stress that both formulas (1.11) are (1.13) provide just some non—normalized eigenfunc-
tions, but in the next sections we suppose that they obey the orthogonality and normalization
conditions

(U5, uR) e = ik Ji k€N, (1.17)

where 0, is the Kronecker delta.

1.4. Brief review of known forms. A wide literature is devoted to the localization of
eigenfunctions of boundary value problems, see the works [1|-[6], [16]-[18], the review [19] and
many other publications. As it has been already mentioned, for thin domains with the Dirichlet
condition on one or both bases the concentration of eigenfunctions is observed near the height
with the maximal length, see Fig. 2a and 2b, while there are known shapes of domains, for
which the discussed phenomenon appears in a different way, see Fig. 2c—2f.

We note that in the paper |20 there was found a similar phenomenon of concentration of
modes of eigenoscillations of cylindrical elastic (homogeneous and isotropic) thin plates with
with rigidly fixed bases and a narrow side surface, which is free of external forces.

The choice of the polyhedron (1.4) is motivated by the following observation: the odd in the
case (1.5) and the even in the case (1.6) continuation of the eigenfunction from the horizontal
wall via the sides (1.16) and the repetition of this procedure for two formed vertical walls gives
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FIGURE 5. Localization near the height of maximal length (a and b). Localiza-
tion near two points or circumference (after rotation of section) (c¢), left end (d),
on the segment (e) and on a single cell (f). The dashed-dotted line indicates the
rotation axes under the admitted passage from flat figures to spatial bodies.

the associated with the same eigenvalue eigenfunction of the mixed boundary value in a thin
box, see Fig. 1b,

Ke = (Dl \E) X (_17 1)’ (1'18)

where O, = {n = (m1,m2) € R? : |n;] < a,j = 1,2} is the square with side 2a. At the same
time on the outer and inner lateral surfaces of the box {z € 9K*® : |y;| < 1} the Dirichlet
conditions are imposed, while on the ends (O; \ 0;_.) x {£1} the Neumann or Dirichlet
condition is imposed. The asymptotic formulas obtained in Section 3 and Section 4 show that
eigenfunctions of the aforementioned problem in the thin—walled construction (1.18) can have
completely different behavior as ¢ — 40, namely, they can concentrate near the edges or appear
everywhere in the box.

The found options of distribution of eigenfunctions appear also in the Dirichlet problem for
the Laplace operator in a thin—walled (hollow) cube

Keu(Opx ((-1,-1+e)U(1—g,1))), (1.19)

whereby it primarily manifests a different method of localization, already mentioned in Section
1.1: the first eight eigenfunctions are concentrated near the vertices of the cube and decay
exponentially far from the vertices. This property of the eigenfunctions is derived using the
approach described in Section 5 on the base of the results in [10], [11] on the spectrum of the
Dirichlet problem in the «Fichera layer»

U =68 :4<1, &>0k=1,23},

§=1,2,3

called similarly to the well-known Fichera angle [21]. For a detailed description of the reasons
for such near—vertex localization, a thin body will be formed in one of the sections, see Fig. 3a,
and in Section 2 we carry out a spectral analysis, namely, we determine the essential spectrum
and veirfy the non—emptiness of the discrete spectrum for a model boundary value problem on
a quarter of layer with differently skewed lateral edges

E={=(&,6,8) &> 63,86 > 8,6 € (0,1)}. (1.20)

We stress that the discrete spectrum is absent for the mixed boundary value problem on the
quarter of layer

Bu={6eR’:6>0,6>6,86¢€(0,1)} (1.21)
with one flat side, while the case of quarter of layer
Ean={(eR’: & > 8,6 >8,6¢€(0,1)} (1.22)

with same skewed lateral faces is directly related with the thin—walled cube (1.19). The presence
of an eigenvalue in the discrete spectrum of the mixed boundary value problem in the domain
(1.22) was established in the work [11].
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1.5. Aggravation of localization effect. As it has been mentioned, we consider one more
domain, in which the problem (1.1)—(1.3) is posed. This polyhedron is shown on Fig. 3 and is
defined by the formula

O ={x: |y <l+zy <l-22z2¢€(0,¢)} (1.23)

while the set, on which the Neumann condition is imposed, is given by (1.5). We stress that
in contrast to (1.4), the pairs of sides (1.16) and (1.7) of the polyhedron (1.23) are located at
angles 7/4 and 37 /4 to the plane {z : z = 0}. The quarter of layer (1.20) has the same angles
of the lateral faces, but for the quarter of layer (1.22) both angles are 7/4.

In Section 5 we shall demonstrate that the eigenfunctions uf, ..., uj associated with the first
four eigenvalues in the sequence (1.8) feature the concentration in ce—neighbourhoods of short
edges incident to the points

PEY = (£1,+1,0), PE = (£1,-1,0), (1.24)
and the exponential decay far from them, while the eigenvalues have the asymptotics
XNo=e M+ X, k=1,...,4, (1.25)

where M; € (0,A) is the eigenvalue of the problem (2.13) in the infinite domain (1.20), see

Section 2.3, and A}, is a small remainder, see Section 5.2. Due to the reasons mentioned in
Section 5.3, the author has no information about the eigenvalues {Af;u} for k > 4.

1.6. Preliminary description of results. In the next section we study mixed spectral
boundary value problem in the half-strip (1.14) and quarter of layer (1.20). While for the
planar problem all results presented in Section 2.1 are known, for the spatial problem, in
Sections 2.2-2.4 we have to prove the formula for the essential spectrum (Theorem 2.1), the
non—emptiness of the discrete spectrum (Theorem 2.2), as well as the exponential decay at
infinity of the eigenfunction (Theorem 2.3). We stress that the mentioned results is the key
point of the work and, as in the paper |12], they serve as the base for finding out the near—
vertex localization of eigenfunctions. However, in Section 2.5 we count all disadvantages of
the analysis of spatial problem being the obstacle for a complete study of the problem in the
polyhedron (1.23), in particular, we discuss the phenomenon of threshold resonance and its
influence on the asymptotic structures.

In Section 3 we provide asymptotic formulas for the spectral pairs of problem (1.1)—(1.3) in
the situation (1.6) including the spectral pairs of problem (3.3) in the square [J;. The con-
struction and justification of asymptotics are traditional, see, for instance, [22]-[25], while the
passage from the Neumann conditions to the Dirichlet condition requires a modification of the
procedure. The calculations and arguing is presented in detail in Sectoin 3 for the reader’s
convenience and also as a preliminary material for clarifying the differences in constructing and
justifying the asymptotic formulas in further sections under the appearance of the localization
effect. We first construct a formal asymptotics and then provide the classical lemma 3.1 on
almost eigenvalues and eigenvectors, which is used for finding the eigenvalues of original prob-
lems with the constructed asymptotics, and finally, Lemma 3.2 allows us to establish the final
statements (Theorems 2.1 and 2.2) on asymptotic expansions of the eigenpairs {\¢ ; u¢ }.

In Section 4 we study the spectrum of problem (1.1)—(1.3) in the situation (1.5), which fea-
tures the concentration of eigenfunctions near narrow faces (1.16) and this is reflected in change
of asymptotic ansitze, which now involve the eigenpair {A;; Wi} of the problem (2.1)—(2.3),
as well as the eigenpairs {fim; v, } of the Neumann problem (4.1) for an ordinary differential
equation on the segment (—1,1) 3 y;. On one hand, the procedure of justification of asymp-
totics becomes simpler, since by imposing artificial boundary conditions on the central plane
{z : y = 0} of the body Q¢ the eigenvalues become simple. On the other hand, the proof of
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Lemma 4.1 on convergence required a significant revision of the material from Section 3.4. Fi-
nally, in Section 4.5 we point out other series of eigenvalues with stable asymptotics, which are
constructed along the lines of Section 3, but with changes in arguing on imposing the boundary
conditions on the sides of square [;.

In Section 5 we provide asymptotic results on the problem (1.1)—(1.3) in the domain (1.23).
The near—vertex localization originates from the found in Section 2.3 point M; in the discrete
spectrum of problem (2.13) in the quarter of layer (1.20). The presence of eigenpair {M;;V;}
simplifies essentially the asymptotic ansédtze and the justification also becomes trivial thanks
to imposing the artificial boundary conditions on two symmetry planes of the body (1.23), see
Theorem 5.2 on the eigenvalues A], ..., A\j. At the same time, because of the incompleteness
of spectral analysis of problem (2.13), c¢f. the comments in Section 2.5, we failed to get the
information about the eigenpairs with the indices m > 4. Other open questions are discussed
in Section 5.3.

The methods and results of the asymptotic analysis carried out below admit various gen-
eralizations (of course, under understandable restrictions), namely, a variation in the number
of faces, solutions of dihedral angles and the distribution of boundary conditions (1.2) and
(1.3), as well as for second—order scalar equations in divergence form with smooth coefficients,
but such generalizations are left without attention for clarity and simplification of asymptotic
constructions and, of course, to facilitate the formulation of results.

2. SPECTRAL PROBLEMS IN INFINITE DOMAINS

2.1. Auxiliary planar problem. In the half-strip (1.14) with a skewed end v = {n: 7, €
(0,1), 71 = mp} and lateral sides 0/ = {n : 1 = j,m > j}, j = 0,1, we consider the problem

—A,W(n) = AW(n), nell, (2.1)
W(n)=0, nc€o:=0c"Uc’, (2.2)
mW(n) =0 or W(n =0, nen. (2.3)

The latter boundary conditions are denoted (2.3)y or (2.3)p, respectively.

The continuous spectrum of both problems is the ray [72, +00). The classical trick [26] shows
that the point spectrum of the Dirichlet problem (2.1)—(2.3)p is empty.

It is known that the discrete spectrum of the mixed boundary value problem (2.1)—(2.3)y
consists of the single point A; € (0,72); the approximate value 0.9372 was calculated in work
[27], while the existence and uniqueness was rigorously established in the works [7], [8], [16].

The corresponding eigenfunction Wy € H}(IT; o) decays at infinity with the rate O(e*’“ V 7T2*Al)
and can be represented as (see, for instance, [28, Ch. 2]),

2 2 —
Wi(n) = x(r1)Cyri sin % + Wi(n), (2.4)

where C is the so—called intensity factor, (r;,¢;) € Ry x (0, (254 1)m/4) is the system of polar
coordinates centered at the point P; = (4, 7) (Fig. 6a, 6b), j = 0,1, W, € H*(II), W1 (Po) =0
and W1 (P;) = 0, while y € C*(R) is an etalon cut—off function,

1 2
x(r)y=1 for r< 3 and x(r)=0 for r> 3 (2.5)

We note that near the point Py the function W) behaves as Cyr2 sin(2p) + O(ry), i.e., it turns
out to be smooth. We normalize the first eigenfunction in the space L*(II)

W L2 (I = 1. (2.6)
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FIGURE 6. Pointed semi-strip (a), angle 37/4 and polar coordinates (r, ¢1) (b).
L-shaped domain and deeply toned unit square in it (c)

By the Krein — Rutman theorem, see, for instance, |29, Thm. 1.2.5], it can be fixed positive in
I[TU~. In this case the coefficient C] is positive since, except for one detached in the expansion
(2.4), all harmonic functions in the angle 3w/4 with the Dirichlet and Neumann conditions
on its sides are sign—changing; this fact is to be applied iteratively. Finally, the expansion at
infinity

Wi(n) = Kie P sin(mn,) + Wi (€) (2.7)

is valid, in which W, (&) = O(e#2m) as n; — 400 and

By = /72k2 —A,, keN. (2.8)

The coefficient K is positive since again among the terms Kje 7 sin(wkn,) of the Fourier
series for the function W, which converges as 7; > 1, only the term detached in the relation
(2.7) is sign—definite.

In view of the importance of result on the discrete spectrum of mixed boundary value problem
in IT and for the reader’s convenience, we present simple and shortened proofs.

Lemma 2.1. On the interval (0,7?) the problem (2.1)~(2.3)x has a unique eigenvalue A, €
(w2 /2, 7?%).

Proof. The existence of eigenvalue in the discrete spectrum was verified in |7], [8], [16] and
others. Let us show how to establish its uniqueness and get a simplest lower bound. By the
even continuation through the diagonal of first quadrant (dash—dotted line on Fig. 6¢), we
reduce the problem (2.1)-(2.3)y to the Dirichlet problem in L-shaped domain

L= U {T]inj>0,0<7]3_j<l},
j=1,2

which we partition in two (j = 1,2) semi-strips w; = {n € L : n; > 1} with right ends and
unit square B = (0,1)? (deeply toned on Fig. 6¢). By the Dirichlet condition on the boundary
OL the one—dimensional Friedrichs inequality on the segment (0, 1) shows that

IV, W5 L2 (a) || = oW L2 (w;)|[|P VWV € Hy(L). (2.9)

The first two eigenvalues of the Laplace operator in the square B with the Dirichlet condition
. . .. 2 572

on two adjacent sides and the Neumann condition on two others are equal to %- and 25-. The

first eigenvalue is simple with the positive eigenfunction sin (§n1> sin (gng>, which obeys the

Neumann condition on the diagonal of the square, that is, the condition (2.3)y on ~, while the
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second eigenvalue is double. Thus, the relations hold:
2
IV, W5 L (W) ||* > %HW; L*(m)|* v W e Hy(L) (2.10)
2
|V, W; L*(m)]]* > 5%HVV;LQ(I)H2 for all W € Hy(L), (2.11)

obeying the restriction /sin (gm> sin (gm>W(n)dn = 0.
Q
Finally, the needed facts are ensured by the minimax principle, see [30, Thms. 10.2.1, 10.2.2]

and respectively by the inequalities (2.9), (2.10) and inequalities (2.9), (2.11). The proof is
complete. O

Remark 2.1. Similar results are known also for the pointed strips
0% ={n:m e (0,1),m >mncota}, «c (O,g) :

see papers 8], |9] and others, however, the multiplicity of discrete spectrum increases unbound-
edly as o — +0. The paper |9, in which this fact was observed, there is a flaw: the constructed
asymptotic approximation for the eigenfunction is not in the domain of the self-adjoint operator
because of the singularity O(rﬁ) at the point (cot «, 1). The way of correcting this flaw was
provided in the paper [31].

2.2. Essential spectrum of problem in quarter of layer. The rescaling of all three
coordinates

v = = (p+1ly+lz) (2.12)
with respect to the point P~ € R? and the formal passage to € = 0 transforms the thin domain
(1.23) into the set (1.20), on which we consider the mixed spectral boundary value problem

—AV(§) = MV(E), €5,

V() =0, £€0:=0'U07 (2.13)

8V(§)V(£) =0, €T := TOu !

Here © = {¢ € 02 : & = j}, j = 0,1, are quadrants, that is, the bases of the infinite
polyhedron (1.20), and

are its lateral sides. By the definition (1.23) of the thin finite polyhedron Q¢ the rescaling of
the coordinates with respect to other points in the list (1.24) and rotations of the Cartesian
coordinates, similar to (2.12), give the same quarter of layer (1.20).

To the variational formulation of the problem (2.13)

(VeV, VW) =M(V, W) ¥V WeH(5T) (2.14)

we assign [30, Ch. 10, Sect. 1] a self-adjoint positive definite unbounded operator B in the
Hilbert space £ = L?*(Z). The nearest aim is to confirm that the essential spectrum of the
operator reads
Qe = [M;, +00) = [Aq, +00), (2.15)

where Ay € (72/2,7%) is the eigenvalue of problem (2.1)-(2.3), see Lemma 2.1. We essentially
reproduce the arguing from [10], [12].

We begin with confirming the inclusion [A;,4+00) C @.. In order to do this, we define the
singular Weyl sequence for the operator B at the point M > M; as

Zk‘(f) = ||XkZM§£”_1Xk<§1)ZM<€)7 k€ ]N> (2'16)
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where

Zu(&) = VMM (&, 8), i =1,

Xi(&1) = x(& =257+ 1) (1 — x(& = 29)).

Here y is the cut—off function (2.5). Thus, the support of the function (2.16) is located in the
set 21, where

5i={¢eSiae |+ -1} j=12

As a result, the formula supp Z, Nsupp Z; = @ holds for k # j, as well as first two properties
of the singular Weyl sequence

1° |25 L) =1,

2° Zp — 0 weakly in £
become clear. Since X = 1 on =2, by the identity (2.6) we have

2k+17%
4
1 X5k Zar; L] = / / }W1(52753)|2d52d53d51 =2t ok 3
2k42 11

Moreover, (A¢ + M)Zy = 0, and hence the function (A¢ + M)Z), vanishes on the set =7 and

(B = M)(XZun): L] < / [Ae, Xi] Zur|*de < 2er.

Thus, the third property is also obvious:
3° ||BZk — MZk,,CH — 0.
As aresult M € p, and [Ay, +00) C @, by the Weyl criterion, see [30, Thm. 9.1.2].
Now let M € (0, M;). In what follows we shall establish the unique solvability of the problem

(VeV,Vel) o = M(V, W) + (V. T) g = f(T), T € H(5T), (2.17)

in which f € (H3(Z;Y))" is a linear continuous functional on the space H3(Z; Y), and a number
t > 0 and a bounded set Z(R) C = will be appropriately fixed. The fact that mapping

H(ZT)3V = B(RV=fe (HET)

is an isomorphism yield the Fredholm property of the operatro By of the original problem (2.14),
since the difference B;(R) — By is a compact operator due to the compactness of the embedding
HY(Z) C L*(Z(R)), namely,

(BUR)V = BV, W)z = t(V, ¥)=(g)-
We begin with verifying simple and mostly known facts, see [10], [32] and others.

Proposition 2.1. Let T > 1 and AT is the first eigenvalue of mized boundary value problem
on the trapezoid TIT = {n :n € (o, T),mo € (0,1)}

—A W) = AW () for nell,
Wrn) =0 for my<m<T, m=0 or p=1, (2.18)
ymWh(n) =0 for nedll’, nye(0,1).

The function (1,+00) > T + AT is smooth and strictly monotonically increasing. It satisfies
the estimate

AT — Ay + BiKTe T < Ce™™T, (2.19)
and the numbers Ky and By are taken from the formulas (2.7) and (2.8).
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Proof. The simplest way to confirm the properties of the eigenvalue AT as of the function
of parameter T is to construct the asymptotics. Here, it is sufficient to realize the formal
procedure, the justification of obtained representations follows standard schemes repeatedly
published, see [22, Ch. 5, Sect. 6, Ch. 9|, [32] and others. We stress that by the dilatation of
coordinates the “long” domain I17 becomes a “thin” domain, while for such bodies, even elastic,
the published literature is vast, see, for instance, surely incomplete lists of references in the

monographs [22], [25], [33]-]36], and it answers almost all meaningful questions.
We seek the asymptotic for eigenpairs of the problem (2.18) in the form
AT = Ay + 72T (2.20)
WEL(E) = Wi(€) + Kie 2P TePrmgin(mn,) + e 22 TW/ () + .. ., (2.21)

where the dots replaces higher—order asymptotic terms inessential for the made analysis, and

the pair {A’; W’} is to be determined. According to the expansion (2.7), the sum of first two

terms in the right hand side of ansitze (2.21) gives the error O (e~*7) in the boundary condition

on the segment v7 = {n:n, = T,n, € 0,1)}. For the pair {A’; W} we obtain the equation
—A W' () = MW'(n) = AWi(n), nell,

with the boundary condition (2.2) on the lateral sides and the Neumann condition on the end

OyyW'(n) = —Ki10y (™ sin(wna)) , 1 € 7,

already found according to the mentioned expansion (2.7). Since A; is a simple eigenvalue,
there is one solvability condition of the obtained problem in the class of functions decaying at
infinity, see, for instance, |28, Chs. 2, 5|, which in view of the normalization (2.6), we satisfy
as follows:

N = MW L) = — / W) (A, + Ay) W)y

=K / Wi(n)0u) (651771 sin(7rz)) ds,

. 0 . . oW,
= —K; lim (Wl(ﬁ)ﬁ_nl (eﬁlm sin(mne)) — P sin (7, ) 87711

(n)) dns

— K228, / (sin(m))? dip = 61 K.
0

The corrector in the representation (2.20) is calculated.

To verify the monotonicity property, we take a small parameter A > 0 and compare the eigen-
values AT™" and AT for the trapezoids II"~" c II”. We again admit the simplest asymptotic
ansatze

AT = AT+ hAT +
W () = WY (n) + hWS () + ...
In view of the Taylor series
oW
om
we find that the correctors in ansétze are found from the equation

AW () = ATW(n) = AlW] (n) in II",

owl oPPwr
(771 - h7 ?72> = 87]11 (7717 772) - hW;(nlu 772) +...
1
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with the homogeneous Dirichlet condition on the bases ol and o7 of the trapezoid I17 and the
Neumann condition on the lateral sides
owr owr PwWr
=0 on s —.(T7 772)
Ov(n) om oni

——(T,ny) for my€(0,1).

In view of one (AT is a simple eigenvalue) solvability condition of the formed problem, we find

AT|WT 2T 2 = / W (T, m)? <T )i

82
- / W T7n2)(a—ng(T,nz)+A1TW1T(T,nz))d772 (2.2
2

2
)dT]Q

The function W is at least twice continuously differentiable at the angular points, which are
the ends of the segment 7. Thus, by means of the Friedrichs inequality, the formula (2.22)
implies the estimate

1
oW
- [ (st @l - |G
, oy

AT < (AT — =) W L2 |2 227 2,

and both norms of the positive in IIT UyU~T function W do not vanish. Thus, the derivative
of the function T'+— AT at some point 7' > 1 is strictly positive under the condition AT < 72.
The inequality AT > 72 is impossible for all T > 1 since by the formula (2.19) for large T the
needed condition is satisfied.

We note that the almost identical change of variables

n = (mx(m —1)+ (m — k)1 = x(m —1)),m2)

transforms the trapezoid II7 into the trapezoid II7 " that is, the translation of boundary is
a regular perturbation of the problem and the justification of asymptotics in this case is very
simple, see the monograph [37, Ch. 7, Sect. 6].

We return to the problem (2.17) for M < M;. We partition the domain = into three sets

[1]

R)={¢€=:4+1<R,& < R},
T(R)={¢€Z:4+1>R&E <G+, (2.23)
E(R)={{cE:& >R &> & + 1

(1]

and choose the size R > 1 so that the relation
1
AT > 5(MT +M)>M for T>R (2.24)

holds, where AT is the first eigenvalue of the problem (2.18). Proposition 2.1 shows that the
condition (2.24) can be satisfied for each M € (0, M;).
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Owing to the Dirichlet condition on the bases of infinite truncated pyramide =*(R), the
relation

+oo
VeV IAE (R > / / 1V, V (€1, ) Pdnde,
R—11161+1
I M+ M
+ —
> [ a7 [ WP > S Vi E ®)F
R—-1 Té1+1

holds. Exactly the same inequality holds on the set =7 (R), which is congruent to the set
=T (R). Therefore, for a symmetric bilinear form b(V, U;Z) in the left hand side of integral
identity (2.17) restricted to the subdomains (2.23), the formulas

b(V,V;E5(R)) = |[VeV; LP(E*(R))|* — M||V; L*(Z*(R))|?
> 0| VeV LA(EF(R)||” + % ((My — M) = 6(My + M) |V L*(E(R)) |,
b(V,V;E(R)) = VeV L(EF(R)|I” + (t — M)||V; L*(E(R))|>.

are valid. Fixing the numbers ¢ > M and ¢ € (0, (M; + M)~ (M; — M)), we find that the
form b(V, ¥;Z) is positive definite on the space Hi(Z;Y), that is, by the Riesz theorem on
representation of continuous linear functional in a Hilbert space the problem (2.17) is uniquely
solvable. O]

Thus, we have proved the next theorem.

Theorem 2.1. The essential spectrum of problem (2.13) in the domain (1.20) with the
Dirichlet conditions on the bases T is the ray (2.15), the bottom M; of which is the eigenvalue
A1 in the discrete spectrum of problem (2.1)—(2.3) in the pointed strip (1.14).

2.3. Discrete spectrum of problem in quarter of layer. The approaches of this section
slightly differ from ones used in works [11] and [12] for checking the non-emptiness of discrete
spectrum in layer-type domains of similar shapes. According to the minimax principle [30,
Thm. 10.2.1], the bottom g of spectrum @ of problem (2.14) (or (2.13) in the differential form)
obeys the relation N

|VeW; L2(2)|1?
veriEO\0y ||V L2(2)]|?

g:

Thus, to check the non-emptiness of the spectrum g, it is sufficient to find a test function
U € H}(Z; T), which satisfies the inequality

IVew; LA(Z)|1* — My w; LA (E)|* < 0. (2.25)

At the same time it turns out that @ is the first eigenvalue in the discrete spectrum g,.
We let B

Wl (527§3> for 51 < 07
qjé(g) - {Wl(£2,£3)66€1 fOT 51 2 O
(

It is clear that W; € Hj(=Z; T) for 6 > 0. By the normalization (2.6) we have

o0

W = (W L@+ [ ey [ Wil6a, o) dsadga = [Whi DI + 5. (2:20
0 II

1Ws; L*(

(1]
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Here T ={{: & € (—&3,0),& > &5,& € (0,1)} is a truncated prism with a triangular section.
Supposing the parameter 0 is small, in the same way we obtain

o0

IVeWs; L*(S)||* = HV»:W1;L2(T)H2+/6_2‘5&d€1/\Vnwl(n)!2d77+0(5)
II

0

1
= HV5W1; L2("]1“)H2 + %AT + O(9).
We consider the difference

IVeWy; L2(T)||? — Ay [|[Wy; L2(T)|1?
_/W1(€27£3)<A§+Al)Wl(é-Qaf?))df+/W1(€2753)81/(5)W1(§2753)d3§~
P o2

The first integral in the right hand side vanishes due to Equation (2.1) for the pair {Ay; W;}.
The second integral is equal to

J——% i (. f)%‘;f(m,%)dn, (2.27)

P
where 7 = (11, 72) is the system of Cartesian coordinates in the plane of face T2, and 7, = &
and 7y = 2_%(53 — &), while P C Ry X (0, \/5) is the pointed semi-—strip with the vertices

n = (0,0) and n = (1,\/5). We denote the segment connecting these points by I, and we
integrate by parts to obtain

= ——/’ m, 2 ‘ ds < 0. (2.28)

The strict inequality holds since the first eigenfunction W; of the problem (2.1)—(2.3) is positive
on the end of semi-strip (1.14); in any case it can not vanish everywhere on the end by the
uniqueness continuation theorem, see, for instance, the book [38].

Gathering the formulas (2.26)—(2.28), we see that the left hand side of inequality (2.25) does
not exceed the sum J + C'¢ and this is why it indeed becomes negative for sufficiently small
0> 0.

We formulate the obtained result.

Theorem 2.2. The discrete spectrum of problem (2.13) (or (2.14) in the variational form)
contains at least one eigenvalue.

2.4. Exponential decay of eigenfunction. Let M, be the first (smallest) eigenvalue of
problem (2.13) given by Theorem 2.2. We normalize the associated eigenfunction V; € H}(Z; T)
in L*(Z) and fix it positive in ZU ©. Into the integral identity (2.14) we substitute the test
function U4 = R4 Vf, where Vi = R4 Vi. A continuous piecewise-smooth weight factor reads

K

e”  for p<1,
RE(6) =L e for pe(1,T), (2.29)

e for p>=T,
with p? = € + €2, while k and R are positive parameters chosen small and large, respectively.
We stress that the functions V% and W% belong to the space Hj(Z; ) since the weight factor

(2.29) is constant for large radius p. By simple transformations (several commutations of the
operator-gradient V¢ with the function R%.) we obtain the identity

IVeve: L2 E)* = [VR(RT) ' VeRE: L (E)|° = M| VE; L @)1 (2.30)
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We note that
VeREE) =0 for p¢ (LT), RMEIVRMEO <w for pe(LT).  (231)
We partition the set = into four parts: the set Z(R) from the formula (2.23) and also the sets

:{SEE:§2<R,§1>R—%}, 2§={§eE:§1<R—%,&>R}

and Kp = Z\ (E(R) UL UXE). Recalling Proposition 2.1, we choose the size R > 1 to satisfy
the relation Af > 1 (M;+ A;). Then on the subdomains X} and ¥%, which are congruent to
the set (R, +00) x IT# 3 (7,7), the estimates hold:

1 K j K j K ]
5 Mo+ A [V 2SR [1° < ATV = LPER)IP < [VeVy s L2(5)[1, (2.32)
which are obtained by integrating in 7 the Friedrichs inequality on the trapezoid IT%. After
an additional integration, the one—dimensional Freidrichs inequality on the segment (0,1) > &3
gives the relation

m?|[Vi: L(ER)|* < [VeVr : L*(Kg)|*. (2.33)

Now by means of the formulas (2.31)-(2.33) we transform the identity (2.30) into the estimate
M 2 M|V P(E(R) 2 6| Vevs; ()]
+ (1= 0)r* — My — w)|| V5 L*(Kg)|I*

+37 (5 00+ A0) = My — ) [V AR
7j=1,2
Taking sufficiently small 6 > 0 and & > 0, we find that the factors in the norms ||Vf; L*(Kg)||
and ||Vg; L*(X%)]| are positive and hence, the uniform estimate

IVeVE L)1 + Vi LAE)* < M (2.34)

holds.

Since the weight factor (2.29) grows monotonically as the parameter T' grows, the passage to
limit as 7" — +oc in the inequality (2.34) ensures the following statement, which confirms the
aforementioned decay at infinity of the eigenfunction V;.

Theorem 2.3. The found first eigenfunction Vi € H}(Z;Y) of problem (2.13) normalized
in the space L*(Z) satisfies the weight estimate

le""VeVi; LXE)|1” + lle™ Vi L*E)* < K, (2.35)
where k and KC are some positive numbers and p = /& + &3.

2.5. Remarks on threshold resonances. The planar problem (2.1)—(2.3) has already been
studied for a long time in detail sufficient for the asymptotic analysis in the present work. At
the same time for the spatial problem (2.13) a series of important question remained open, for
instance, the multiplicity of discrete spectrum and the emergence of threshold resonances.

In the planar domain (1.14) the threshold resonance (see papers [39], [10] and others) is
due to the appearance of a non—trivial bounded solution for the problem with the threshold
spectral parameter A = 72; this solution is either trapped (decaying at infinity) or almost
standing (stabilizing at infinity) wave. It is easy to establish the absence of such solutions in
the problem (2.1)-(2.3): in the case of the Dirichlet condition on the end the method from
[26] works, while in the case of the Neumann condition we need to apply the inequality (2.11),
which means that the second eigenvalue of the problem in the triangle {n € I : n; < 1} is
strictly greater than the threshold 72. We also need to apply the sufficient condition [41], [12]
or the first of two criterions [32] of the absence of threshold resonance.
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In the spatial problem (2.13) on layer—type domains (1.20)—(1.22) the notion of threshold
resonance requires a specification since the asymptotics of its solution at infinity for M = A
is unknown; Theorem 2.3 concerns only the case M < A;. However, in this problem on the
domain (1.21) the even continuation to the set R xII is admitted and it is followed by the Fourier
transform in the variable &, while the needed bounded solution is of the form & — Wi (&, &3).
By the way, exactly due to the mentioned threshold resonance in the domain =, defined by the
formula (1.21) the limiting problem (4.1) on the segment (—1,1) 3 y; acquires the Neumann
condition. The influence of threshold resonances on the boundary conditions in the limiting
problems is also discussed in Section 5.3.

The next statement on solvability of the Helmholtz equation in the skewed semi—strip (1.14)

~Ayuw(n) - w*w(n) = F(n), nell, (2.36)

with the boundary conditions (2.2) and (2.3) is obtained by specification of general results
from the book [28, Ch. 5] and paper [10]. However, for the reader’s convenience we reproduce
its short proof. In order to do this, we define the exponential weight Sobolev space Wé(l’[)
(the Kondratiev space; see the original work [13] and, for instance, the books [28], [11]) as the
completion of the linear set C2°(II) by the norm

Hw,Wé(H)H = ||e*3”1w;H1(H) , (2.37)

where # € R is the weight index. The space Wj(II) consists of the functions w € H}.,(II), for

which the norm (2.37) is finite and in the case 8 = 0 it coincides with H'(IT), but for 8 > 0 the
functions in Wé(H) decay at infinity, while for § < 0 a certain growth is allowed for them and

the decay/growth rate is controlled by the weight index. By WE’O(H) we denote the subspace
of functions obeying the Dirichlet condition from the list (2.2), (2.3).

As usually, by a weak solution to the problem (2.36), (2.2), (2.3) in the weight classes we
mean a function w € Wﬁl’O(H) obeying the integral identity

(V. Vo) — w20, ) = F() Wb € WD), (2.38)
where f € (Wig(l‘[))* is a linear continuous functional on the space Wi’g(l_[), for instance,
() = (Fd)n with ¢#nF € L3(I).
The problem (2.38) is associated with the continuous mapping
WM sw —  Agw:=fe (W)

Proposition 2.2. The following assertions hold.

1) The operators Az and A_g are mutually adjoint. They turn out to be Fredholm in the case
B e (0, ﬂ\/g), but they lose this property for 5 =0 and § = 7/3.

2) If B € (0,7V3) and f € (Wig(ﬂ))* C (WE’O(H))*, then the problem (2.38) with the re-
placement 5 — —f has a unique (bounded) solution w € Wi’g(ﬂ), which can be represented
as

w(n) = (1= x(m — 1)asin(wn) + w(n), (2.39)
where W € WE’O(HL a € R, x is the cut—off function (2.5), and the estimate

([T Wi +[a)* < call £ WD) (2.40)

holds, and the factor cg is independent of the functional f, but it grows unboundedly as
B— +0 or B — /3 —0.
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Proof. We first of all observe that the solutions of the Dirichlet problem for the homogeneous
(F = 0) equation (2.36) in the entire space R x (0,1) are the functions

msin(mny)  and  eFMTVF T lsin(nkn,), k=1,2,3,.... (2.41)

Thus, the first statement is a corollary of classical Kondratiev theorem [13] (a simple exposition
of this theory is presented in the introductory chapter 2 in the monograph [28]), and the
restriction for the quantity S puts the weight indices £ between “prohibited” indices 0 and
+7/3 taken from the latter formula (2.41) with k& = 1, 2.

The absence of threshold resonance in the problem (1.1)—(1.3) in particular means that the
operator Ag is a monomorphism for 8 > 0. Therefore, in the case 3 € (0,7r\/§) the operator
A_g is an epimorphism. Theorem 4.3.3 in [28]| on the index increment applied for cylindrical
domains show that Ind Ag — Ind A_g = —2, where two is the number of solutions in the list
(2.41) with the polynomial growth at the infinity. Since

Ind A = dimker 4 — dimcoker A and dimker Ag =0, dimcoker A_g =0,

we find out that Ind A_z = —1, and hence the restriction of the operator A_z to the subspace
Wg’eg(ﬂ) of the functions in Wig(ﬂ) admitting the representation (2.39), which we equip with
the norm in the left hand side (2.40), takes the zero index and becomes the isomorphism due to
the absence of the trapped waves on the threshold frequency. Thus, we have proved the second
statement and have completed the proof. We note that the introduced subspace is called a
weight class with the detached asymptotics. O

Remark 2.2. In the proof of Proposition 2.2 the identity
dimker A_z =1

was established. It is easy to see that for K = N, D the subspace ker A_g is spanned over the
solution W of homogeneous problem (2.1)~(2.3)x with the parameter A = w2, which has a
linear growth at infinity and admits the representation

W (1) = sin(mn) (i — Cx) + Wi (1), (2.42)

where Cg is some constant, while the remainder WK € WE(H) decays exponentially at infinity

with the rate O(e*”””/g) and it turns out to be infinitely differentiable everywhere on the set 11
except for the angular points Py and Py. We stress that the function (2.42) is not in the space

Wég(l‘[) and we introduce the difference

Wi(n) = Wi(n) — sin(m)m = —Cr sin(m) + Wi (n), (2.43)

which possesses the needed behavior at infinity, belongs to some weigth space with a separated
asymptotics, but it does not satisfy the boundary condition (2.3).

3. ABSENCE OF LOCALIZATION EFFECT

3.1. Usual asymptotic constructions. The approaches used in this section are widely
known in the case of Neumann boundary conditions on the bases of thin domains, see the
monograph [25] and the references therein, and its adaption to the Dirichlet condition requires
minimal efforts in the case of the passage to the mixed boundary conditions exclusively owing
to the Neumann condition only on the perpendicular bases on the lateral sides of polyhedron
(2¢. The passage to the Dirichlet condition on the entire boundary 02 requires only literal
reproducing the arguing and calculations given below.
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In the situation (1.6) we admit the simplest ansatz for the eigenpairs of problem (1.1)—(1.3)
MN(@)=e2n+u+..., (3.1)

uf(x) = sin (me'2)v(y) + .. ., (3.2)

where, as usually, the dots replace the higher-order terms. After substituting the ansétze into
the differential equation and boundary conditions we find that the leading asymptotic terms
mutually cancel out, while for the pair {y; v} we obtain the mixed boundary value problem in

the square
— Ayo(y) = poly), y €O,

v (3.3)
v(y, £1) =0, || <1, i@(il,yg) =0, |y <1
1
The eigenpairs of this problem
T o ™ (T
{603 V00 W)} = {0 + ¢, cos (Spn — ) sin (Salwe - 1) | (3.4)

appear in the formulas (1.10) and (1.11). We renumerate the eigenvalues forming the monotone
unbounded sequence
0<pp <po<ps <o < iy < .o — F00. (3.5)
The associated eigenfunctions of problem (3.3) obey the orthogonality and normalization con-
ditions
(Vm, Un)w = O, myn € N. (3.6)
Let us clarify the choice of boundary conditions: while the Neumann conditions are obtained
by the substitution of ansétze (3.2) into the boundary condition (1.3) on sides (1.7), the Dirichlet
condition in order to eliminate the errors in the boundary conditions (1.2) on other sides (1.6).
The main term is generated by the Taylor series

V() = Colyn) sin (Fa(v2 = 1)) = Colyn) (A7 (92 F 1)+ Olly ¥ 1))

(3.7)
= Cy(y) (F Ay + Ot ]*)).-
Here we use the stretched coordinates (1.15), as well as the function and numbers
Cyp(y1) = cos (gp(yl - 1)) and AJ = g(il)qq. (3.8)

The terms of order ¢ in (3.7) multiplied by sin(77;) in according to the ansitze (3.2) is com-
pensated by boundary layer

e@* (g1, %) = FeCyly1) ATW p (1), (3.9)

where Wp is an exponentially decaying as n — +oo remainder in the solution (2.42) of
problem (2.1)—(2.3)p for A = 2.

In view of the representation (2.42), the functions (3.9) generate additional remainders in
the boundary Dirichlet conditions on the skewed sides (1.16), which we eliminate by means of
specifying asymptotic ansétze (3.1) and (3.2) by higher—order terms ey,  and € sin(me_lz)vgp’q)
respectively, which are determined by the problem

- Ayvgm)(y) - M(P,Q)Uzp,q) (y) = /Ll(p,q)v(p,fI) (y)7 y €U,

) N OUEM) (3.10)
Vipg (Y1, £1) = FCpATCp(y1),  |wi] <1, ié)—yl(il’m) =0, |y <l

The coefficient Cp is taken from the representation (2.43) of the function Wp, and from the
boundary condition on the end v of the semi—strip II for the exponentially decaying remainder
in this representation

Wp(n) = sin(rn,) (Cp —m) on 7.
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In the case of the simple eigenvalue s, the solvability condition of problem (3.10) is the
relation

1
ov 2
/ — _L2 ] 2 :/ + (p,9) / d — C o 2‘ 3.11
M(p,q) M(p,q)HU(P:Q)? ( 1)” Z:t: 8y2 (y)v(p,q) (y) — hn D 9 q ( )
=1

As a result the number (3.11) and solution of problem (3.10), as well as the boundary layers
(3.9) determine the correctors in the asymptotic anséitze. In the case of a multiple eigenvalue
[i(p,q) the procedure of constructing the remainders becomes a little bit more complicated, see
the monographs [22, Ch. 16], [25, Ch. 7] and many separated publications, but we shall not

reproduce the corresponding arguing since in the derivation of estimate for the remainder Xfp 9
in the expansion (1.10) the remainders are not needed.

Remark 3.1. In this and the next section the boundary layers do not appear near the faces
(1.7) of polyhedron (1.4). This fact can be easily explained. We continue the eigenfunctions u,
of problem (1.1)—(1.3) evenly via the plane {z : y1 = 1} and impose the periodicity conditions

u6(+1> Y2, Z) = us(_lv Y2, 2)7
ous ous

a +]-7 ) =
ayl( ve,2) oy

on the faces of polyhedron {x : y1 € (—1,3),|y2] < 1—2,2 € (0,¢)} perpendicular to the abscise
axis. Then the eigenfunctions of the new problem become smooth and periodic in the variable
y1 € [—1,3], and this dependence is inherited by the eigenfunctions of original problem in Q°
and hence, the boundary layers can not appear in the direction of the azis y;.

(_179272), S (0,5), |y2| <1l- Z,

3.2. Abstract formulation of original problem. In the Hilbert space H® := HJ(Q°;T%)
we introduce the scalar product

(U, 9%)e = (Vaous, Vb)) ., (3.12)
as well as a positive symmetric continuous and hence self-adjoint operator T,
(Tous, 0%)e = (v, 0%) . Vus, 9" € H-. (3.13)

The operator 7¢ is compact and hence, according to Theorems 10.1.5 and 10.2.2 in [30] its
essential spectrum is the single point 7 = 0, while the discrete spectrum forms a monotone

positive infinitesimal sequence of eigenvalues
TN 2Ty 2T 2 ... 2T = ... — +0. (3.14)

m

Comparing the formulas (3.12), (3.13) and (1.9), we see that the variational formulation of
problem (1.1)—(1.3) is equivalent to the abstract equation

Tu® = 7°u° in the space H°

with the spectral parameter

=) (3.15)
Then next statement known as the lemma of almost eigenvalues and eigenvectors, see the
source |15] is ensured by the spectral expansion of resolvent, see, for instance [30, Ch. 6].

Lemma 3.1. Let U € H® and t* € R be such that
U H || =1, |[|[TU® —t°U%He|| =: 6° € ]0,¢°). (3.16)
Then the operator T= possesses an eigenvalue Tz(e) obeying the inequality

|t — T <05
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Moreover, for each &5 € (0°,t%) there exists the column of coefficients

C° = (Cirer-- - Civerae_1)
which satisfies the relations
Ne4xe—1 5 Netae—1 )
H > CiUlgyHe 2 dooleT =1, (3.17)
{=N¢= * (=N¢=
where Tipe, ..., Taeiye_1 15 the set of all eigenvalues (3.14) of operator T¢ in the segment
[tE — 05, t° + 5ﬂ, and the associated eigenvectors Uxse, ... ,Usre | x-_; obey the orthogonality and
normalization conditions
(U, U ) = bpg. (3.18)

3.3. Asymptotics of eigenvalues. As the component of almost eigenpair {t(pq U } we
take the expressions

t?nq)

2 2 2 -1 £ 5 . e|l—1, ¢
= (T + ) 5 Uppg = 1050 1l 050 (3.19)
and

V(. (T) =sin (ﬁé)X (Yo ( Vip,q) (Y ZXi y2)Co(y1) A (y2 T 1))

(3.20)
+¢ Z Fxx (92) A7 Co(y1) W ().

Here the eigenpair (3.4) with the subscripts p € Ny, ¢ € N of problem (3.3) is involved, as well
as the quantities (3.8) and (2.42) and the cut—off functions

X£(y2) = x(1 F y2),
X(y2) =1 for |yo| <1—2¢ and X°(y2) =0 for |yo| >1—¢,
&’ X¢

(y2)
d?JQ

We note that first, owing to the choice of ingredients v(, , and C), the function (3.20) fulfils
the boundary conditions (1.2), (1.3), and second

(3.21)
X e CX(R), 0< X () <1,

< ¢je I j € N,.

ov; g .
— &g (x) — v(p’q)(y)z cos (Ez) =0(e+ e~ max {1, (672)77}),
0z € £
where 05 = ((Jya] — 1+ €)% + 2%)7 /¢, cf. the expansion (2.4). Thus,

71_2

‘<vfp,q)’ U(am,n)>€ - 2_€5p7m5q7n < Cpgmn€,
and, in particular,
‘<U(€p,q)’ Uéfm,n)>€ — Opm0gn| < Cpgmné,

(3.22)

1

10600 Holl = cope™25 Cpgy > 0
We treat the quantity d¢, , from the formula (3.16) calculated by the pair (3.19). We have
5(€p,q) sup’ (T° U pq ws> ‘

(p,q) ”U(m); HEH “'sup ‘<vlvfp,q)’ Vet g — (7% + “(M))(U?m)’ ¥ )a

(3.23)

= 1) ”v(ap,q); ||~ sup ‘((A$ +rteT 4 H(p.a)) V(p.g) ¥ )ee |-
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Here the supremum is calculated over the unit ball in the space H°, that is, ||¢%; He|| < 1, and
by the one—dimensional Friedrichs inequality the relation

—/W |dydz —// (y2) *|vf (= \dd i?

holds. Here h.(y2) = min{e, 1 — |y2\} is the width of the domain (1.4) and [J; is its square
base. Bearing in mind the differential equations satisfied by the functions v(,, and Wp and

the formulas (2.42) and (2.43) for the latter function, we find that the first factor
L(pq)
in the last scalar product in (3.24) becomes

I(apvq) =sin ( ) [ddz , X* ] (U(p,q) - Z CpAcT(% F 1))
+

d2 —_—~ —~
+ + . 15
+ 62 Aq Cp [dyS’Xi}WD T Elp.a) ZAq CPXiWD - I 1) + [(p q) + I(gp,q)'
+ +

@)

o (3.24)

= (A, + nle? 4 u(nq))vfp’q)

Owing to the Taylor formula (3.7) and the estimate (3.24) we obtain that
(I ) ¥ e | < (m683Y max Z e7H(1 = |ys \)4“]) sup [[¢*; L) < o™

J_
In the above relations [©, 1] is the commutator of the differential operator © with the cut—off
function r, Y¢ is the set

Supp‘sze‘ - {ZE : |y1| < 17 |y2| S []‘ - 2571 _5]72 S (075>}

and its volume mes3 Y* is equal to 4e2. Since meszsupp |V, x+| = O(e) and the function W
is bounded in the semi-strip II, while its derivative in 7; decays exponentially at infinity, we
find out that

‘( wa QE ‘H [(pq)>¢6)ﬂs

Lee((e7? eFE £ 1+ [i(p,q) ) MES3 SUPP \VIXH) sup 4% L ()] < cpg)e?-

m\m

Finally, in view of the formulas (3.19) and (3.22), for the quantity (3.23) we get the estimate
Op.q) S Clp, q)525%5% = Cpg)E” (3.25)

and hence, by Lemma 3.1 there exists an eigenvalue 7, () of the operator T¢, which obeys
the inequality
’T;(p,q)(s) — 52(71'2 + 52N(p,q))_1‘ < C(p7q)85. (3.26)
By the relation (3.15) of spectral parameters this implies
‘)‘i“,,q)(s) — e 1% — pg, q)| Clp,q)E /\ 0 (©) (7 + €2 l(pg))- (3.27)
Moreover,

&€

-2 2 3 2 2
(@) SE T F pg) T CoaE An, (@) (7* + € 1ipa))

2 1 (3.28)
= M@ S 5_2(772 +Ep.g) for cpge® (T +Eppy) < 3"
We hence find
‘)‘fz(pm(s) — e 2% — ,u(p,q)‘ < 20(p,q)8(7r2 + €2M(p,q))2 (3.29)
or finally
@ — €T = g | < Cpge as €€ (0,50 (3.30)
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with positive quantities C, ) and £, 4 chosen in accordance with the formula (3.28).

In order to confirm the coincidence of eigenvalues of problem (1.1)—(1.3) from the formulas
(1.10) and (3.30), we need additional calculations and arguing.

Let us verify that for the eigenvalue ji(, ) of multiplicity s, ,) > 1 there exist at least s,
different eigenvalues \° (@) )\n(p (-1 in the sequence (1.8). We employ the second
part of Lemma 3.1 and denote by 6° the maximal of above treated quantities 5(p a2 while by 0%
we denote the product t716° with a factor ¢ € (0,1). Let also Sn( (€)+k> E=0,..., 50— 1,

P;q)

be the sums over £ = N ... N® + X° — 1 from the first formula in the list (3.17), and
6 4 € R*" the columns of coefficients of these linear combinations; if it is needed, we

(p,q) ()
add zero terms to align the sizes of columns. Then by the relations (3.18) and (3.22) we find
|(C5L(p’q) (E)+j7 CZ(p’q)(€)+k)lRX€ - 6],]‘3’ :‘ STEL(p q)(6)+j7 Si(p’q)(€)+k>5 - 5.7’]‘7’
<[isz, q><s>+3755<p 0@+ = Unipp@kle|
+ (Snpar@s ~ Ui Ung, q>(8)+’f>5|

T ‘ <U§(P,q)(5)+j’ Un(p,q)(5)+k> Js k" 2t + 2t + C (p,q)€

Therefore, for small ¢t and ¢ the columns C¢ N 6 . are almost orthonor-
s N (p,q)(€)+1 N (p,q)(€)+7(p,q)—1
malized in the Euclidean space RY", and this is possible only in the case
Hipg) < X°.

In other words, having fixed appropriate ¢t € (0,1) and € € (0,¢(,4)], we find at least s,
different eigenvalues of the operator 7¢ obeying the estimate (3.26) with the enlarged in ¢~*
times majorant. By means of the previous calculations (3.27), (3.28) we get that at least ;)
different terms of the sequence (1.8) satisfy the inequality (3.30) with new positive numbers
Cipq and €¢,4). Using this observation and sorting out the eigenvalues of limiting problem
(3.3) not exceeding ji( q), Wwe obtain the apriori estimate for the eigenvalues of original problem
(1.1)—(1.3)

A, < e + o (3.31)

3.4. Convergences. We continue the eigenfunction uZ, , normalized by the identity (1.17)
for j,k = m, by zero from the polyhedron €2° to the parallelepiped

H=(=11)"x(0,¢)

and define the functions

£

Ui (y) = /55(2)%2(3/, 2)dz, un (Y, 2) = ug,(y, 2) = S5(2)u, (y).
Here

S¢(z) = \/gsin (WE). (3.32)

It is clear that the functlon u? vanishes on the sides vi of the square [J; = (—1,1)? and belongs
to the space H}(Oy; v Uvy ) here

vE={y:lul < Lysp =%1}, k=12 (3.33)

Moreover, the orthogonality condition holds

e0

/Se(z)ufnl(y,z)dz =0 for yely, (3.34)
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and hence, the Poincaré inequality yields the estimate
lusos L2(QE)1* < ||3z s L2051 (3.35)
The relations

leazs L2 = Hlusas LAQR) N + luzs L@,
IV yuz; L QB = [Vyuss LAQE)I + | Vyum; L@,

o5 QB = |0-uzt ORI + [ (2:5°()) defusts L@

0

2
+2/au€L 2)usD (y)0,5%(2)dr = || 045 LH(Q8)]1* + —HuEO L (Oy))1?
EI

hold. The latter integral over the parallelepiped €)f; vanishes by means of integration by parts.
Thus, we transform the integral identity (1.9) with the test function ¢° = «g, into the form

|0.usts LAQE) |2 + 1V s L2O8) |1? + 1Vusl; L2 (00)])
= (A, = &7 s L2012 + X st 2(08) 1
In view of the formulas (3.31) and (3.35) this gives the estimates
l02ust; L2(98)1? — MWBMﬂWHWu”ﬁ(NF
< (X8, — 7202 s L@ < enlluss (D2 < e
= IV, A(@)|? < ¢ and (3.36)
7T2 € g g € g
37, ks L2(00) < (10— ) gt ZHQ0) [ <

Thus, along some infinitesimal positive sequence {¢;};en we have the convergences

u? = u? weakly in  Hy(Op; v Uvy)  and strongly in - L*(0),

3.37
-t o0 W@ - 1L (3.87)

Now we substitute the test function ¢° = S°p into the integral identity (1.9), where ¢ €
C(0y \ (vf Uwy)). As above, the orthogonality condition (3.34) shows that the right hand
side of the obtained relation

(Vyui", Vi) g, = (A —e727%) (w3’ ),
=)\ (ui{l, Ssgo)% — (@UZ{ ,go@SE)QE — (Vyufgf, Sevygo)%
is zero and hence, the convergences (3.37) ensure the integral identity

(Vyu?r?v vy‘»O) = Mm( Uy 5 90)51

which serves the limiting problem (3.3) since taking the closure we can pass to the test functions
¢ € H(Op;vf Uoy).

Lemma 3.2. The limits (3.37) provide an eigenpair of the limiting problem (3.3), and the

eigenfunction u®® is normalized in the space L?(CJ;).
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3.5. Final theorems on asymptotics. We complete the justification of asymptotic for-

mulas. In particular, we need to verify that the index n,q () of the eigenvalue of original

problem (1.1)-(1.3) in the formula (3.30) coincides with the index m of the eigenvalue fi(;q)

of limiting problem (3.3) in the monotone sequence (3.5). The arguing, which led us to the

estimate (3.31), gives the inequality ngq () = m. Suppose that ng,q(¢) > m for an infin-

itesimal positive sequence {¢;};ew. Then for the indices j € IN there exist the eigenvalues
1

Ay <7212+ pipg) + Cpg)€; » the associated eigenfunctions of which satisfy the orthogonality
conditions
(u;ﬁ,u;)m:o, g=1,....,m+ », — 1,

where sz, is the multiplicity of eigenvalue pu,,. Hence, the limits (3.37) and estimates
(3.36) provide the eigenvalue p® < g, of the problem (3.3), the associated eigenfunction
u € H}(Op;vf Uwvp) of which is orthogonal in the space L?(CJ;) to the eigenfunctions
Uty e ooy Um—1,Umy -+« - Umise,—1-  Lhis observation contradicts the way of constructing the se-
quence (3.5), that is, we indeed have n,4)(¢) = m. Thus, the following statement hold.

Theorem 3.1. The terms of sequences (1.8) and (3.5) of eigenvalues of problem (1.1)—-(1.3)
and (3.3) respectively satisfy the relation

A, — e 20 — | S e for e € (0,,),

where ¢, and €, are some positive numbers.

We shall formulate the theorem on asymptotics of the eigenfunctions of problem (1.1)—(1.3)
for a simple (p =0, ¢ € N or p = ¢ € N) eigenvalue of problem (3.3); the case of a multiple
eigenvalue can be treated in the same way but the final formula becomes not so explicit, while its
derivation in similar situation was published many times. Moreover, in view of the symmetry
of domain (1.4) some multiple eigenvalues (for instance, the pair (p,q) includes an odd and
an even number) can be split by imposing' artificial Dirichlet or Neumann conditions on the
sections

o =1z €Q 1y, =0}, k=12, (3.38)

Theorem 3.2. Let ji,,, be a simple eigenvalue of problem (3.3), and v, be the associated
eigenfunction (see (3.4)). Then the sign of normalized in the space L*(Q) eigenfunction us, of
problem (1.1)—(1.3) can be chosen so that the asymptotic formula

5HV1, (us, — (g)és%m);LQ(Qa)

holds, where S¢ is the function (3.32), Cy, and €, are some positive numbers and € € (0, &,,].

d

2\ 2 5
e _ (=2 € . € < .
us, (6) S0 L2(QF)|| € Cpee, (3.39)

Proof. By Theorem 3.1 for some h > 0 the interval (e727% + pt,, — h,e 272 + i, + h) contains
a unique eigenvalue X° . The relation (3.15) of spectral parameters again shows that for some
h > 0 the closed segment
[€2(7% + ) ! — e*h, (1% + 2 )~ + 7] (3.40)
contains the unique eigenvalue 7°, of the operator 7°. In Lemma 3.1 we take the numbers
6° < ¢,e° and 0¢ = €*h from the formulas (3.25) and (3.40). Then the sums in the relations
(3.17) involve a single term, and hence, the inequality
|US, — Conldeys HE|| < 2(85) 7" 6° < 207 e (3.41)

holds and C,,, = £1 depending on the choice of sign of eigenfunction U/7,.
It remains to compare the normalization conditions (1.17) and (3.6) of eigenfunctions of
problems (1.1)—(1.3) and (3.3) with the relation (3.18) for the eigenvectors of operator 7°: the

IThis approach is employed in next two sections.
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inequality (3.41) implies the estimate (3.39). We just note that L*(Q°)-norm of the subtrahend
\/2/eS%v,, in the left hand side of (3.39) is equal to 1+ O(e). O

4. LOCALIZATION NEAR THIN FACES OF POLYHEDRON

4.1. Formal asymptotic constructions. In the situation (1.5) we make the rescaling of
coordinates (1.15) and formally let ¢ = 0. In the both cases £ the domain (1.4) is transformed
in the set (—1,1) x IT 2 (y1, 7M1, 12), where II is the pointed semi—strip (1.14). On the base of
results in Section 2.1 we admit the asymptotic ansitze

A
Af(x):g—21+u+...,

1:Fy2,§)wi(y1)+....

Substituting them into original problem (1.1)—(1.3) and equating the coefficients at the like
powers of small parameter, we find that the factors at €2 in the relation (1.1) cancel out,
while the factors at 1 = €° form an ordinary differential equation on the segment (—1,1) 3 ;.
Bearing in mind the boundary conditions (1.3) on the faces (1.7) we derive two (¥ = £) limiting
Neumann problems

ut(z) =W, (

(9211)19 8w19
_ ’ €(—-1,1), +—2(£1)=0 4.1
o (y1) = pwy(y1), w1 € ( ) ayl( ) (4.1)

(cf. Remark 3.1). In what follows we omit the subscript ). The eigenpairs

2

m m
{1p; wp} = {ZpQ; cos (gp(yl - 1))}
of problem (4.1) were involved in the expansions (1.12) and (1.13).

4.2. Asymptotics of eigenvalues. In order to simplify the justification of asymptotics, we
use the symmetry of domain (1.4) with respect to the central section Y§, (the rectangle from
the formula (3.38)) and impose artificial boundary conditions
ou®
5’x2

We recall that the Neumann conditions are imposed on the entire lateral surface (1.5), that is,
in what follows we suppose that respectively

I, ={00 : 2 (0,e)} or T'H ={005 : 2 ¢ (0,¢)} UTG,. (4.3)
At the same time the original problem in the polyhedron ¢ is restricted to its half
QF ={z €y, >0}

We shall employ the notation (1.1)—(1.3), (4.2) independently on the choice of artificial bound-
ary condition; it does not influence the asymptotic formulas. At the same time, the even in
the case (4.2)y and odd in the case (4.2)p continuation of eigenfunction of this problem from
the domain )5 through the abscise axis to the domain ©° provides a smooth eigenfunction of
original problem (1.1)—(1.3).

We make necessary changes in the definitions in Section 3.2, but we keep the notation for
the Hilbert space ‘H® with the scalar product (,). and the operator 7¢ in H=.

As almost eigenpairs of the problem in Q% we take

{t; U} = {82 (Au+ ) s f|ws; Hell‘lwf;} : (4.4)

(x)=0 or u(z)=0 for xe€ T3, (4.2)
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where p € Ny = {0,1,2,...},

wie) = x Wi (S22, (), (4.)

and {A; Wi} and {p,;w,} are the eigenpairs of problems (2.1)—(2.3) and (4.1), respectively.
Finally, x, is the cut—off function in the list (3.21).

We note that the constructions (4.4) and (4.5) are same for both cases (4.3) since the bound-
ary conditions on remote from the faces (1.16) part of the boundary 0925 do not influence the
leading terms of asymptotics. At the same time, owing to the presence of cut—off function x
the only remainder of function (4.5) in the boundary value problem f with the parameter
A =72y + p, appears in the differential equation

_ . 0? -y 2
(Ba 272 M )5 (0) = |5 n)| W (<72, 2 (o)

The support of this remainder is located in the set {z € Q°: 1/3 < y» < 2/3} D supp [V, x4/,
where the factor W turns out to be exponentially small in accordance with the expansion (2.7).
We note that

log; #7)1* = / [wy(y1) [Py, / |V (x(e ) Wa(m))| dn = Ay + O(e ™) (4.6)

for some x > 0, see the representation (2.7), and treat the quantity J7 in the formula (3.16)
found by the pair (4.4). We have

0 =||T°U; — t5Us; He|| = sup (TU; — U5, ¢°)-|
=t-[Jvy; He|| 7! sup ‘(Vzv;, Vmwe)gi — (72 + ) (5, we)gi
=tyllogs T sup [ (s (A + 67 A1 + ) (Wiwy), ¥%) o
+ ([Ae, x4+ ](Wiwy), ) |-

Here the supremum is taken over the unit ball in the space H®, that is, ||¢%;H¢|| < 1, and
hence,

1% LAQDI* < e[ Vo)™ LAQDIP = cx®[5 H* < eye®, 0 >0, (4.8)

We stress that the inequality (4.8) differs from the inequality (3.24) since in the situation (1.5)
the Dirichlet conditions are imposed not on faces (1.16), but the estimate (4.8) is ensured by
Proposition 2.1, where we can take, for instance, ¢, = A;/2.

By the definition of the functions W; and w, the first term in the sum under between the
last modulus in (4.7) is equal to zero. Therefore, according the formulas (4.4)—(4.6), (4.8) and
(2.7), the inequalities

ol

_o\ —2m\2 5
o < e (e(l+e7%)e = ) 2sup [0 L2 (Q7)|| < peze

hold. Thus, by Lemma 3.1 there exists an eigenvalue Tip(a) of the operator 7€, for which the
estimate

!ij( -t ‘ cp€2e T (4.9)
is true. As a result, the relation (3.16) of spectral parameters and transformations similar to
(3.26)(3.29) establish the existence of an eigenvalue A7 ) of problem (1.1)=(1.3), (4.2) in the

domain Q2 obeying the relation

‘)\Knp — A — | < Cpe” for €€ (0,¢,). (4.10)
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Here C), and ¢, are some positive numbers. We note that the relations (4.9) and (4.10) concern
both artificial consitions (4.2), that is, the formula (4.10) provides two eigenvalues of the original
problem in the entire domain Q°.

4.3. Convergences. The change of coordinates (1.15) with the plus sign, which we omit in
what follows, transforms the domain % into the set (—1,1) x I1, and Proposition 2.1 for each
h > 0 and small € € (0,¢3], &, > 0, gives the inequality

e (AL = M) [[ws LAQL)|1” < Vo5 LAQL)|P VU° € Hy(Q5:Thy). (4.11)

In the integral identity (1.9) corresponding to the problem (1.1)—(1.3), (4.2), we substitute the
test function ¢* = Ecu® | where ué (z) = E(y)us, (z) and

c(l=y2) <1-—
Ei(y) = {e o ” (4.12)

e” for y=>1—¢,

and ug, is a normalized in L?(Q) eigenfunction associated with some eigenvalue
A < e 2N+ e (4.13)

At the same time c,, > 0, and € > 0 is a temporarily fixed small value of geometric parameter.
In particular, the eigenvalues appearing in the estimate (4.10) satisfy the condition (4.13).

Several times commuting the operator-gradient V, with the weight function E%, we arrive
at the identity

IVaus,; LH(Q)? = |lus, B2, V,E; Q)17 = A llug,; L2(Q9) |1 (4.14)
We note that
5 for 1, <1—¢,
)|V EL(y)| = (4.15)
O for yo>1—¢,

and reproduce with some changes the calculations presented in Section 2.4. As a result, the
formulas (4.11)—(4.14) imply the following weight estimate indicating the concentration of the
eigenfunctions of both problems in the domain €27 near its face I'Y.

Theorem 4.1. If an eigenvalue N5, of problem (1.1)-(1.3), (4.2) obeys the relation (4.13),
then the associated normalized in L*(Q.) eigenfunction uS, satisfies the estimate

|ESV pul,; L Q)12 + e || EBoul,; LP(Q9)])? < e7°Cy for £ € (0,em), (4.16)

K;m’

where E%(y) is the weight factor (4.12), and k and C,,, €, are some positive numbers.

Proof. We introduce a thin triangular prism AS = {z € QF : yo > 1—¢c}. The difference Qf \ AT
is a parallelepiped of height ¢, and the Dirichlet Conditions on its bases ensure the Frledrlchs
inequality
2
13 E g
[l 25\ AD)” < —[IVauf; LA(Q5N A2)I (4.17)
We have
6—2A1€2/i >€_2A 62H||u5 .L2( j— ||2 —2A1||u£ . 2( i— ||2
=[Vaus,; LH(QI° — [0, B2,V Egs L QN a5)[1F = A, lug,s L3\ a9)]1
— (A — e M) Jug; L2 (a3)|1* = 0] Voug,; L2(5) |

w2 K2

+ ((1=0)5 = 5 = X0 ) s L2\ 89 + emllus,s L2(22)]”
Here we have used the formulas (4.15) and (4.17), (4.11). It remains to choose small positive
quantities d and & so that the last factor at the norm |[ug,; L*(Q5\ A% )| exceeds (2¢) (72— Ay).

To estimate the first term in the left hand side of (4.16) we once again make the commutation,
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take into consideration the formula (4.15) and impose the restriction € € (0,¢,,]. The proof is
complete. O

By Remark 3.1 the eigenfunction u;, depends smoothly on the variable y;. We introduce the
functions

/Wl 5771 (y17 1 - €M, 5772)6177)
(4.18)

wy, (yl, n) = X(€771)5 Uy, (yla 1 —en,en) — Wl(n)wig(yl)-

We recall that x(en;) = x4+ (y1). By the conditions (2.6) and definitions (4.18) the orthogonality
condition

/wq =L (yy,1)dn = 0 (4.19)

holds, and hence, in view of Lemma 2.1, we get the inequalities

Affwi (v, ) LD < (IVywi (v, ) LD

; (4.20)
forall y; € (=1,1) and some A € (Aq,77].
According to the normalization (1.17), Theorem 4.1 and relation (4.19) we have
1 Ole#) = sty O = i+ s (L) <

= [lws L2(=1, DII” + [lwiiss L*((=1,1) x )%

We transform the integral identity with the test function e ?x2ug, € Hj(Q5 ;%) into the
form

8_2 (Uinvaw vw(X—i—“in))Qi - (X-‘rv Um, Umva+)Qa+
= | Va (xauz ) LI — e 7240 lIxuz,; L2(Q5) )17
=2V (Whwg) + w3 ); LA(Q3) 1 = AL [Whws) 4wl L5
O(X+U5,) ’
oy
=[5y L2(=1, DIV Was LA = £2A%, wy’s L (=1, 1)
+ IV L2((=1,1) x I|? = €27, [lwirs L2((=1, 1) x )|
1
1
+2/ 50 3/1 /V W1 )V w (3/1, )dndyl + ‘
|
The estimate (4.16) shows that the absolute value of left hand side in the identity (4.22) does
not exceed the quantity cp5*36_§*§. The integral over the set (—1,1) x IT (the penultimate term
n (4.22)) is eliminated by means of integration by parts, the Helmholtz equation for the factor

W, and the orthogonality condition (4.19). We neglect the last term since it is not needed.
Thus, by the formula (4.20) and restriction (4.13) we obtain the estimate

llwss L2((=1,1) x ID|? < (Ar = &2X5) [Jwi; L2((=1,1) x D12
< (€208, — A || L2(—1, 1)||2 + e P63 < Ce?

+e€ s L)

(4.22)

g O ) 22(05)

(4.23)

with some independent of the small parameter ¢ € (0, ,,] factor

C#(AJ_ — A1>

> 0.
2
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The made calculations show that on an infinitesimal positive sequence {¢;};en the conver-
gences

/\fn—é-:_QAl — ,u?,?,
w? = strongly in  L*(—1,1), and [[w®;L*(—1,1)]| =1

m

(4.24)

hold.
We take some infinitely differentiable function W of the variable y; € [—1,1] obeying the
conditions

dv
+27 (41) =0, 4.95
) (425
and multiply the Helmoholtz equation for the eigenpair {\¢ ;uS } by e 'x W, V. Integrating

by parts in the domain €)% and differentiating, we obtain the identity

/1 (<A’” a %)q’(yl) T %@1)) é / Wi(n)x+(y2)us, (v, 2)dyrdzdy
1 2

-2 / W (g, () [dd—yg,m(yz)]wl(??)d%-

05
The right hand side is infinitesimal as ¢ — 40 due to the exponential decay of the functions
ut, and Wy (Theorem 4.1 and the formula (2.7)). The convergences (4.24) allow us to pass to
the limit in the left hand side and in view of the first definition (4.18) we get the relation

1
2

d“W
/w?,?(yl)(ugg\lf(yl) + d—?ﬁ(y1)>d?/1 =0,

-1

which in view of the arbitrariness of the test function ¥ € C'"°[—1, 1] obeying only the bound-
ary conditions (4.24), imply the inclusions w% € H?(—1,1) and the differential equation and
boundary conditions in the problem (4.1) (cf. the smoothness improving in [15, Ch. 2]).

Lemma 4.1. The limits (4.24) provide an eigenpair {pud%;w®} of the limiting problem
(4.1) and by the formulas (4.21) and (4.23) the eigenfunction w)’ is normalized in the space
L*(~1,1).

4.4. Theorem on asymptotics. The already standard arguing from Section 3.5 with sim-
plifications caused by imposing the artificial boundary conditions (4.2) and the simplicity of
eigenvalues of limiting problem (4.1) lead us to the following statements on the eigenpairs of
the original problem (1.1)—(1.3) in the entire domain Q°.

Theorem 4.2. In the situation (1.5) for each p € IN there exist positive quantities c,, C,
and €, such that for ¢ € (0,¢,] the eigenvalues Alpay 7= A%y and A, o) = A5,y in tﬁe sequence
(1.8) obey the representation (1.12), where the absolute values of the remainders Aip.j) do mo
exceed the expression cpg_%e_g, while the normalized in L*(Q°) eigenfunctions u,, = uj, and
us o = u, 1, even and odd in the variable yo, obey the representations (1.13) with K;fl =273,

1
K;fz = 3272 and

12
€

LX) + ([ s ()] < Cpe2e

~€
€||v$up,j’ D,J?

The formulas (1.12) and (1.13) involve the eigenpair {Ay; Wi} of problem (2.1)—(1.13) given
by Lemma 2.1.
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4.5. Other asymptotic series of eigenvalues. The formal asymptotic constructions from
Section 3.1 can be easily adapted for the problem (1.1)—(1.3) in the situation (1.5), and as
a result, for the terms of asymptotic ansétze (3.1) and (3.2) we derive the limiting problem
(3.3). A bit unexpected fact is that despite the Neumann condition (1.3) on the faces I'%,
the Dirichlet condition is preserved on the sides v of square [; (cf. the formulas (1.16)
and (3.33)). The reason is that according to the general principles in [22, Ch. 16| and [11],
the boundary conditions in the limiting problem for the thin domain are determined by the
phenomenon of threshold resonance in the problem on boundary layer and not by the type of
boundary conditions on the end. Such resonance is absent in both problems (2.1)~(2.3)y p on
the semi-strip II (see Section 2.5), and this ensures the Dirichlet condition on the sides vi in
both situations.

Remark 4.1. For the same conclusion on the limiting boundary conditions on vli one can

employ the method of composite asymptotic expansions and the method of matching asymptotic
expansions, see, for instance, the monographs |22], [21] and [16], [17], respectively. Indeed, the
leading term in the remainder of sin(nz/e)v(y) in the boundary condition (1.3) on the face I'S.

is equal to 27 2me " cos(mz/e)v(y) and in the first method, to lessen the remainder, ezactly the
Dirichlet condition is needed. In the framework of the second method one needs to match the
expression sin(rz/e)v(yy, £1) with some solution of the problem (2.1)—~(2.3)n in the semi—strip
II, but because of the absence of threshold resonance, this problem has only the trivial bounded
solution and this is why we have to let v(y;, £1) = 0.

Reproducing the calculations and arguing from Section 3.3 and using the function Wy
instead of the function Wp (see the formula (2.42) in Remark 2.2), we obtain the following
statement.

Theorem 4.3. For each m € IN there exist positive quantities c,, and €, and the index
nm(e) € N such the eigenvalue of problem (1.1)—(1.3) satisfies the relation

Aom(e) — €72 — fn| S eme for € € (0,e,), (4.26)

where [, is the term in the sequence (3.5) of limiting problem (3.3) on the square OJ;.

In contrast to Theorem 3.1, in Theorem 4.3 the index n,,(¢) of eigenvalue X (¢) dppearing in

the formula (4.26) is not defined. This is explained by the fact that according to Theorem 4.2,

the sequence (1.8) contains eigenvalues of order e72A;, which is smaller that e =272, and the total

amount of such numbers in the interval (0,7 27?) increases unboundedly as ¢ — +0. Thus, the
index n,,(g) depends on the parameter £ and also tends to infinity as the parameters decreases.
In other words, Theorems 4.2 and 4.3 describe different asymptotics of eigenvalues of problem

(1.1)=(1.3) from formally low— and middle—frequences ranges of the spectrum, respectively.

5. LOCALIZATION NEAR SHORT EDGES OF POLYHEDRON

5.1. Formal asymptotic constructions. Now the domain Q° on Fig. 3a is defined by the
formula (1.23), and to simplify the asymptotic procedures on both central sections (3.38) we
impose the artificial Dirichlet or Neumann conditions; totally four options. We restrict the
problem (1.1)-(1.3) to the subdomain Q3 = {z € Q° : y; < 0,j = 1,2} and assign the
subscript # to its index and the attributes; the type of artificial boundary conditions does not
influence further arguing, calculations and results. The objects introduced in Section 3.2 for
this problem are also equipped by the subscript # and as the almost eigenpair we take

{tis Uie(@) } = {&" M I Vis eI e (0)Va(©) - (5.1)
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Here {M;;V1} is the eigenpair of problem (2.13) in the quarter of layer (1.20) presented by
Theorem 2.2, the rescaled variables ¢ are of form (2.12) and xx(y) = x(r), while r = |y — P~
is the polar radius, P~~ = (—1, —1) is the vertex of square [J; and y is the cut—off function (2.5).
By Theorem 2.3 the normalized in L*(Z) eigenfunction V; decays exponentially as |¢| — +o00
and hence, the relations

x4 Vis 7P = e (My+ O(e™9))
1(As +e72M1) (xp Vi) L2(Q5) |17 = [I[As, xgeVas L2 (23) |12
< ca(sfz + 1)6’% < Cgfle’%,
are true, where x > 0 is the exponent from the formula (2.35). Thus, Lemma 3.1 provides an
eigenvalue of the operator 7° obeying the inequality

|T§(6)# 2M ‘ cee 3,

Owing to the relation (3.16) of spectral parameters, similar to (3.26)—(3.29) calculations show
that

[Xou — e 2Mi| < e quad e € (0,2y), (5.2)

and c¢; and e; are some positive numbers.

n(e)#

5.2. Justification of asymptotics. Since the multiplicity of discrete spectrum of problem
(2.13) remains unknown, the usual way of confirming the identity n(¢) = 1 in the estimate
(5.2), in particular, of proving the convergence theorem, is not appropriate. We follow another
way.

First of all, by the minimax principle [30, Thm. 10.2.1] we get the relation

- IVo%; L2(Q5) |12 - IV (e Vi); L2(Q5) |12
veers |l LI [V LA |2

12 2 1 o ,—25 1 .
5HV£V17 S + ey 8623 < —2(M1+Cv€_26_§).
Vi L2(E)|? + chee 3 €

Now we are going to make sure that the eigenfunctions ug,, fast decays far from the point
P**; the method of verifying this property echoes the proofs of Theorems 2.3 and 4.1.

A =

(5.3)

Theorem 5.1. Let \; , be an eigenvalue of problem (1.1)~(1.3)4 in the subdomain Q5 with
some artifictal boundary conditions and the inequality

2)‘m# A — 5# for 5# > 0

holds. Then the associated normalized in the space LQ(Q‘;&) eigenfunction u;,, the weight esti-
mate

#" € € — St €
Vit Q)| + 72 le ™5 1 LH(Q5)|P < Gz, (5.4)

le™
holds, where € € (0,mz], and Ky, Emy and Chpy are some positive numbers.

Proof. In the integral identity (1.9)4 corresponding to the problem (1.1)—(1.3)4 in the domain
Q0 we substitute the product ¢° = e%uin 4 with some exponent £ > 0 and after simple
transformations for the function ué, = e’ uy,4 we obtain the identity

IVaus,; L2(Q5))17 — [[uSe = Vae= ;s L2(Q5)[17 = Ao, llug,; L2 (5[, (5.5)
We note that

KT

e =

Vee's | = ke, (5.6)
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and partition the set €2 into four parts, namely, Z°(R) = {z : { € E(R)} (cf. Definition
(2.23)), K§ = Qg \ (2} UX%) and
={reQy:1+y>e(R-1),1+y <eR},
S ={reQy:1+y <e(R—1),1+y; >eR}.

As in Section 2.4, the size R > 1 is chosen so that in view of Proposition 2.1 to satisfy the

estimates

1 5 e e £ je .
S (M= )l 2R < Vo 2ER)IE 5 =12,

Moreover, the one-dimensional Friedrichs inequality on the segment (0,e)  z shows that
[us,; L2 (KR < H(9 ;s L (K)|1*.
Now the formulas (5.5) and (5.6) imply the relatlon
VRN, + 12 7) 2PV (N, + k%) ||us, LA(ER(R))|I?
> (Np + w76 72)Jus,; L2 (E5(R))IP = [ Vaus,; L2 (925

Nl 2O\ ZE R = g, Vae 5 1225 \ Z5(R))
7'('2 l€2
20|V u; LA+ (1= )55 — Ny — ;) s, LK)

H(550-%) - ) i

It remains to take positive 0 = 0,, > 0 and K = K,z > 0 so small that the coefficients at

the squares of Lebesgue norms of the functions u, in the right hand side exceed the quantity

csx€~ % with some factor ¢s5,, > 0. The proof is complete. O

Now we apply the minimax principle [30, Thm. 10.2.1] to the operator of problem (2.13) in
the quarter of layer =

L T2(=)]|2

veni(zy) ||V; L2(2)||?
As the test function we take the function = 3 £ — We(¢) = (y)ui#( z) (the relation between
the coordinate systems £ and x is given by the formula (2.12 )) In view of Theorem 5.1 we have

15 LA > e luiys LA — e N1 = x%) 2uiys L Q)17

2Kk
= g3 — coa’se’ 316#,
Vs L2(E)|1? < e M Vauiy; L2517 + e (2x4 Vauiy + 65y Vexs, %ﬁ#VIX#)Q;
2&1#
-3

)\1# + e e B
These estimates and identlty (5.7) imply the relation

21@1#

2 \ ZN#
& 1 — cpe” =

u+ Ce2e 2wl (5.8)

The formulas (5.3) and (5.8), and the inequality (5.9), which will be verified later, that in the
estimate we can take n(¢) = 1. Using even and odd continuation of eigenfunctions uj, through
the sections (3.38), on which the artificial Dirichlet and Neumann boundary conditions, we
obtain the asymptotics of first four eigenvalues of problem (1.1)—(1.3) in the entire domain Q°;
owing to the parity properties the associated eigenfunctions are linearly independent.



54 S.A. NAZAROV

Theorem 5.2. The first four terms of sequence (1.8) of eigenvalues of problem (1.1)—(1.3)

in the domain (1.23) satisfy the asymptotic formulas (1.25), and the remainders X obey the
estimates

2K

|X2‘ = ‘)‘i — 5_2M1} < cﬁg_Qe_Teji for € (0,e4] and k=1,234,
where My is the first eigenvalue of problem (2.13), and ¢y, ky and g4 are some positive quantities.

Proof. It remains to make sure that for the second eigenvalue A3, of problem (1.1)-(1.3)4 the
inequality

Sy =€ 2M) (5.9)

holds with some M, € (M, A;). Suppose that the relation (5.9) fails, that is, there exists an
infinitesimal positive sequence {¢;};en, for which

e\ = My as j— +oo (or g — +0). (5.10)

Omitting several first terms from the sequence, we suppose that 5?)\2’# < (My + Ay)/2 for all
J € N and in what follows we do not write this subscript. By the eigenfunctions uj, and uj,
obeying the relations

(u§#7ui#)9; = 05k, j,k = 1,27

we define the functions on the quarter of layer =

wiy(€) = eryp(y)ut,(z),  j=1.2
The inequalities
| (wig: wig) s — G| < ce 2" _
[(Vewsy. Vewiy) e — Xopdju| <ce™ 5, jk=1.2 '

This first is implied immediately from the estimate (5.4), while to get the second inequality we
should additionally take into consideration the integral identity

(Vatsie Vat) ge = N (05 0) o (5.12)

with the test function ¢° = Xiui# € H&(Q;;F%), which, as usually, is transformed into the
identity

(Va(xat5y), Vz(X#“i#))Q; — N (X5, X#“;#)QE#
:(UE#VIX#VI(X#“%#))Q; - (X#Vz“§#>“i#vx><#)9;

We pass to the limit as ¢ — +0 in the integral identity (5.12) with the test function ¢°(z) =
e2W(£), where U € C®°(2UO). As a result,

0 : : 1=
Wiy = 81_1)1rJrr10 wiy, weakly in  Hy(Z;T)

in accordance with the formulas (5.3), (5.8), (5.10) and (5.11) we get the relations
(Vewpy, VeP)z = My(wyy, V)= VO € CX(EUO), p=j.k,
(w;)#7 wg#)g = 5j7k7 j? k= 17 27

which are impossible due to the simplicity of first eigenvalue M;. The found contradiction
means the validity of inequality (5.9). The proof is complete. ]
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We are in position to complete the arguing from the end of Section 5.1. Namely, on the base
of Theorem 5.2, the relations (5.9) and relation (3.15) of spectral parameter we conclude that
for some, generally speaking small h > 0 the segment

[e*(M! = h), (M + h)]
contains the unique eigenvalue 77, of the operator A%. Thus, the relation (3.17) in the second
part of Lemma 3.1, in which we let §° = 618_36_% and 0 = he?, provides the estimate for
Sobolev norm of the difference between the eigenfunction uj, and its approximation Uj from

the formula (5.1). Finally, recalling even and odd continuations of eigenfunctions in the quarter
Q% on the entire domain ° (there are four of them), we formulate the obtained result.

Theorem 5.3. For the first four eigenfunctions of problem (1.1)=(1.3) in the polyhedron
(1.23) the asymptotic formulas

1 -
EHVQCU,i - 55_% Z OSﬁXaﬂvx‘/l; Lz(Qa)
a, =%
1
Ui =5t Y CloXanVis LA(EY)
a, =%+
hold. Here Xo9(y) = X(|ly—P?|) are cut—off functions, P® are the vertices (1.24) of the square
Q1, Vi € HY(Z; ) is the first eigenfunction of the problem (2.13) in the quarter of layer (1.20)
depending on the system of rescaled Cartesian coordinates £ = e~y — P, 2) appropriately

rotated (see the formula (2.12) in the case « = 9 = —1). Moreover, CL, = 1, while other
columns of the coefficients CF = (C’_’Lr, ck ,Ck_, CE_) are taken from the list

(1,-1,-1,1), (-1,1,-1,1), (=1,-1,1,1).

+ ‘ < Coe e 3 for €€ (0,5

5.3. Other asymptotic series of eigenvalues. Theorems 5.2 and 5.3 provide no complete
information on asymptotics of the spectrum of problem (1.1)—(1.3) in the polyhedron (1.23).
At first glance, it seems that the asymptotics procedure allow us to find the series of eigenvalues
with other stable asymptotics. Indeed, by means of calculations and arguing from Section 3.3
we can verify the following statement.

Theorem 5.4. For all p,q € N there exist positive numbers cq, 4 and €(,4), as well as the
index ngq)(€) € N, such that for the eigenvalue of problem (1.1)~(1.3) in the polyhedron (1.23)
the relation holds

Xpn@) — €T = Hpg| S coppe for e € (0,64 (5.13)
Here pgpq) = 2 (p2 —|—q2)/4 are the eigenvalues of the Dirichlet problem for the Laplace operator
wmn the square Uy,

We stress that the Dirichlet conditions on the boundary dUJ; are due to the slope of all four
lateral sides and the absence of threshold resonance in the problem (2.1)—(2.3)y, see Section
4.5. At the same time, as in Theorem 4.3, the eigenvalues in the formula (5.13), having large
indices np,q) (), belong to the middle—frequency range of spectrum.

Omne can try to obtain the formal asymptotic representations of the eigenvalues Af, A\, A%,
... by means of the asymptotic procedure from Section 4.1. The ordinary differential equations
on four segments (—1,1) are obtained by the same scheme, but in this work we fail to justify
the imposing of boundary conditions or transmission conditions at the points PV, ¥ = +
since the author does not know whether there is the threshold resonance in the problem (2.13)
on the quarter of layer (1.20). If it is absent, then the mentioned equations are equipped
with the Dirichlet condition at y, = +1, however, the emergence of resonance can give rise,
for instance, to the classical Kirchhoff transmission conditions at the vertices (1.24) (see, for
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instance, [11]), which join the differential equation on the sides (3.33) of square [J; into a single
spectral problem.

We especially stress that for the problem (2.13) with M = A; in the quarter of layer (1.20)
with skewed lateral sides the notion of the threshold resonance is to be specified since the
asymptotic behavior at infinity of its solution is unknown: the Fourier method does not work
by clear reasons, while the known results on the behavior of solutions in layer-type domains
(see, for instance, [18] and others) concern mostly the Neumann condition and do not serve the
specific mixed boundary value problem appeared in the present work.
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